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Abstract

The heat shock response is a highly conserved primitive response that is essential for survival
against a wide range of stresses, including extremes of temperature. Fever is a more recently
evolved response, during which organisms raise their core body temperature and temporarily
subject themselves to thermal stress in the face of infections. The present review documents
studies showing the potential overlap between the febrile response and the heat shock
response and how both activate the same common transcriptional programme (although with
different magnitudes) including the stress-activated transcription factor, heat shock factor-1, to
modify host defences in the context of infection, inflammation and injury. The review focuses
primarily on how hyperthermia within the febrile range that often accompanies infections and
inflammation acts as a biological response modifier and modifies innate immune responses.
The characteristic 2–3 �C increase in core body temperature during fever activates and utilises
elements of the heat shock response pathway to modify cytokine and chemokine gene
expression, cellular signalling and immune cell mobilisation to sites of inflammation, infection
and injury. Interestingly, typical proinflammatory agonists such as Toll-like receptor agonists
modify the heat shock-induced transcriptional programme and expression of HSP genes
following co-exposure to febrile range hyperthermia or heat shock, suggesting a complex
reciprocal regulation between the inflammatory pathway and the heat shock response
pathway.
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Introduction

Fever is a complex physiological response to infection and

injury, the key feature of which is a temporary resetting of the

body’s thermostatic set point resulting in an increase in core

temperature. Although fever is recognised as a component of

the acute-phase response to infection and perceived to be a

response limited to mammals and birds, many poikilothermic

animals, including lower vertebrates, arthropods, and anne-

lids, also increase their core temperature in response to

infection or injury [1]. The prevalence of fever in such diverse

modern animals suggests that it first appeared over

600 million years ago. This evolutionary persistence of

fever is even more remarkable when one considers its

substantial metabolic cost. In humans, generating fever

through thermogenic shivering requires up to a 6-fold increase

in metabolic rate [2], and maintaining a physiological core

temperature at febrile levels requires an approximately 12%

increase in metabolic rate per 1 �C increase in core tempera-

ture [3,4]. In poikilothermic animals with infections, moving

to warmer environs not only requires increased energy

expenditure, but may also expose vulnerable individuals to

attack by predators. Therefore, fever must confer benefit that

generally outweighs these costs in the infected or injured host.

Furthermore, given the phylogenetic age of fever, the

immunological processes that are active during febrile

illnesses have had ample opportunity to evolve for optimal

function at febrile temperatures.

This review will focus on how the characteristic 2–3 �C
increase in body temperature that often accompanies infec-

tions and inflammation acts as a biological response modifier

by regulating signalling pathways and gene expression

involved in immune defence, inflammation, and cell death

and survival. We discuss how elements of the heat shock (HS)

response pathway have been co-opted as immune response

modifiers and how the knowledge of how the temperature

responsiveness of elements of the immune response can be

translated to the care of the acutely ill patient.

Heat shock response

While fever is a systemic response to infection and injury, the

HS response acts as a defence mechanism against cellular

stress. The HS response, a highly conserved ancient biological

process, is essential for survival against a myriad of

environmental stresses, including extremes of temperature,

chemicals and radiations, each of which can cause denatur-

ation of essential cellular proteins. Also referred to as the

‘cellular stress response’ the HS response is accompanied

with reprogramming of the cellular transcriptional and
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translational machinery to preferentially express a set of

stress-inducible proteins namely the heat shock proteins

(HSPs). During stress these HSPs act as chaperones and bind

to denatured proteins to either preserve them until the stress

has abated or to target the denatured proteins for degradation

[5–7]. Genes encoding the five families of HSPs are highly

conserved. Their presence in all species studied to date

including archaebacteria, eubacteria, and eukaryotes, suggests

that they first arose at least 2.5 billion years ago. While

prokaryotic and eukaryotic HSP genes exhibit striking cross-

domain homology, they use different mechanisms of tran-

scriptional regulation. In eukaryotes, HSP expression is

regulated at the transcriptional level by the stress-activated

transcription factor heat shock factor (HSF). Mammals,

including humans have three HSF orthologues of which

HSF1 is the heat inducible orthologue [8–10]. Human HSF1

is a complex protein with an N-terminal DNA binding

domain, three hydrophobic regions that regulate trimerisation,

a serine-rich regulatory domain that regulates trasnscriptional

activation, and two independent C-terminal transactivation

domains [11]. HSF1 is retained as inactive monomers by

intramolecular interactions between the first two hydrophobic

regions and the third hydrophobic region [12,13]. During

HSF1 trimerisation, the intramolecular interactions are

replaced by intermolecular interactions between the first

two hydrophobic repeats of each of the three trimerising

HSF1 molecules. Heat-inducible HSFs, including mammalian

HSF1 exists in dynamic equilibrium between a transcription-

ally inactive, cytosolic, hetero-oligomeric pool and a tran-

scriptionally active intranuclear homotrimeric pool.

