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Abstract

Purpose: The recent discoveries in the field of human small heat shock proteins (sHSPs) clearly
point to the important roles played by these adenosine triphosphate (ATP)-independent
chaperones in the regulation of a large spectrum of vital cellular processes and in pathological
diseases. These proteins are therefore considered as very attractive therapeutic targets. Aims: To
understand the functions of the stress-inducible members of the sHSP family, HspB1, HspB5
and HspB8, and be able to therapeutically modulate their activities, researchers are faced with
the complex oligomerisation and phosphorylation properties of these proteins and with their
ability to interact with each other and with specific protein targets. Here, we have integrated, in
a functionally orientated way, the up-to-date literature data concerning HspB1, HspB5 and
HspB8 protein interactions which reflect their numerous crucial cellular functions. We also
present data supporting the idea that specific phospho-oligomeric domains of HspB1 are
involved in the interaction with particular client proteins. Conclusions: More information
concerning the interactions between client protein targets and sHSPs or the multiple
combinatorial chimeric oligomeric complexes formed by different sHSPs are urgently required
to elaborate a comprehensive sHSPs protein interactome and propose efficient and pathology-
specific therapeutic approaches.
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Introduction

The human family of small heat shock proteins sHSPs (also

known as HSPB) contains ten members (HspB1 to HspB10)

[1]. They share the C-terminal alpha-crystallin domain which

characterises mammalian alphaAB-crystallin polypeptides

[2–4]. Their N-terminal domain is decorated with a hydro-

phobic WD/PF motif and phosphoserine sites [5] while their

C-terminal domain contains the conservative tripeptide (I/V/

L)-X-(I/V/L) motif and a flexible tail [6–8]. This motif can

interact with a hydrophobic groove on the surface of the core

alpha-crystallin domain of a neighbouring dimer, and there-

fore can modulate the structural plasticity of sHSP oligomers

[8]. Only three, HspB1 (Hsp27), HspB5 (aB-crystallin) and

HspB8 are stress inducible and therefore belong to the family

of heat shock proteins. These three proteins, plus HspB4

(aA-crystallin), bear a conserved ATP-independent chaperone

activity [9–12]. Recent observations also suggest a weak

chaperone activity associated to two other members of the

family: HspB6 and HspB7 [13–15]. Elevated expression of

these sHSPs induces a cellular protection against different

stresses (as heat shock) that are known to alter protein folding

[4]. In these conditions, sHSPs trap misfolded proteins

through a so-called holdase activity and therefore avoid

aggregation of the misfolded members. A cooperation with

the Hsp70-Hsp90 ATP refoldase machine is then required for

refolding or proteolytic elimination of the altered proteins

[9,11,16–25]. The trapping of damaged proteins in large

structures depends on the sHSPs’ ability to form reversible,

phosphorylation-regulated, polydispersed large oligomers (up

to 800 kDa, depending on the sHSP). At least in the case of

HspB1, the dynamic structural plasticity of this protein could

be considered as a sensor of the cellular environment [26–28].

An important discovery was the finding that HspB1,

HspB5 and HspB8 are, similarly to the other members of the

sHSPs family, constitutively expressed in many tissues

[29–31]. The recent findings revealed that these constitutively

expressed sHSPs have an incredible number of crucial roles in

normal and pathological cells. Indeed, they play important

roles in signal transduction, transcription, and translation

mechanisms. Moreover, they are key factors that maintain the

integrity of the cytoskeleton architecture, they have anti-

oxidant, anti-apoptotic, tumorigenic and metastasis proper-

ties, and they can contribute to cardiac cell hypertrophy and

survival [10,31–38]. In addition, they can attenuate the

aggregation or fibrillation of pathological proteins (i.e.

mutant synuclein, parkin, Ab-amyloid, polyQ-huntingtin)

and participate in the regulation of proteolysis [10,21,31].

Hence, their expression is often up-regulated during cell
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differentiation [39] or in pathological conditions, such as

those that characterise neurodegeneration [10,31,34] myopa-

thies [10,31,43], cardiomyopathies [10,31,43], cataracts

[10,31,34], inflammatory diseases [10,31,34] and cancers

[31,32,34,38]. Hence, depending on the pathology, the up-

regulated expression of sHSPs can be either beneficial or

deleterious to the patients [10,32,34,37]. Moreover, when

mutated, several sHSPs have been described as responsible for

the development of neurodegenerative [10,20,40,41], myo-

pathic and caratact diseases [10,42,43]. It has recently been

proposed that sHSPs can achieve such a huge endeavour

through their ability to recognise, interact and modulate the

activity and/or half-life of many different proteins. In that

respect, the dynamic plasticity of sHSPs’ structure is probably

the key factor that allows the recognition of the more

appropriated client proteins in a given specific situation

[27,36–38,44].

