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 Abstract 
  Background . Characterization of textural features (spatial distributions of image intensity levels) has been considered as a 
tool for automatic tumor segmentation. The purpose of this work is to study the variability of the textural features in PET 
images due to different acquisition modes and reconstruction parameters.  Material and methods . Twenty patients with solid 
tumors underwent PET/CT scans on a GE Discovery VCT scanner, 45 – 60 minutes post-injection of 10 mCi of [ 18 F]FDG. 
Scans were acquired in both 2D and 3D modes. For each acquisition the raw PET data was reconstructed using fi ve 
 different reconstruction parameters. Lesions were segmented on a default image using the threshold of 40% of maximum 
SUV. Fifty different texture features were calculated inside the tumors. The range of variations of the features were calcu-
lated with respect to the average value.  Results . Fifty textural features were classifi ed based on the range of variation in three 
categories: small, intermediate and large variability. Features with small variability (range  �  5%) were entropy-fi rst order, 
energy, maximal correlation coeffi cient (second order feature) and low-gray level run emphasis (high-order feature). The 
features with intermediate variability (10%  �  range  �  25%) were entropy-GLCM, sum entropy, high gray level run emph-
sis, gray level non-uniformity, small number emphasis, and entropy-NGL. Forty remaining features presented large varia-
tions (range  �  30%).  Conclusion . Textural features such as entropy-fi rst order, energy, maximal correlation coeffi cient, and 
low-gray level run emphasis exhibited small variations due to different acquisition modes and reconstruction parameters. 
Features with low level of variations are better candidates for reproducible tumor segmentation. Even though features such 
as contrast-NGTD, coarseness, homogeneity, and busyness have been previously used, our data indicated that these features 
presented large variations, therefore they could not be considered as a good candidates for tumor segmentation.   
 Positron emission tomography (PET) with [ 18 F]-2-
Fluoro-2deoxy-D-glucose (FDG) is widely used for 
clinical diagnostic, staging, prognosis and treatment 
response of cancer [1]. In addition to its use as a 
staging tool, FDG-PET has also been used to assist 
with target defi nition [2]. The incorporation of PET 
in radiotherapy for tumor delineation provides the 
physiologic information about the tumor, allowing 
for a biological radiation therapy treatment [3,4]. 
Various methods have been used to determined the 
tumor boundaries in FDG PET images. The fi rst and 
still widely used, is the manual tumor segmentation 
by an experienced nuclear medicine physician or a 
radiation oncologist but, this presents problems of 
inter-observer variations [5]. Another approach is 
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based on auto segmentation employing image inten-
sity threshold levels, which are based on phantom 
studies where the tumors are assumed to be spherical 
in shape [6 – 8]. However, tumors are rarely spherical 
and activity distributions are more complex in 
patients than in phantoms. 

 Alternatively, texture is an important prop-
erty commonly used for image classifi cation in the 
fi eld of pattern recognition. There are three differ-
ent approaches used in image processing to fi nd the 
textural feature of a region of interest in an image: 
fi rst-order features, second-order features, and higher-
order features. The fi rst order features use statistical 
moments of the intensity histogram of the image [9] 
and do not contain information about the relative 
y of Wisconsin, Madison, WI, USA. E-mail: galavis@wisc.edu  
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position of pixels with respect to each other. Second 
order features employ the angular nearest-neighbor 
gray tone spatial-dependence matrices, also known 
as gray level co-occurrence matrices (GLCM) [10]. 
Higher order features can be obtained using the 
run-length [11], neighboring dependence [12], and 
neighborhood difference [13]. Quantitative analysis of 
medical images using texture features has been used 
in diagnostic for differentiation between normal and 
abnormal regions or as a guide for tumor segmenta-
tion, using computed tomography (CT) [14], digi-
tized mammography [15,16] and magnetic resonance 
[17]. More recently, quantitative textural analysis 
of FDG PET/CT images has been investigated for 
characterization of head and neck tissues [18] as well 
as tumor segmentation [19]. Other study employed 
textural analysis to predict treatment outcomes on 
patients with cervix and head and neck cancers [20]. 
The purpose of this work is to study the variability of 
the textural features in PET images due to different 
acquisition modes and  reconstruction parameters.  