Spontaneous trimerisation of HSF has been reported to

be concentration-dependent, spontaneously forming

DNA-binding trimers when present at sufficiently high

concentrations in cell-free reactions [12] and within intact

cells [13]. Zhong et al. [14] demonstrated that dilution of

trimerised Drosophila HSF in crude cell lysates from

Schneider line-2 (SL-2) cells caused reversible dissociation

of HSF trimers to monomers. They used this model system to

calculate the equilibrium constant, Kd, for the HSF trimer

dissociation reaction and showed that the Kd decreased,

thereby favouring trimerisation, as the reaction temperature

increased or upon exposure to oxidant stress. This analysis

provides a useful conceptual model to interpret studies in

which the expression levels of HSF may vary widely by

describing the mathematical relationship among HSF con-

centration, temperature, and the extent of HSF trimerisation.

Importantly, this study also demonstrates that HSF trimerisa-

tion may occur as a continuous temperature-dependent

process that is activated over a temperature range rather

than as a binary process activated when a distinct thermal

threshold is exceeded.

Induction of HSF1 trimerisation is a hierarchical process.

HSF is directly activated by heat in cell-free reactions, but the

temperature range at which the reaction occurs is a species-

specific intrinsic property of HSF, and related to the normal

temperature range of the organism. For example, cell-free

Drosophila HSF undergoes trimerisation between 28� and

38 �C while mouse HSF1 trimerises between 37� and 39 �C
[14,15]. While cell-free HSF can be directly activated by heat,

Zhong et al. showed that trimerisation of intracellular HSF is

heat-activated at lower temperatures than cell-free HSF or by

chemical stresses that have no effect on cell-free HSF, such as

salicylate, dinitrophenol, arsenite, and ethanol [14]. When

human HSF1 is expressed in Drosophila SL-2 cells, it

trimerises at 32–37 �C, the Drosophila HS range, rather than

the usual human temperature threshold [16]. In addition, the

temperature threshold for mammalian HSF1 can differ

between different tissues in the same organism [17] and

change over time such as after prolonged exposure to

hyperthermia [18] or in response to soluble mediators like

arachidonic acid or type I interferon [19,20].

Activation of HSF1 and its transcriptional activity is

greatly dependent upon its post-transcriptional modifications.

HSF1 has 60 serines and threonines, at least 12 of which have

been shown to be phosphorylated [21] by various kinases

including members of the MAP kinase pathway. Most of the

phosphorylation events modify trans-activation domain func-

tion but phosphorylation of threonine 142 increases [22] and

phosphorylation of serine-121 reduces [23] activation of

human HSF1 to its DNA binding trimeric form and

phosphorylation of serine-419 is required for its heat-induced

nuclear translocation independent of trimerisation [24]. HSF1

undergoes additional covalent modifications including

sumoylation that are critical for its transcriptional activation

of HSP genes [25,26]. Collectively, these studies demonstrate

that HSF1 trimerisation and its transcriptional competency is

regulated through multiple steps, each affected by tempera-

tures, soluble mediators, and protein modifying signalling

events that are encountered during febrile illnesses.

Fever and the HS response

Over twelve years ago we proposed a partial overlap between

fever and the HS response [27] based on data showing partial

activation of HS signalling pathways at febrile temperatures,

the participation of HSF1 in the regulation of several

inflammatory mediator genes, and the cytoprotective effects

of intracellular HSPs generated at febrile temperatures. In the

subsequent decade additional experimental evidence has been

generated that supports a functional overlap between fever

and the HS response and identifies HSF1 as central to the

relationship between these two distinct, evolutionarily con-

served host defence mechanisms.

HSF1 activation has not only been shown to occur at

temperatures in the febrile range but the temperature required

for HSF1 activation and HSP gene expression has been shown

to differ across species [28] and across different cell types and

tissues in the same organism [17,29], and to be lowered by

exposure to certain inflammatory mediators [19,20]. For

example, mouse lymphoid tissues, including spleen, exhibit a

low thermal threshold for induction of HSP expression, which

appears to derive from T lymphocyte rather than B lympho-

cyte behaviour [29,30], suggesting variable cell- and tissue-

specific activation of HS response at febrile temperatures

(Table I).

As discussed in the previous section, HSF1 trimerisation

and nuclear translocation is required but not sufficient for

gene transcription [12,13] and is dissociable from HSP gene

transcription [31,32]. We found that exposing the RAW 264.7

mouse macrophage cell line to hyperthermia in the febrile
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range (39.5 �C) for a brief period activates HSF1 trimerisation

and DNA binding activity, but is insufficient to induce

expression of HSP genes, while exposing the cells to classic

HS temperatures (�42 �C) induces high levels of Hsp70 [33].

Similarly, Laszlo et al. [34] showed that 15 min exposure to

38 �C was sufficient to activate HSF1 to a DNA binding form

in HA-1 hamster fibroblasts and C3H10T1/2 mouse fibro-

blast-like cells. We recently confirmed that HSF1 activation

to its DNA-binding trimeric state is dissociable from Hsp70

expression and showed that the thermal threshold for Hsp70

expression is both temperature- and time-dependent in the

A549 human pulmonary epithelial-like adenocarcinoma cell

line [35]. Similar to the results in the Laszlo study, exposing

A549 cells to 38.5 �C, 39.5 �C, and 41 �C for 1 h each caused

similar nuclear translocation and DNA binding activity of

HSF1. However, detectable Hsp70 protein expression

required 24 h exposure at 38.5 �C, 6 h exposure at 39.5 �C,

and only 1 h exposure at 41 �C (Figure 1). The relationship

between the exposure temperature and maximal Hsp70

protein levels was linear between 37 �C and 41 �C, increasing

approximately 50%/ �C. However, a further 1 �C increase in

temperature to 42 �C stimulated an additional 2.6-fold

Table I. HSF1 activation and HSP induction in various tissue and tissue culture cells at febrile range temperatures.