It is now well established that a clear understanding of the

function of a protein requires information about its inter-

actions with other proteins. This consideration is even more

acute if the studied protein is a chaperone which displays

apparent pleotropic activities resulting from its ability to

modulate many crucial regulators. In that respect, individual

experimental approaches are too limited to reveal an

interactome comprehensively, and far more data are needed

that can be obtained from the collective effort of the scientific

community. As has been demonstrated in the case of Hsp90

[45], integrated data from the existing and future literature

will be required to build an interaction network of the human

sHSPs molecular chaperone machines. The task will be quite

intense, since, when they are expressed in the same cells,

sHSPs can often interact with each other and form

polydispersed hetero-oligomeric chimeric structures [46–53]

that may have different interactome properties than the

parental sHSPs. A first approach towards this endeavour is

presented here by listing the many proteins that we and

many others have discovered to interact with either HspB1,

HspB5 or HspB8. Interacting proteins are classified depend-

ing on their particular function in the cell. We also indicate,

when they are known, the phospho-oligomeric organisation

and/or the sequence domain of sHSPs involved in the

interaction.

HspB1 (Hsp27)

HspB1 (previously denominated Hsp27 or Hsp28) has been

intensively studied, since it is one of the first human sHSPs

that has been characterised and purified [26,54]. As described

above, in stress conditions HspB1 is an important player that

traps mis-folded polypeptides, avoids their aggregation, and

can indirectly promote their refolding or proteolytic degrad-

ation. This protein is also constitutively expressed in most

tissues. It is particularly abundant in heart, colon, lung,

prostate, brain and muscular tissues [31,37,55] as well as in

pathological cells such as cancer cells [38]. Studies analysing

the effects associated with its over- or under-expression have

concluded that HspB1 has multiple and apparently unrelated

cellular functions (Figure 1). For example, HspB1 has been

reported to act as a modulator of transcription, translation,

transduction pathways, apoptosis, oxido-resistance, redox

status, tumour cell survival and invasion, senescence, cellular

degenerescence and cytoskeleton integrity. These activities

are supposed to result from HspB1’s ability to interact with a

large number of protein partners. Moreover, when mutated,

it plays a significant role in the development of certain

neurodegenerative disorders [56]. In spite of its broad effects

on the biology of the cell, HspB1 is considered as an

important therapeutic target, particularly in some cancer

pathologies [10,38].

Structural and phosphorylation changes of HspB1
modulate its ability to recognise protein targets

HspB1 is phosphorylated at the level of three serine sites (15,

78 and 82), in the N-terminal part of the polypeptide, by

mitogen-activated protein kinase-associated protein kinases

(MAPKAP kinases 2,3) which are themselves activated by

phosphorylation by MAP p38 protein kinase [57]. Amongst

the different sHSPs, HspB1 is probably the protein that

displays the most intense dynamic changes in its phosphor-

ylation and oligomerisation in response to physiological

alterations of the cellular environment [27]. This leads to the

conclusion that HspB1 structural organisation is an intracel-

lular sensor that has multiple and complex strategies to

respond to specific events. For example, in a defined

physiological situation, conformational and phosphorylation

Figure 1. Cellular functions of HspB1. In addition to its well-known ability to protect cells against heat shock and other types of injuries, constitutively
expressed HspB1 plays a major role in many different cellular processes, such as those listed in the figure.
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changes accompanied by association/dissociation of oligo-

mers may reprogramme HspB1 and favour its ability to

interact with other and more appropriate client protein

partners in order to modulate their folding/activity and/or

half-life. This phenomenon could indirectly link HspB1 to

multiple cellular functions. It is therefore of prime importance

to have a clear understanding of what the interacting partners

of HspB1 are in a particular cellular situation and to decipher

HspB1 structural organisations aimed at interacting with

specific protein targets. This type of information will be

crucial to design therapeutic strategies aimed at modulating

HspB1 specific functions. As an approach towards this task,

Table I summarises the different protein targets that have been

described in the literature to interact with HspB1 and the

modulating effect towards these targets. When it is known,

the oligomeric/phosphorylated form of interacting HspB1 is

indicated, but this parameter has been determined in only a

very few cases. Only a few of the interacting targets (AR,

Her2, Stat-2, Stat-3, HDAC-6, pro-caspase-3, Snail, HDM2)