 Materials and methods  

 Patients, image acquisition and image reconstruction 

 The data for 20 patients with different types of solid 
tumors were acquired on a PET/CT GE Discovery 
VCT scanner (Waukesha, WI). Patients were injected 
with 10 mCi of [ 18 F]FDG and scanned 45 – 60 min-
utes post injection. Malignancies included adrenal 
gland carcinoma, lung, epiglottis, and esophagus 
cancer. This retrospective study was approved by the 
University of Wisconsin Institutional Review Board 
(IRB), under the protocol number M-2010-1010. 
The PET acquisition for ten patients were performed 
in 2-dimensional (2D) mode followed by 3-dimen-
sional (3D) mode, while the other ten were per-
formed in the reverse order. The 2D/3D studies were 
acquired using seven to eight bed positions to cover 
the area from skull to mid-thigh. Attenuation correc-
tion using the CT data was also applied. 
 The raw PET data were reconstructed in 2D 
using the ordered subset expectation maximization 
(OSEM) algorithm with 14 sub-sets � 2 and four 
iterations (28 and 56 iterative updates). The 3D 
reconstruction was done using an Iterative-Vue Point 
algorithm with two and four iterations. The grid size 
(128�128 vs. 256�256) and post-reconstruction fi l-
ter width (3 mm, 5 mm and 6 mm) in the reconstruc-
tion algorithms were also varied. In total, ten 
different reconstructed images within the clinical set-
ting were used for each patient, listed in Table 1, 
resulting in two hundred analyzed images. The image 
reconstruction labeled as 3D-256-ITER2-3mm will 
be referred as the default image. After reconstruc-
tion, all images were normalized to the body mass 
Standardized Uptake Value  (SUV) [21].   

 Segmentation and feature extraction 

 Patient diagnostic reports were used to locate the 
tumors on each patient. Using Amira (Visage Imag-
ing), for image visualization, the tumor regions were 
identifi ed. Subsequently, the SUV max  (maximum 
SUV) was determined in the tumor region and used 
to defi ne the tumor volumes using the threshold level 
of 40% of the SUV max , which was chosen as the ref-
erence contours. Eight fi rst order features [9], 23 
features using the co-occurrence matrix [10], 11 fea-
tures employing the gray level run length matrix [11], 
fi ve features using the neighboring gray level [12] 
and three features using the neighborhood gray tone 
difference matrix [13] for a total of 50 features inside 
each tumor were calculated. For each voxel inside the 
base contours, a  patch  was extracted, defi ned as a 
portion of the image with 7�7 (coronal, sagittal) 
voxels in size, centered on that voxel. Texture features 
were computed on these patches on all axial slices con-
taining the SUV 40%  and then the mean value was cal-
culated. All feature extraction and thresholding-based 
segmentation was performed using an inhouse code 
developed in MATLAB. Figure 1 shows a diagram with 
the steps employed to extract the texture features. 
  Table I. Image parameters.  

Image # Acq. Mode Grid-Size Recon. Alg Iter. number
Post-fi lter 

width (mm) Legend

1 2D 128�128 OSEM 2 3 2D-128-OSEM2-3mm
2 2D 128�128 OSEM 2 5 2D-128-OSEM2-5mm
3 2D 128�128 OSEM 4 5 2D-128-OSEM4-5mm
4 2D 256�256 OSEM 2 3 2D-256-OSEM2-3mm
5 2D 256�256 OSEM 2 5 2D-256-OSEM2-5mm
6 3D 128�128 ITER 2 3 3D-128-ITER2-3mm
7 3D 128�128 ITER 2 6 3D-128-ITER2-6mm
8 3D 128�128 ITER 4 6 3D-128-ITER4-6mm
9 3D 256�256 ITER 2 3 3D-256-ITER2-3mm

10 3D 256�256 ITER 2 6 3D-256-ITER2-6mm
   Acq. Mode  �  acquisition mode; Recon. Alg  �  reconstruction algorithm; Iter  �  iteration.   
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Texture Feature
Extraction

Step 1
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Step 4
Step 5
 For each texture feature, the percent difference 
with respect to the mean value was calculated accord-
ing to Equation 1. 
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 where  X  corresponds to texture feature value for each 
reconstructed image and  X  mean  is the average value. 
The absolute value was omitted in the Equation 1 to 
account for the deviation above and below the 
mean.    
 Results 

 For the purpose of textural feature variability evalua-
tion, these were classifi ed as  small  (� 5%),  intermedi-
ate  (10% � range � 25%) and  large  (� 30%) range 
of variation with respect to the mean using Equation 
1. Following this criteria, the features that presented 
small variations are the entropy (fi rst order), energy, 
maximal correlation coeffi cient (second order fea-
ture), and low gray-level run emphasis (high order 
feature-run length). The features that presented 
intermediate variations include entropy-GLCM, 
sum entropy, both second order features, high gray 
level run emphasis and gray level non-uniformity 
(high order features-run emphasis), small number 
emphasis and entropy-GL (high order features-
neigboring dependence). Forty features showed a large 
range of variations, some of these include contrast, 
coarseness and busyness which have been commonly 
used in previous studies. Figure 2 shows the maximum 
and minumum deviations among all patients from the 
mean for fi rst, second and high order features. 