Cell/tissue Exposure Effect Reference

RAW 264.7 mouse macrophages 39.5 �C for 30–60 min HSF1 nuclear translocation and DNA-
binding activity in vitro and in vivo

[33,91]

39.5 �C for 2 h Hsp70 mRNA induction [40]
39.5 �C for 6 h Hsp70 protein induction [40]

A549 human lung epithelial cells 38.5, 39.5 or 41 �C for 1 h HSF1 DNA-binding activity [35]
38.5 �C for 24 h Hsp70 protein induction
39.5 �C for 6 h

Purified CD4þ T cells 39.5 �C for 6 h Hsp70 protein induction [154]
Mouse C3H 10 T and hamster
ovary HA-1 fibroblasts

38.5, 39.5 or 41 �C for 15 min HSF1 DNA-binding activity [34]

Isolated primary cells
from mouse testis

34–44 �C for 1 h HSF1 DNA-binding activity detected at
36 �C onwards

[155]

38 �C for 1 h HSF1 DNA-binding activity 36 �C
onwards

[156]

38 �C for 1 h followed by 2 h recovery
at 32 �C

Hsp70 protein induction

Mouse spleen cells and
T-lymphocytes

Whole-body hyperthermia exposure at
38–42 �C for 1 h

HSF1 DNA-binding activity detected at
38–39 �C onwards

[29]

Hsp70 mRNA induction detected at 39 �C
onwards

Mouse heart, lung, kidney,
lymph nodes and thymus

Whole-body hyperthermia exposure at
39–40 �C for 6 h

Hsp70 protein induction [30]

Mouse liver and kidney Whole-body hyperthermia, core body
temperature 39.5 �C for 3 h

Hsp70 protein induction [38]

Mouse lung Whole-body hyperthermia, core body
temperature 39.5 �C for 24 h

Hsp70 protein induction [39,40]

Figure 1. Hsp72 protein expression is temperature and time dependent. Subconfluent A549 monolayers were exposed to the indicated temperature for
the indicated time and then were switched to 37 �C for the remainder of a 24-h incubation. Cells were lysed and analysed for Hsp72 levels by
immunoblotting. (A) Band intensities were analysed by direct imaging of the chemiluminescent signal, corrected for loading by normalising to
b-tubulin levels, and standardised to 37 �C baseline levels (0). (B) Hsp72 protein levels after 6 h exposure to the indicated temperature between 38.5 �C
and 41 �C or to 42 �C for 2 h followed by 4 h recovery at 37 �C were compared. Data are mean� SE of six experiments. *p50.05 versus time 0.
yp50.05 and �p50.05 versus 38.5 �C and 39.5 �C, respectively, values at the same exposure time. This research was originally published in Cell Stress
and Chaperones [35]. Reprinted with kind permission from Springer Science and Business Media.
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increase in Hsp70 expression with little additional activation

of HSF1 binding activity (Figure 1) [35]. These results

suggest that 41–42 �C may represent a key temperature

threshold in human cells above which the relationship

between Hsp70 gene activation and temperature shifts. That

41 �C is the upper limit of the normal human febrile range

underscores the biological significance of this relationship

[36,37].

In anaesthetised mice, raising core temperature to febrile-

range levels (rectal temperature 39.5 �C) by partial immersion

in a heated water bath for 3 h was sufficient to activate Hsp72

expression in liver and kidney, albeit at much lower levels

than mice exposed to HS temperature (rectal temperature

42 �C) for only 20 min followed by 160 min normothermic

recovery [38]. More recently, we showed that maintaining

core temperature at 39.5 �C for 24 h in conscious mice

activates expression of Hsp70 in lung parenchyma [39,40].

The relatively low temperature-dependent expression of

Hsp70 at temperatures within the normal febrile temperature

range and the profound increase in Hsp70 expression at

temperatures �42 �C supports our proposition that fever

and HS responses are distinct but partially overlapping

processes [27].

Fever, inflammation and immune responses

As expected based on the evolutionary conservation of the

febrile response [1,27,41], fever and hyperthermia in the

febrile-range (febrile range hyperthermia (FRH), core tem-

perature �39.5 �C) confers protection in infection by improv-

ing pathogen clearance in vivo [39,42–44] although the

change in temperature have little effect on the growth rate of

the pathogens [39,44]. Increasing body temperature of fish

and lizards by �4 �C greatly increased clearance of the same

Gram-negative pathogen, Aeromonas hydrophila, despite a

10 �C lower temperature range in the fish [42,43]. These data

demonstrate that FRH enhances pathogen clearance in vivo

through effects on host defence rather than on the pathogen.