appear stabilised by HspB1. The stabilisation criterion was

that these polypeptides are proteolytically degraded by the

ubiquitin-proteasome machinery in the absence of HspB1. In

reference to some Hsp90 interacting partners [58], these

interacting proteins can be considered as ‘clients’ of HspB1

[44]. Other interacting partners show an enhanced degrad-

ation or a positive or negative modulation of their activity.

Table I. HspB1 interactome.

Interacting target Functional modulation HspB1 oligomeric structure References

Signalling, transduction pathways, immune response
Membrane signalling proteins
CD10 ? ? [81]

Receptors, transduction pathway factors
ERb Oestrogen signalling P-HspB1 [82]
AR AR stabilisation ? [83]
Her2 Her2 stabilisation ? [84]
TRAF6 TRAF6 ubiquitination P-HspB1 [85]
DAXX Inhibition activity Small P-oligomers [86]

Protein kinases, phosphatases
PKCD Inhibits HspB1activity ? [87]
RhoA, PKCa Muscle contraction P-HspB1 [88]
Akt, P38, MK2 Akt activation ? [89]
Phk ? Small oligomers [90]
p90Rsk HspB1 phosphorylation ? [91]
PTEN Increase PTEN level ? [92]

Transcription
Transcription factors
Stat-2 Stat-2 stabilisation 200–600 kDa [44]
Stat-3 Stat-3 stabilisation ? [93]
HSF-1 HSF sumoylation Large oligomers [94]
GATA-1 GATA-1 degradation P-HspB1 [95]
Snail Snail stabilisation ? [96]

Translation
Translation initiation factors
eIF4G Inhibition translation during HS ? [97]
eIF4E Tumour cell survival ? [98]
mRNA half-life
AUF1 AUF1 degradation P-HspB1 [99,100]
Ribosomes
p90Rsk HspB1 phosphorylation ? [91]

Cytoskeleton, cell adhesion, epithelial to mesenchimal transition (MET)
F-actin Protection integrity Small P-oligomers [101]
Tubulin Chaperoning ? [102]
Vimentin Chaperoning ? [103]
Keratin Chaperoning ? [103]
Neurofilaments Protection integrity ? [104]
GFAP Inhibits IF interaction ? [103]
p66Shc Cytoskeleton disruption ? [105]
b-catenin Cell adhesion ? [106]
Snail Promotes MET ? [96]

Protein transport
XPORT Transport of TRP and Rh1 ? [107]

Regulators of protein degradation
Smad Smurf2 HspB1 degradation ? [108]
p27kip1 p27kip1 degradation ? [21]

(continued )
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Table I. Continued

Interacting target Functional modulation HspB1 oligomeric structure References

Ubiquitin Protein degradation ? [109]
HDM2 HDM2 stabilisation ? [110]

Protein modification
Acetylation
HDAC6 HDAC6 stabilisation 500–700 kDa [44]
Sumoylation
Ubc9 HSF sumoylation Large oligomers [94]

Other enzymes
Factor XIII Platelet FXIII regulation P-HspB1 [111]
G6PDH Redox modulation P-HspB1 [112]

Apoptotic factors
GranzymeA GranzymeA stimulation Mono/dimers [113]
Caspase-3 Pro-caspase-3 stabilisation 150–200 kDa [114,44]
Cytochrome c Inhibition binding to APAF ? [115]
PEA-15 Inhibition Fas apoptosis ? [116]
DAXX Inhibition Fas apoptosis Small P-oligomers [86]

Senescence
HDM2 Inhibition of P53 induced senescence via HDM2 stabilisation ? [110]

Viruses
NS5A (Hepatitis C virus) ? ? [117]

Protein aggregation, neurodegeneration
a-synuclein Inhibition of fibril formation ? [118,119]
b-amyloid Inhibition of aggregation ? [40]
PolyQ proteins Inhibition of aggregation ? [120]
SOD1 Inhibition of aggregation ? [121]
Parkin Inhibition of aggregation ? [119]
p150 Dynactin Inhibition of aggregation ? [122]
NF-M Inhibition of aggregation ? [122]
Phosphorylated Tau Facilates P-Tau degradation ? [123]