 The entropy has been previously calculated 
employing differents matrices for feature extraction. We 
studied the entropy from the co-occurrence and neigh-
boring matrices (entropy-GLCM and entropy-NGL, 
respectively). Our data demonstrated that the entropy 
outcomes are affected by the matrix employed to extract 
this feature. The entropy displayed higher variation 
when extracted from neighboring matrices. The maxi-
mum entropy variation was 10% and 5% when extracted 
from neighboring and co-occurrence matrices, respec-
tively. In both matrices the entropy was infl uenced 
more strongly by grid size than fi lter width. The  contrast 
was extracted from different matrices (contrast-GLCM 
and contrast-NGTD) but the trends in variation were 
very similar. The maximum variations of the contrast 
using both matrices were above 100%.   

 Discussion 

 Texture features in PET images are gaining impor-
tance as a tool for tumor discrimination and seg-
mentation [18,19], as well as a potential metric for 
treatment assessment [20]. In this work, a systematic 
study of textural feature variability in PET images 
due to different acquisition modes and reconstruc-
tion parameters was presented. The range of varia-
tions of 50 textural features in FDG PET images 
were calculated and classifi ed into small, interme-
diate, and large variations due to different image 
reconstruction. 

 The features exhibiting small variations such as 
entropy-fi rst order, energy, maximal correlation coef-
fi cient, and low gray level run emphasis, are better 
candidates for reproducible auto segmentation and 
tumor assesment. For instance, entropy and energy 
have already been employed to automatically distin-
guish between tumor and normal regions in com-
puter aid systems for auto-segmentation by [19]. 
It is important to mention that even though the max-
imal correlation coeffi cient and the low gray-level 
run emphasis features showed small variations, they 
exhibited image grid size dependency. 

 Intermediate variations were observed when the 
entropy was extracted from the co-occurrence matrix 
(entropy-GLCM) or from the neighboring gray level 
matrix (entropy-NGL), meaning that this feature is 
affected by the SUV scaling. The contrast was also 
extracted from the co-occurrence matrix (contrast-
GLCM) and neighborhood gray tone difference 
matrix (contrast-NGTD) presenting the same trend 
and comparable variability. 

 We also studied features presenting large varia-
tions, such as contrast, homogeneity, coarseness, and 
busyness, that have been previously considered to 
discriminate between tumor and normal tissue in 
patients with HN and lung cancer [18] and proposed 
as potential metrics for treatment assessment of HN 
  Figure 1.      Diagram for Feature Extraction . From left to right:  Step 1:  Identifi cation of the axial slices showing the tumor.  Step 2:  Cropping 
to tumor region and location of the SUV  max  .  Step 3:  Tumor delineation using 40% of the SUV  max  .  Step 4:  Defi nition of the  patch  7 � 7 
voxels in size.  Step 5:  Feature extraction.  



 Variability of textural features in FDG-PET images    1015

200

150

100

50

0
2

First and Second Order Features

High Order Features

R
a

n
g

e
 (

%
)

–50

–100

–150

–200

200

150

100

50

0

R
a
n

g
e
 (

%
)

–50

–100

–150

–200

4 6 8 10 12 14 16 18 20 22 24 26 28 30

32 34 36 38 40 42 44 46 48 50

First-order features:

1: Mean
2: Median
3: Variance
4: Coefficient of variance
5: Skewness
6: Kurtosis
7: Energy
8: Entropy
Second-order features:

9: Homogeneity
10: Contrast-GLCM
11: Correlation
12: Sum of squares
14: Sum average
15: Sum variance
16: Sum entropy
17: Entropy-GLCM
18: Difference variance
19: Difference entropy
20: Information measure of correlation

High Order Features (GLRL)

32: Short run emphasis
33: Long run emphasis
34: Gray-level nonuniformity
35: Run length nonuniformity
36: Run Percent
37: Low gray-level run emphasis
38: High gray-level run emphasis
39: Short run low gray-level emphasis
40: Short run high gray-level emphasis
41: Long run low gray-level emphasis
42: Long run high gray-level emphasis
High Order Features (NGL)

43: Small number emphasis
44: Large number emphasis
45: Number nonuniformity
46: Second moment
47: Entropy-NGL
High Order Features (NGTD)

48: Coarseness
49: Contrast-NGL
50: Busyness

21-22: Maximal correlation coefficient
23: Maximal probability
24: Diagonal moment
25: Dissimilarity
26: Difference energy
27: Inertia
28: Inverse difference moment
29: Sum energy
30: Cluster shade
31: Cluster prominence
and cervix cancer [20]. In the study by Yu et al. [19], 
where  texture features were employed on CT and 
PET images to develop an auto segmentation system 
(COMPASS), PET extracted features included, con-
trast, coarseness, busyness. Our data indicated that 
these features presented large variations in tumor 
regions when PET images are acquired and recon-
structed with different parameters. Therefore, these 
features are more prone to errors if employed to 
quantify the change in tumor texture in response to 
a therapy.  
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