This effect may also explain the association of fever with

improved survival in retrospective clinical studies of bacterial

infections [45–47].

We developed a mouse model of FRH in which mice

exposed to an ambient temperature of 36–37 �C increase their

core temperature by 2–3 �C but maintain normal circadian

patterns and appear otherwise healthy and active [48,49].

Using this model we showed that FRH accelerated pathogen

clearance in experimental Klebsiella pneumoniae peritonitis

[44] and pneumonia [39]. Focusing on the lung, we found that

FRH, despite reducing pathogen load, tended to reduce

survival in the K. pneumoniae model while it greatly

improved survival in the peritonitis model [39,44] and

severe lung injury was found in mice co-exposed to FRH in

the pneumonia model [39,44]. Lipke and Martin et al.

confirmed these results in the intratracheal bacterial lipo-

polysaccharide (LPS)-challenged mouse model [50,51]. Co-

exposure to FRH and LPS exerted similar effects in a model

of lethal pulmonary oxygen toxicity [52]. Considering these

results it appears that FRH augmented innate immune

processes, which accelerated pathogen clearance but also

enhanced collateral tissue injury, and the net effect on

survival depended on the balance between the two effects.

Although the above studies focused primarily on the host’s

inflammatory responses and neutrophil-mediated vascular

injury, the contribution of other factors cannot be ignored. For

example, using a similar mouse model of lung injury,

D’Alessio et al. [53] identified a critical role for regulatory

T cells (Tregs) in resolution of lung injury and showed that

depletion/absence of Tregs prolonged LPS-induced proin-

flammatory responses, reduced neutrophil apoptosis and

severely delayed recovery. Considering that hyperthermia

and HSPs both greatly modify T cell behaviour [54–57], the

contribution of dysregulated Treg mechanisms in lung injury

at FRH could not be negated. However, few studies have

focused on this aspect of hyperthermia and inflammation.

FRH exposure greatly increased neutrophil infiltration in

both the pulmonary oxygen toxicity and intratracheal LPS

instillation models [39,52]. In fact, the studies showed that

exposure to FRH augmented multiple steps required for

neutrophil delivery to sites of infection and injury, including

induction of G-CSF expression and expansion of the

circulating neutrophil pool [58], increased generation of the

CXC chemokine family of endogenous chemotaxins [39,49],

and increased capacity for chemokine-directed transendothe-

lial migration (TEM) of neutrophils [59,60]. Furthermore,

adoptive transfer of fluorescently labelled neutrophils

between normothermic and hyperthermic neutrophil donors

and recipients demonstrated that enhanced neutrophil migra-

tion capacity required FRH exposure of both the donors and

recipients indicating that FRH augments neutrophil transmi-

gration capacity through interdependent effects on both the

neutrophils and the vascular endothelia [59].

In addition to augmented neutrophil accumulation in lung,

FRH co-exposure had two additional effects in the LPS-

challenged mouse lung that are also characteristic of human

acute respiratory distress syndrome (ARDS), endothelial

hyperpermeability and epithelial injury. In the mouse

intratracheal LPS instillation model, exposure to FRH

caused extensive epithelial injury [39], and Lipke et al.

[50,51] showed it to be caused by augmented TNFa- and fas-

dependent apoptosis. Using human neutrophils and the mouse

MLE15 lung epithelial cell line, we found that exposure to

39.5 �C greatly accelerates activation of all three initiator

caspases, caspase-2, 8, and 10, with evidence of activation as

early as 60 min after stimulation with TNFa or agonistic anti-

fas antibody (and within 30 min if treated at 42 �C) [61,62].

Accelerated and augmented apoptosis in the FRH-exposed

and TNFa- or anti-fas-treated cells was partially blocked by

inhibition of all three initiator caspases, did not require HSF1,

and still occurred even when NFkB activation was independ-

ently blocked by expression of the IkBa super-repressor [62].

The Evans and Repasky laboratories have shown many of

the same effects of FRH on cytokine gene expression [63,64],

but have extended their studies of FRH effects to lymphocyte

trafficking [65–67]. Utilising intravital microscopy to analyse

lymphocyte trafficking in high endothelial venules in mice,

the Evans laboratory has shown that exposing lymphocytes to

FRH enhances their L-selectin- and alpha4beta7 integrin-

dependent binding to high endothelial venules that increased

their trafficking to secondary lymphoid tissue [65,66] and the

enhanced migration is mediated through the IL-6-dependent
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endothelial expression of ICAM-1 [57]. The consequences for

the FRH-enhanced lymphocyte recruitment in infections and

inflammatory disease have not yet been demonstrated

experimentally. Recently, Lee et al. [63] showed a unique

effect of FRH on activation and reprogramming of macro-

phages whereby FRH exposure causes a transitory reduction

in endotoxin tolerance behaviour in vivo, increases inflam-

matory macrophage recruitment and maintains a sustained

responsiveness to LPS.

Collectively, these studies demonstrate that exposure to

hyperthermia achieved during febrile illness has many effects

on gene expression, cell signalling, and cell behaviour that

includes leucocyte and macrophage recruitment, opening of

endothelial paracellular pathways to macromolecules and

enhance extrinsic apoptosis in epithelium. These effects can

be both beneficial and harmful, and the consequence for host

survival and recovery depend on the nature of the patho-

logical process.