Molecular chaperones, negative regulators
HspB1 Regulation activity Homo-oligomers [54,124]
HspB5 (aB-crystalline) HspB5 chaperoning 400–800 kDa [46,48,73]
HspB8 (Hsp22) ? ? [74]
HspB6 (Hsp20) ? ? [59]
Hic-5 (ARA55) Negative regulator of HspB1 ? [125]
p66Shc Negative regulator of HspB1 ? [105]
PASS1 Negative regulator of HspB1 ? [126]

HspB1 effects mediated by interactions with not yet known protein targets
Bax Inhibition of apoptotic activity [127]
Glutathion transferase Stimulation of activity, redox state [128]
Glutathione reductase Stimulation of activity, redox state [128]
SOD2 Stimulation of activity, redox state [129]
SRp38 Splicing recovery after heat shock [130]
NF-kB Negative regulation [131,132]
SC35 Splicing [133]
TAK1 signalling Inflammation [134]
Hepatitis B virus Antiviral activity [135]
Atrial fibrillation Tachycardia remodelling [15]

P-, phosphorylated; 200–400 kDa, oligomers of 200–400 kDa native size; CD10, 100 kDa transmembrane metallo-endopeptidase; p90rsk, p90
ribosomal S6 kinase; IF, intermediate filaments; GATA-1, globin transcription factor 1; HSF-1, heat shock factor 1; GFAP, glial fibrillary acidic
protein; DAXX, death domain-associated protein 6; STAT2 and 3, signal transducer and activator of transcription 2 and 3; Fbx4, Fbox only protein 4;
eIF4E, eukaryotic translation initiation factor 4E; eIF4G, eukaryotic translation initiation factor 4G; Smad-Smurf2, Smad ubiquitination regulatory
factor 2; Factor XIII, transglutaminase, platelet Factor XIII; PhK, rabbit skeletal muscle phosphorylase kinase; XPORT, exit protein of TRP and Rh1;
TRP, transient receptor potential channels; Rh1, rhodopsin; MK2, MAPK-activated protein kinase-2; P38, P38 MAPKinase; TRAF6, tumour necrosis
factor receptor-associated factor 6; AR, androgen receptor; ERb, estrogen receptor b. PKCD, protein kinase C D; Akt, also known as protein kinase B
(PKB); Her2, human epidermal growth factor receptor-2; HDAC6, histone deacetylase 6; p27kip1, cyclin-dependent kinase inhibitor p27kip1; PEA-
15, astrocytic phosphoprotein PEA-15; PTEN, phosphatase and TENsin homolog; HDM2, human double minute2; Bax, Bcl-2-associated X protein;
Ubc6, ubiquitin conjugating enzyme E2 6; SOD1, copper-zinc superoxide dismutase; SOD2, manganese superoxide dismutase; Hic-5 (ARA55),
androgen receptor associated protein 55; HspB5, alphaB-crystalline; HspB4, alphaA-crystallin; HspB8, also known as Hsp22; NF-kB, nuclear factor
kappaB; G6PDH, glucose 6-phosphate dehydrogenase; p66Shc, 66 kDa isoform of ShcA (Src homology 2 domain containing transforming protein 2);
SNAI1, zinc finger protein that binds and inhibits E-cadherin promoter to induce epithelial mezanchymal transformation (EMT); SC35, splicing
factor SC35; PASS1, protein associated with small stress proteins 1; SRp38, splicing regulator p38, SR proteins constitute a family of pre-mRNA
splicing factors; NF-M, neurofilament middle chain subunit, a protein kinase of the MLK family; TAK1, TGF-b activated kinase 1.
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Some can also be direct modulators of HspB1 chaperone

activity. Of interest, HspB1 interacts with mutant proteins and

positively interferes with their ability to aggregate or form

fibrils. Some of the sHSPs, in particular HspB5 and HspB6,

can form complex hetero-oligomers with HspB1 when they

are expressed in the same cells. The phenomenon usually

induces a reciprocal chaperoning effect towards the two

partners. Formation of hetero-oligomeric complexes does not

appear, at least in vitro, to alter HspB1 chaperone activity, but

can mutually affect the structure of both partners and

modulate their ability to interact with specific protein targets

[59] or could generate the recognition of new protein targets.

HspB1 expression is also associated with other changes in the

cell physiology, as for example the activity of anti-oxidant

enzymes and NF-kB or the efficiency of splicing recovery

after heat shock. However, these effects are described in

Table I in a separate section since the protein targets that are

directly modulated by HspB1 are not yet characterised.

Specific phospho-oligomeric structures of HspB1
recognise different protein clients

Despite the fact that HspB1 interacting sequences with non-

sHSP-specific target proteins have not yet been documented,

our recent observations support the hypothesis that, in the

same cell, specific phospho-oligomeric structures can interact

with different protein clients. In growing HeLa cells, HspB1

is the major constitutively expressed sHSP. Analysis of its

native size using a gel filtration column revealed that HspB1

is mainly recovered in three distinct structural organisations:

oligomers whose size is smaller than 200 kDa that are

phosphorylated at the level of serine 15 and 82, oligomers that

display a native size comprising between 200 and 400 kDa

that are exclusively phosphorylated at the level of serine 78,

and oligomers that have a larger size and which contain the

remaining of serine 82 phosphorylation (Figure 2). The

positions of three client proteins were detected and immuno-

precipitation studies confirmed that pro-caspase-3 interacts

the HspB1 small oligomers and HDAC6 with the large ones

suggesting that different phosphorylation/oligomerisation

organisations of HspB1 are required for the respective

binding of these two clients. In contrast, STAT2 interacted

with more complex and less defined HspB1 structural

organisations with native size comprising between 200 and

about 700 kDa [27,44]. Hence, in addition to its role in

controlling HspB1 oligomerisation, phosphorylation may also

be a signalling mechanism which favours the recognition of

specific target polypeptides.

HspB5 (alphaB-crystallin)

HspB5 is an ATP-independent chaperone which interacts with

HspB4 (alphaA-crystallin) to form (in a 1:3 HspB5:HspB4

ratio) the oligomeric alpha-crystallin molecule which is one

of the most important polypeptides involved in the refractive

and light focusing properties of the lens [43]. In contrast to

HspB4, HspB5 is a stress inducible sHSP that is also

constitutively expressed in several non-lens tissues such as

those from the heart, the colon, muscles, lungs, and kidneys

[37]. As HspB1, HspB5 has numerous cellular functions

(cytoskeleton, cell growth and adhesion, signalling mechan-

isms, protein transport, apoptosis, proteolysis and transcrip-

tion) which all result from HspB5 interaction with a large

spectrum of protein partners. See Table II, which lists the

protein targets that have already been reported in the literature

to interact with HspB5. Only a few of the interacting targets

appear stabilised by HspB5 to avoid their degradation. HspB5

mainly acts by modulating the activity of the protein targets or

by attenuating their aggregation or fibrillation. HspB5 is

particularly efficient at the level of the cytoskeleton,

Figure 2. Native size and phosphorylation of
HspB1 and structure-specific interaction with
client protein targets. HeLa cells were lysed
and the 10 000� g cytosolic fraction con-
taining all the cellular content of HspB1 was
analysed by gel filtration column as previ-
ously described [27]. Immunoblot analysis of
two-by-two pooled fractions was performed
using antibodies that are specific to either
total HspB1 or phosphorylated (phospho-
Ser15, phospho-Ser78 or phospho-Ser82)
HspB1. The presence of three client proteins
that interact with HspB1 was detected using
specific antibodies recognising Pro-caspase-
3, HDAC6 and STAT2. Three native size
fractions could be defined depending on
HspB1 phosphorylation: 50–200 kDa, phos-
phorylation at the level of serines 15 and 82,
200–400 kDa, phosphorylation at the level of
serine 78 and 400–700 kDa oligomers con-
taining phosphorylated serine 82. Note that
pro-caspase-3 co-eluted mainly with the
serine 15 phosphorylated small oligomers.
HDAC6 was at the level of the large serine 82
phosphorylated oligomers while STAT2 had
a less defined elution profile between the
medium and large sized oligomers.
Interactions of these proteins with different
phospho-oligomeric structures of HspB1 was
confirmed by co-immunoprecipitation [44].
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Table II. HspB5 interactome.