HSF1: the central mediator

Heat-inducible HSF, including mammalian HSF1, was ori-

ginally identified as a stress-activated transcriptional activator

of HSP genes. However, evidence for the participation of HSF

in more diverse processes such as innate immunity in

Caenorhabditis elegans [68] and extra-embryonic develop-

ment [69] suggest a much broader range of biological

functions than previously thought.

The concept that HSF1 might have additional functions

was initially suggested by Westwood et al. [70] who used in

situ hybridisation analysis to show that HS stimulated the

recruitment of HSF to 150 distinct chromosomal loci in

Drosophila salivary gland polytene chromosomes, far more

than could be accounted for by the known HSP genes. These

observations were subsequently complemented by Trinklein

et al. [71] who used a combination of chromatin immuno-

precipitation and human promoter microarray analyses to

show recruitment of HSF1 to multiple non-HSP genes in

human K562 cells. Our own in silico analysis of CXC

chemokine genes showed that the promoter regions of almost

all mouse and human CXC chemokine genes contained

multiple potential HSE consensus sequences [72]. We subse-

quently showed that some of the putative HSEs recruited

HSF1 in vivo and that some of these functioned as a

transcriptional activator, some as a repressor and some were

functionally silent [73,74]. Additional studies, using cDNA

microarrays to analyse the gene expression pattern activated

by HS confirmed that exposure to HS also modifies expres-

sion of several non-hsp genes, including those involved in

regulation of transcription, growth, DNA repair, apoptosis,

signalling, and cytoskeletal function [75–77]. More recently,

Mendillo et al. [78] showed that HSF1 was activated under

basal conditions in cancers with high tumorigenic and

metastatic potential but not in other cancers. Using high

throughput ChIP-sequencing, they showed that HSF1 was

recruited to about 500 genes many of which are distinct from

those induced by HS and some of which are down-regulated

by HSF1.

Studies with the HSF1 knock-out mouse also

confirmed HSF1 as the major regulator of the heat/stress

response [9], but also demonstrated its participation in the

regulation of extra-embryonic development, growth, and

endotoxaemia-induced systemic inflammation [69], female

[69,79] and male [80] reproductive potential, the ubiquitin

proteolytic pathway [81], post-natal brain development [82],

in the maintenance of olfactory epithelium and in ciliary

beating in the respiratory epithelium, ependymal cells,

oviduct, and the trachea [83,84], and a potent promoter of

tumorigenesis [85].

Gene-specific studies by our laboratory and by Stuart

Calderwood’s laboratory have shown that HSF1 can modify

the expression of various cytokines, chemokines and acute

response genes. The Calderwood group showed that following

HS, HSF1 mediates transcriptional repression of human pro-

interleukin-1b, c-fms, and c-fos genes [86–89] through

quenching of participating trans-activating factors, most

notably NF-IL6/c/EBPb. In our studies we found that HSF1

was activated at febrile-range temperatures (39.5 �C) and

mediated the repression of TNFa gene expression by

interacting with a putative HSE sequence present in the

mouse TNFa 5’-untranslated region [33,90,91]. Interestingly,

we found that exposure to febrile-range temperatures also

represses TNFa gene expression by selectively blocking

recruitment of NFkB and Sp1 to the TNFa proximal promoter

sequence [92,93]. In further support of HSF1 as a negative

regulator of TNFa expression, HSF1-null mice exhibit higher

circulating levels of TNFa expression after intraperitoneal

challenge with LPS [69] and higher levels of TNFa in lung

lavage after intratracheal LPS challenge [93]. In addition,

activated HSF1 has also been found to repress human

CXCL5 [73] and the pro-apoptotic factor, xIAP-associated

factor 1 [94].

Regarding HSF1-mediated induction of non-HSP genes,

we analysed the effect of HS on the expression of interleukin

IL-8 [74]. HS enhanced TNFa-induced IL-8 secretion in

human A549 epithelial cells but unlike classic HSPs, HS

alone was not sufficient to activate IL-8 expression. Using

EMSA and ChIP, we identified two IL-8 promoter regions,

800 and 1200 nt upstream of the transcription start site, that

bound active HSF1 and, using a 5’-deletion mapping strategy

and siRNA knockdown of HSF1, we showed that the

interaction of HSF1 with both promoter regions contributed

to the increased IL-8 expression in cells co-treated with TNFa
and HS. Goldring et al. [95] found that activated HSF1 has a

similar co-activator function for the murine iNOS gene.

Inouye et al. [96] found that HSF1 constitutively bound to

IL-6-associated chromatin in unstressed peritoneal macro-

phages and fibroblasts and enhanced LPS-induced IL-6

expression by modifying the chromatin accessibility of other

transcription factors. The Santoro lab reported two new non-

classical HS genes, cyclooxygenase-2 and the zinc finger

AN1-type domain-2a gene (AIRAP) that exhibit HS-inducible

transcription similar to those of canonical HSPs [97,98].

HSF1 may also exert additional biological effects by

binding to and modifying function of proteins involved in

diverse cellular processes, including HSPs [11], the nuclear

pore-forming TPR protein through which Hsp72 is secreted

[99], the catalytic subunit of the DNA-dependent protein

kinase [100], other transcription factors [86,101,102], com-

ponents of the TFIIB transcription complex [103], the cell
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division cycle protein, Cdc20 [104], the apoptosis modulator

DAXX [105], and the multidrug exporter, RalBP [106].

Collectively, these studies illustrate the broad range of

important biological functions of HSF1 and underscore the

potential importance and impact of altered HSF1 expression

levels and genetic variations in the host cell.

HSF1 genetic variations and potential consequences

As discussed in the previous sections, HSF1 regulates

expression of a broad range of genes, including those involved

in host defence, inflammation and tumorigenesis as well as

exerting additional effects by directly binding to proteins

critical for cell proliferation, survival, and death. Studies from

heterozygous mice suggest that the level of HSF1 expression

may affect capacity for expression of some chemokines [74]

and modify risk of tumour progression [85]. Considering the

central participation of HSF1 in so many important biological

functions, it is surprising that so little is known about genetic

variations in elements of the human HS response, especially

HSF1, and the potential impact on human health and disease.

Although single-nucleotide polymorphisms (SNPs) have

been identified in various HSP genes, few studies have

focused on the HSF1 molecule. Recently, Li et al. [107]

reported two novel SNPs in the HSF1 gene that are

disproportionately associated with thermal tolerance in

Chinese Holstein cattle, including one 3’UTR SNP that

disrupts a potential microRNA binding sequence in HSF1.

However, the occurrence of SNPs in the human HSF1 gene

has not yet been systematically analysed. To begin to

understand the potential biological and clinical importance

of SNPs in the HSF1 gene we analysed the human HSF1 gene

for SNPs by mining the NCBI dbSNP database and perform-

ing exonic sequencing from anonymous genomic DNA

samples. DNA was isolated from 30 healthy Caucasians and

30 healthy African American volunteers, exons amplified by

PCR, and bidirectional sequencing performed and each

sequence was compared with a reference human HSF1

sequence (NT_037704). Mining the dbSNP database

revealed six SNPs (three in the 30UTR and three in

the coding sequence). One of the coding SNPs caused a

proline-to-threonine missense at amino acid 365 adjacent to

LZ3 and one caused a frame-shift replacement of the 26-

amino acid C-terminal transactivation domain. Direct sequen-

cing confirmed the P365T SNP and identified two novel

5’UTR and two novel 30UTR SNPs [108]. Four of the five

30UTR SNPs alter predicted miRNA target sequences as

identified using the MicroSNiPer online program [109] and

both of the 50UTR SNPs alter the 5’UTR secondary structure

predicted using the RNAFold online program [110]. The

frequency of these and potentially other HSF1 SNPs and their

participation in disease pathophysiology are not yet known.

HS response during infection and sepsis

Modifications in HSF1 activation and HSP expression have

been demonstrated in clinical studies of human infections and

in experimental infections in animals (Table II). The clinical

studies of HS response in human sepsis are small and utilise

different methods but generally show that HSP expression is

higher in patients with sepsis. Hashiguchi et al. [111]

analysed Hsp27, 60, 72 and 90 expression levels in blood

neutrophils using mean fluorescence intensity from flow

cytometry in 21 patients with early sepsis and 14 healthy

controls. They found that neutrophils from the patients with

sepsis had higher levels of all four HSPs compared with the

control subjects. Similarly, Delogu et al. [112] compared the

proportion of peripheral blood mononuclear cells expressing

Hsp72 by flow cytometry to be almost 4-fold higher in

patients with sepsis than in healthy controls. Other studies

showed that levels of cell-free Hsp72 in serum were also

elevated in patients with sepsis, including children with septic

shock [113–115].

Most studies of animal models of infections also demon-

strate increased expression of host HSPs associated with the

infection. In mice infected with Francisella tularensis, the

pathogen causing tularaemia, peritoneal macrophages exhib-

ited increased Hsp72 levels but not until day three of the

Table II. HSF1 activation and HSP expression in infections and injury.

Effect Clinical condition Reference

Clinical studies
Increased Hsp27, 60, 72, 90 in neutrophils Sepsis [111]
Increased Hsp72 in PBMC Sepsis [112]
Increased serum HSP72 Acute infections, septic shock [113,114]
Increased Hsp32, 72, 90 PBMCs from patients with inflammation [115]
Activation of HSF1 HSE-binding in PBMC Human pancreatitis [124]
Increased Hsp32, 72, 90 in PBMC Systemic inflammation [115]
Increased Hsp72 in cardiac tissue Post-cardiac surgery [126,127]
Animal models Stimulus
Increased Hsp72 in peritoneal macrophages F. tularensis [116]
Increased Hsp25, 60, 72 expression in spleen, liver, and muscle Trichinella-infected rats [117]
Reduced Hsp25, 72 levels in lung Mouse CLP [118]
No change in Hsp72 levels in lung Mouse CLP [119]
Hsp72, 25 expression and activation of HSF1 HSE-binding in pancreas Mouse model of cerulean-induced pancreatitis [125]
Increased Hsp72 in lung Mouse undergoing surgery (sham CLP) [119]