Interacting targets Functional modulation
HspB5 interacting domain/

oligomeric structure References

Signalling, transduction pathways, immune
response

Growth factors
VEGF Chaperone VEGF Known [136,137]
FGF-2 Chaperone FGF-2 Known [137]
NGF-beta Chaperone NGF-beta Known [137]

Membrane signalling proteins
b2-microglobulin Inhibition of fibrillation Known [64]

Protein kinases, phosphatases
IKKb Stimulation kinase activity ? [138]

Transcription
Transcription factors

P53 Inhibition P53 translocation to
mitochondria

? [139]

Regulators
IKKb Stimulation kinase activity, activation of

NF-kB
? [138]

Cell cycle
Cyclin D1 Cyclin Ubiquitination by HspB5-FBX4 ? [140]

Lens crystallin proteins
HspB4 (aA-crystallin) HspB4 stabilisation Hetero-oligomers [47,52]
betaB2-crystallin ? ? [141]
gammaC-crystallin ? ? [141]

Protein transport
Neurofilaments Chaperone ? [104]
MAPs Inhibition microtubules aggregation ? [142]
SMN SNR nuclear import and assembly P-HspB5 [143]

Golgi
Vesicles containing GM130 and coat
protein gamma COP

? [144]

Regulators of protein degradation
E3 ubiquitin ligase

FBX4 Cyclin D1 ubiquitination ? [140]
Proteasome

C8/a7 Proteasome subunit Proteasome assembly, degradation of
HspB5 bound proteins

? [18]

Apoptotic factors
Bcl-xs Inhibition translocation to mitochondria ? [145]
Bax Inhibition translocation to mitochondria ? [145,146]
Caspase-3 Negative regulation of activity ? [146]
P53 Inhibition translocation P53 to

mitochondria
? [139]

Other enzymes
Catalase Protection against inactivation ? [147]
Insulin ? Known [137]
SOD-1 Protection against inactivation ? [148]

Cytoskeleton, interfiber proteins, cell-cell
adhesion, tissue integrity

F-actin Protection integrity [149–152]
Tubulin Inhibition tubulin aggregation Known [153,154]
MAPs Inhibition microtubules aggregation ? [142]

Intermediate filament proteins
Desmin Chaperoning Known [152]
Vimentin Chaperoning ? [103,155,156]
Peripherin Chaperoning ? [155,156]
GFAP Stabilization/degradation GFAP Known [103,152,157]
Neurofilaments Protection integrity ? [104]
Filensin Chaperoning ? [158]
Phakinin Chaperoning ? [158]
GRIFIN ? ? [159]
Cadherin-16 Cadherin-16-cytoskeleton connection ? [160]
b-catenin Cell adhesion Known [137]

(continued )
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Table II. Continued

Interacting targets Functional modulation
HspB5 interacting domain/

oligomeric structure References

Protein aggregation, fibrillation
Desmin Inhibition of aggregation Known [152]
Vimentin Inhibition of aggregation ? [103,155,156]
Tubulin Inhibition of aggregation Known [153,154]
Serpin Inhibition of aggregation ? [161]
SOD1 Inhibition of aggregation ? [121]
PrPc Inhibition of aggregation ? [162]
k-Casein Inhibition of aggregation ? [120]
PolyQ proteins Inhibition of aggregation ? [120]
Apolipoprotein-CII Inhibition of aggregation ? [163]
a-synuclein Inhibition of fibrillation Known [64,118]
Ab-amyloid Inhibition of fibrillation Known [64,164]
b2-microglobulin Inhibition of fibrillation Known [64]
Transthyretin Inhibition of fibrillation Known [64]

Sarcomeric proteins – Inhibition of
aggregation

Titin/connectin heart-specific N2B
domain

? [165]

Titin/connectin striated muscle-specific
I26/27 domains

? [165]

Plus other proteins of the sarcomeric
Z-disc, such as myotilin, ZASP and
filamin C

Proinflammatory plasma proteins
Proteins of the complement, acute phase
proteins and coagulation factors (70 pro-
teins in total)

Coagulation factors V, X [60]
Complement C1qA, 1qB, 1qC [60]
Complement C1s, C1r, C5, C3, C2, C6,

C7, C8, C9
[60]

Phosphatidylinositol-glycan-specific
phospholipase D

[60]

Vitamin K-dependent protein S [60]
Cartilage acidic protein 1 [60]
Mannosyl-oligosaccharide

1,2-alpha-mannosidase 1A
[60]

Serpin A10 Protein Z-dependent
protease inhibitor

[60]

Insulin-like growth factor-binding
protein

[60]

Phenylcysteine oxidase 1 [60]
Carboxypeptidase B2 and N subunit 2 [60]
Thrombosporin [60]
Ficolin-3 [60]
Platelet factor 4 [60]
Glutathione peroxidase, and others [60]

Molecular chaperones
HspB5 Regulation activity Homo-oligomers [166]
HspB1 (Hsp27) HspB1 chaperoning Known [48,73]
HspB4 (aA-crystallin) HspB4 chaperoning Known [47,50–52]
HspB6 (Hsp20) ? ? [53]
HspB8 (Hsp22) ? ? [53]

HspB5 effects mediated by interactions with
not yet characterised protein targets

TRAIL-mediated apoptosis Inhibition [167]
Ras activation Inhibition [168]
MAPKinases Negative regulation [146]
PKCa Modulation activity [169]
Akt Modulation activity [169]
G6PDH Modulation of activity [128,131,170]
NSC Localisation, unknown function [171]

P-, phosphorylated; Known, HspB5 interacting sequence domain is known, see cited reference; MAPs, microtubule-associated proteins; VEGF,
vascular endothelial growth factor; GFAP, glial fibrillary acidic protein; FGF-2, fibroblast growth factor 2; NGF-beta, nerve growth factor beta; PrPc,
bovine prion protein; ZASP, Z-band alternatively spliced PDZ motif containing protein; GRIFIN, galectin-related interfiber protein; SMN, survival
motor neuron protein; Bax, Bcl-2-associated X protein; NSC, nuclear speckle components; SOD-1, Cu/Zn-superoxide dismutase.
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particularly intermediate filament proteins. Of interest, by

mass spectral analysis, approximately 70 polypeptides (acute

phase proteins, coagulation factors and proteins of the

complement) were precipitated by HspB5 from plasma from

patients with multiple sclerosis, rheumatoid arthritis and

amyloidosis, and mice with experimental allergic encephalo-

myelitis [60]. This interesting study clearly illustrates how

large the spectrum of HspB5 interacting proteins can be. No

such analysis has yet been performed concerning extra-

cellular HspB1. HspB5 expression is up-regulated in several

pathologies, in particular those of cancer origin [38,61,62].

Several HspB5 mutations have been characterised that result

in cataracts, cardiomyopathies and myofibrillar myopathies

[43]. Hence, HspB5 is considered as a therapeutic target,

particularly in myopathies and cancer pathologies [10,38,42].

HspB5 phosphorylation and interacting domains

HspB5 is phosphorylated at three sites (serines 19, 45 and 59).

The MAPKAPK2/3 kinases are responsible for the phosphor-

ylation of serine 59 while p42/p44 MAPKinase phosphoryl-

ates serine 45. HspB5 structural organisation differs from that

of HspB1 since its oligomers are less dynamic and mainly

recovered with native sizes ranging from about 400 to

700 kDa [63]. It is not yet known whether changes in HspB5

native size could modulate its ability to recognise specific

targets. However, information already exists about HspB5

interacting domains that are effective, at least in vitro, to

recognise specific target proteins (see Table II). The

sequences of these domains are not listed in Table II

but can be obtained in the cited references. For example,

the DRFSVNLDVKHFS and HGKHEERQDE peptide

domains in HspB5 alpha crystallin C-terminal domain

appear involved in the inhibition of alpha-synuclein amy-

loid-beta fibrillation [64].

HspB8 (Hsp22)

HspB8, a recently described phospho-oligomeric member of

the family of human sHSPs [65], bears a chaperone activity

and is up-regulated in stress conditions. HspB8 is widely

expressed in different human tissues, predominantly skeletal

muscles, heart and nerves. As HspB1 and HspB5, HspB8 is

also characterised by its pleotropic cellular roles. It is

involved, directly or indirectly, in the regulation of apoptosis,

ribonucleoprotein processing, cell differentiation and prolif-

eration, carcinogenesis, cardiac cell hypertrophy and inflam-

matory process in rheumatoid arthritis [31,41,66,67].