Cell culture models Stimulus
Increased Hsp90, 25 EBV-infected human B lymphocytes [121]
Intranuclear Hsp60, 72 expression RSV-infected A549 cells [122]
Hsp72 expression Adenoviral-infected B16 melanoma [123]
Hsp72 expression E. coli, S. aureus-infected human neutrophils [124]

CLP, cecal ligation and puncture; EBV, Epstein-Barr virus; PBMCs, peripheral blood mononuclear cells; RSV, respiratory syncytial virus.
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infection [116]. Trichinella infection in rats is associated with

increased levels of Hsp25, 60, and 72 protein in spleen and

brain, increased Hsp25 protein levels in liver, and increased

Hsp25 and 60 levels in muscle [117]. On the other hand,

Singleton et al. [118] reported reduced Hsp25 and 72

expression in lung 24 h after sepsis induced by cecal ligation

and puncture. Weiss et al. [119] reported that Hsp72 mRNA

and protein levels in lung did not increase up to 48 h after

cecal ligation and puncture in mice. In the colonic epithelium

of mice, steady-state levels of Hsp72 and 25 are constitutively

maintained by commensal bacteria through MyD88-mediated

TLR signalling and these HSPs play a crucial role in

the maintenance of intestinal epithelial homeostasis

[120]. Collectively, these data suggest the observed effect

of infections on HSP expression may depend on timing

relative to infection, the type of infection, and the tissue

studied.

HSP induction is not limited to bacterial infections as

several viruses also induce HSP expression in target cells,

including Epstein-Barr virus in human B lymphocytes [121],

respiratory syncitial virus in A549 cells [122], and adenovirus

in B16 melanoma cells [123]. HS response activation has also

been found to occur in non-infectious inflammatory disorders,

including human pancreatitis in which HSF1 was found to be

activated [124] and a mouse model of cerulean-induced

pancreatitis in which elevated pancreatic levels of Hsp72 and

25 protein and activated HSF1 were detected [125].

In their study of HSP expression in the mouse cecal

ligation and puncture, Weiss et al. [119] found elevated

Hsp72 mRNA and protein levels in lungs of mice undergoing

sham cecal ligation and puncture in which an abdominal

incision was made. These results indicate that the stress of

surgery might be sufficient to activate the HS response in

mice as has been shown to occur in human cardiac surgery

in which cardiac expression of Hsp72 was detected post-

operatively [126,127].

Extracellular HSPs

Within the past decade HSPs have been shown to have

additional cellular functions directly related to inflammation

and the innate immune response. HSPs, particularly Hsp70,

have been detected in the extracellular milieu and have been

reported to be pro-inflammatory agonists for TLR2 and TLR4

[128–130]. Although some earlier studies raised concerns that

the TLR4 agonist activity of recombinant Hsp70 preparations

was caused by LPS contamination [131,132], subsequent

studies showing activity in recombinant Hsp70 generated in

insect cells and non-recombinant Hsp70 as well as classic

LPS controls support proinflammatory TLR4 agonist and

macrophage activating activities of Hsp70 protein itself [133–

137]. In contrast to these reports, there is also strong evidence

suggesting a potent anti-inflammatory role of HSPs that

includes regulation of T cell responses, reducing stimulatory

capacity of dendritic cells, and inducing development of

immunosuppressive Treg cells [138–141]. While the exact

role of exogenous/extracellular HSPs is still debated, it is

likely that HSPs can stimulate both innate and adaptive

immune responses, at least in the context of infection and

fever. This might help explain, at least in part, the molecular

mechanisms by which fever and hyperthermia modify host

responses in the face of severe infection and how dysregulated

responses could lead to severe sepsis and multi-organ

dysfunction.

Not only the functional role of extracellular HSPs but also

its release mechanism is poorly understood. HSPs lack a

classical consensus signal required for secretion and HSP

secretion is not blocked by typical inhibitors of the endoplas-

mic reticulum–Golgi pathway, such as brefeldin A [142]. In

the initial reports by Hightower and Guidon [143] and later by

Hunter-Lavin et al. [142], both groups showed that Hsp70

release occurred from healthy uninjured cells independent of

cell death. Basu et al. [144] showed that bioactive Hsp70 was

also released from necrotic cells but not from cells undergo-

ing apoptosis, and Mambula et al. [145] showed that Hsp70

was released from prostate cancer cells via both necrosis and

active secretion. Collectively, these studies suggest that

Hsp70 is released actively by a non-classical secretory

pathway and passively as a result of cellular necrosis but

not apoptosis. To account for its active release in the absence

of a leader sequence, several mechanisms have been

proposed, including release by secretory-like granules [146],

via membrane export vesicles [135] and via a lysosome–

endosome pathway, where Hsp70 translocates into lysosomes

via an ATP binding cassette (ABC) transport-like system and

is then exported from the cell via the endocytic process

[147,148].