Moreover, point mutations that alter HspB8 chaperone

activity were found to correlate with the development of

distal motor neurodegenerative diseases [68]. In that respect,

one of the most prominent roles of HspB8 is linked to its

ability to counteract, more efficiently than HspB1 or HspB5,

the aggregation of misfolded/denatured proteins and to

participate in the regulation of their proteolysis [20]. This

high efficiency depends on HspB8’s ability to interact with

Bag3, a co-chaperone stimulator of macroautophagy. In the

HspB8-Bag3 cooperative complex, HspB8 is responsible for

the recognition of the damaged proteins, while Bag3 is

involved in macroautophagy activation [11]. In addition, the

HspB8-Bag3 complex activates, through phosphorylation and

a non-chaperone-like mechanism, the eIF2alpha signalling

pathway that leads to protein synthesis inhibition and

autophagy stimulation [24,69]. Other studies have revealed

that the autophagic removal of misfolded proteins may occur

through a larger multiheteromeric complex made of HspB8,

Bag3, Hsc70 and the E3 ligase CHIP [70] plus also HspB6

[71]. In response to the deleterous accumulation of misfolded

proteins in response to drastic heat shock treatments, the

Bag3-HspB8 complex is up-regulated through a stress-

activated NF-kB dependent event [72].

HspB8 interact with many different protein targets

HspB8 is present cellularly in the form of small homo-

oligomers. However, it is recovered in polydispersed oligo-

meric complexes consequently due to its interactions with

other members of the family (HspB1, HspB5, HspB6, HspB3

and HspB2) [48,49,73,74]. As HspB1 and HspB5, HspB8

interacts with many target proteins that are different from

those interacting with these two sHSPs [75]. These inter-

actions are regulated by HspB8 phosphorylation (Serine 24

and Threonine 87 by extra signal cellular regulated kinase 1,

ERK1) which modulates the structure and chaperone activity

of this protein [75]. The polypeptides that interact with HspB8

and which are linked to the multiples roles played by this

protein are presented in Table III. They are less abundant

compared to HspB1 or HspB5. This is probably a conse-

quence of the recent discovery of this fascinating sHSP.

Areas for future work

Here, we have analysed the interactomes of the three major

stress inducible sHSPs. This choice was made because there is

still little information available concerning the interactomes

of the seven other members of the family of sHSPs. Most of

these sHSPs are not stress inducible and bear only a weak, or

no chaperone activity. However, some of them are interesting,

such as HspB6 and HspB7 [14,31] and HspB4 (alphaA-

crystallin) which can act as a chaperone towards HspB5

[43,52]. Hence, future work will certainly bring new infor-

mation concerning the interactomes of these proteins.

Another field of research that is still obscure concerns the

effects induced by the interaction between sHSPs [49,53,76].

Indeed, if several sHSPs are expressed in the same cell, they

can form multiple combinatorial chimeric oligomeric com-

plexes that could bear new protein target recognition abilities

and modulate those of the parental molecules. Another

consequence could be the dominant effect of a mutated

sHSP towards other interacting members of the family [77].

Unfortunately, only very few data are available and new

studies are urgently required to analyse these complex

interactions and their effects on the recognition of protein

targets.

Conclusion

For years, sHSPs have been thought to act mainly as

specialised molecular chaperones to attenuate cellular

damage by inducing the storage of the altered proteins

until they could be refolded by the major ATP-dependent

chaperone machines (i.e. Hsp70, Hsp90), or degraded.
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Their constitutive expression in a large number of normal and

pathological tissues and the discovery of mutations that are

responsible for pathologies as diverse as neurodegeneration,

myopathies, cardiomyopathies and cataracts have suggested

that their role in the cell is more complex than it was

originally proposed. This assumption was confirmed by

experiments aimed at analysing the cellular effects induced

by either up- or down-regulating their constitutive expression.

Indeed, numerous reports in the literature describe that these

proteins are involved in an incredible number of crucial, but

often unrelated, cellular functions. As recently shown, these

activities result from the holdase type of chaperone function

of sHSPs which allows them to recognise, interact and

modulate the activity and/or half-life of many specific

proteins. Nowdays, the number of the proteins that interact

with these HSPs is growing exponentially. So, the aim of this

publication was to list the proteins that have already been

described to interact with the three major stress inducible

sHSP chaperones HspB1, HspB5 and HspB8 which are

known to play important role in pathologies

[10,20,32,34,37,38]. From this study we can conclude that

today we are still far from being able to build a comprehen-

sive overall dynamic interactome of sHSPs. The major

disadvantage of this situation concerns the search for

therapeutic drugs that could alter the interaction of a specific

pathological protein target with a defined sHSP, or on the

other hand, promote its interaction with a beneficial one.

Indeed, despite some positive attempts to specifically modu-

late the HspB1 interactome [78–80], we may remain stuck for

a while with the use of broad approaches which, through

general alteration of sHSP’s dynamic interactomes, could

induce off-target mediated side-effects.
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