HS response and TLR agonists

While HSPs can activate TLR signalling, recent in vitro and

in vivo studies suggest that TLR agonists, particularly LPS,

can activate expression of HSPs in mammalian cells. Edelman

et al. [149] reported that LPS activated expression of Hsp60

and 70 in isolated rat lung pericytes at 37 �C, but the increase

was modest, only 20 to 40%, and required 18-h incubation

with LPS. Similarly, Hirsh and coworkers [150] showed that

in vitro treatment of human neutrophils with LPS at 37 �C
stimulated a rapid increase in the percentage of cells with

detectable intracellular and surface expression of Hsp60 and

70 as detected by flow cytometry, but the increase in HSP

protein expression level was not reported. Administration of

LPS to rats in vivo caused up-regulation of Hsp72 in

splenocytes [151,152] and increased levels of Hsp70 mRNA

in lung and liver compared with rats previously subjected to

an endotoxin tolerance protocol [153].

The release of Hsp60 and 70 into the circulation during

infection, inflammation, and trauma combined with its TLR

agonist activity might suggest a positive feedback mechanism

that could amplify inflammation. Recently, we found that co-

exposure to TLR agonists synergises with exposure to febrile

temperatures to greatly augment Hsp70 synthesis and secre-

tion in the RAW 264.7 mouse macrophage cell line [40]. The

increase in HSP expression is mediated through a p38 MAP

kinase-dependent signalling pathway leading to increased

histone H3 phosphorylation and HSF1 recruitment to the

Hsp70 chromatin. The mechanism by which co-exposure to

TLR agonists and febrile temperatures increases Hsp70

secretion is not yet known, but occurred without evidence

of cytotoxicity. Similar synergism between TLR agonists and
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febrile temperatures for Hsp70 expression and secretion were

seen in IL-1b-stimulated human A549 cells in vitro and in an

intratracheal LPS-challenge mouse model of acute lung injury

in vivo (Figure 2) [40]. In the latter model, the combination of

FRH and intratracheal LPS stimulated an increase in Hsp70

protein levels in lung homogenates and in cell-free lung

lavage fluid. Considering the pyrogenic action of TLR

agonists, including Hsp70, we propose that the synergism

between fever and TLR agonists for synthesis and release of

Hsp70 promotes a vicious proinflammatory cycle that may

contribute to the negative consequences of fever in high

acuity disease (Figure 3).

Conclusions

In the present review we have discussed how the host’s febrile

response share components of the HS pathway to generate an

Figure 2. TLR agonists augment Hsp70 expression and release. A and B: RAW cells were incubated with 100 ng/mL LPS, 0.5mg/mL Pam3CSK4
(Pam3C) or 12.5 mg/mL poly(IC) (pI:C) at 39.5 �C for 6 h (A), or were heat shocked at 42 �C for 2 h, recovered at 37 �C for 4 h (B), lysed, and
immunoblotted for Hsp70 and b-tubulin. Lane 1 is the untreated 37 �C control. C and D: RAW cells were incubated with 0, 100, or 1000 ng/mL LPS at
37 or 39.5 �C for 6 h (C) or 24 h (D). Cell culture supernatants were collected and cleared by centrifugation, and Hsp70 was quantified by ELISA and
presented as pg/mL. Data presented as the means� SE (n¼ 4). * and y denote p50.05 versus similarly treated 37 �C cells and 39.5 �C cells with no
LPS or hyperthermia-exposed cells, respectively. E and F: Mice implanted with intraperitoneal thermistors were housed at either 25 �C (normothermic,
NT) or 36–37 �C (hyperthermic, HT) ambient temperature. For LPS exposure, mice were intratracheally instilled with LPS or sterile phosphate
buffered saline (PBS) (control) and housed under normothermic or hyperthermic conditions for 24 h. The lungs were excised, and the homogenates
were immunoblotted for Hsp70 and expressed as a ratio to b-actin (E), or lungs were lavaged and Hsp70 quantified by ELISA in the lavage fluid (F).
Data are presented as means� SE (n¼ 4). *, y, and x denote p50.05 versus PBS-treated NT controls, PBS-treated HT mice, and LPS-treated NT mice,
respectively. This research was originally published in the Journal of Biological Chemistry [40]. � The American Society for Biochemistry and
Molecular Biology.
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optimal host defence during inflammation, infection and

injury. It is evident that the three components of the HS

response pathway, namely the stressor (temperature), the

central activator (HSF1), and the final product, HSPs, have all

evolved to perform additional functions beyond the typical

cellular stress response. All three components have strong

immunmodulatory effects that include mobilisation of

immune cells, regulation of proinflammatory cytokine/

chemokine gene expression and activation of both pro- and

anti-inflammatory pathways. Interestingly, the regulation is

mutual between HS response and the inflammatory pathways

and reciprocated by proinflammatory agents as well, which

either augment the temperature effect or directly activate the

HSP gene transcription programme. It is apparent therefore,

that a better understanding of the complex interaction

between the HS response and the inflammatory pathway is

critical not only for conditions where both pathways are

activated such as infection, sepsis and multi-organ dysfunc-

tion but also for optimal exploitation of thermotolerance and

therapeutic hyperthermia, where dysregulated inflammatory

signalling could severely compromise the efficiency and final

outcome of hyperthermia therapy.
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