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ORIGINAL ARTICLE

Stability of FDG-PET Radiomics features: An integrated analysis  
of test-retest and inter-observer variability

Ralph T. H. Leijenaar1*, Sara Carvalho1*, Emmanuel Rios Velazquez1, 
Wouter J. C. van Elmpt1, Chintan Parmar1, Otto S. Hoekstra2,  
Corneline J. Hoekstra3, Ronald Boellaard2, André L. A. J. Dekker1, 
Robert J. Gillies4, Hugo J. W. L. Aerts1,5 & Philippe Lambin1

1Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, 
Maastricht University Medical Center (MUMC), Maastricht, The Netherlands, 2Department of Radiology and 
Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands, 3Department of Nuclear Medicine, 
Jeroen Bosch Medical Center, ‘s-Hertogenbosch, The Netherlands, 4Department of Cancer Imaging and Metabolism, 
H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA, and 5Departments of Radiation Oncology 
and Radiology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, 
MA, USA

Abstract
Purpose. Besides basic measurements as maximum standardized uptake value (SUV)max or SUVmean derived from 18F-FDG 
positron emission tomography (PET) scans, more advanced quantitative imaging features (i.e. “Radiomics” features) are 
increasingly investigated for treatment monitoring, outcome prediction, or as potential biomarkers. With these prospected 
applications of Radiomics features, it is a requisite that they provide robust and reliable measurements. The aim of our 
study was therefore to perform an integrated stability analysis of a large number of PET-derived features in non-small cell 
lung carcinoma (NSCLC), based on both a test-retest and an inter-observer setup. Methods. Eleven NSCLC patients were 
included in the test-retest cohort. Patients underwent repeated PET imaging within a one day interval, before any treatment 
was delivered. Lesions were delineated by applying a threshold of 50% of the maximum uptake value within the tumor. 
Twenty-three NSCLC patients were included in the inter-observer cohort. Patients underwent a diagnostic whole body 
PET-computed tomography (CT). Lesions were manually delineated based on fused PET-CT, using a standardized clini-
cal delineation protocol. Delineation was performed independently by five observers, blinded to each other. Fifteen first 
order statistics, 39 descriptors of intensity volume histograms, eight geometric features and 44 textural features were 
extracted. For every feature, test-retest and inter-observer stability was assessed with the intra-class correlation coefficient 
(ICC) and the coefficient of variability, normalized to mean and range. Similarity between test-retest and inter-observer 
stability rankings of features was assessed with Spearman’s rank correlation coefficient. Results. Results showed that the 
majority of assessed features had both a high test-retest (71%) and inter-observer (91%) stability in terms of their ICC. 
Overall, features more stable in repeated PET imaging were also found to be more robust against inter-observer variability. 
Conclusion. Results suggest that further research of quantitative imaging features is warranted with respect to more advanced 
applications of PET imaging as being used for treatment monitoring, outcome prediction or imaging biomarkers.

Positron emission tomography (PET) has been 
shown to be a valuable tool for the detection and 
staging of lung cancer [1]. In recent years PET imag-
ing has also been increasingly used for treatment 
planning [2] and response monitoring in radiother-
apy [3]. The most widely used tracer in oncological 

PET imaging is the glucose analog [18F] fluoro-2-
deoxy-D-glucose (FDG), commonly quantified by 
the standardized uptake value (SUV) [4]. Previous 
research provides evidence of basic and easily derived 
pre-treatment PET measurements, such as the max-
imum (SUVmax) or mean SUV (SUVmean), being 
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predictors for treatment outcome in non-small cell 
lung cancer (NSCLC) [5–7]. Besides these basic 
measurements, more advanced quantitative imaging 
features are increasingly investigated for treatment 
monitoring and outcome prediction in lung and 
other cancer sites [8–10], or as potential imaging 
biomarkers [11]. The use of basic and more advanced 
descriptors derived from PET imaging is within the 
scope of “Radiomics” [12–14]: a high throughput 
approach to extract and mine a large number of 
quantitative features from medical images, where it 
is hypothesized that it will improve tumor character-
ization and treatment outcome prediction. However, 
with the prospect of using these Radiomics features 
for future prognostic and predictive models, knowl-
edge about their reliability and variability is needed. 
A few recent studies have investigated these aspects 
of FDG-PET-derived parameters in different cancer 
sites, including the test-retest stability of basic SUV 
measurements [15], test-retest stability of a number 
of basic and textural features [16], or the variability 
of textural features due to image acquisition and 
reconstruction parameters [17]. However, to our 
knowledge no previous study has performed an inte-
grated stability analysis of a large number of PET 
features in NSCLC, based on both a test-retest and 
an inter-observer setup. Therefore, the aim our study 
is to independently examine the feature’s test-retest 
reliability and inter-observer stability between mul-
tiple manual tumor delineations. Moreover, we aim 
to combine the information obtained from both anal-
yses to assess if imaging features that are more stable 
in repeated PET imaging are also more robust against 
inter-observer variability. Based on literature research, 
we strived to include a broad collection of PET-based 
imaging features used in the context of predictive 
and/or prognostic modeling in cancer, to provide a 
comprehensive overview.

Material and methods

This study includes two separate patient cohorts in 
order to assess both the test-retest and inter-observer 
variability of a large number of quantitative imaging 
features. All patients signed an informed consent 
form in accordance with approval by the institutional 
review board. A schematic representation of the work-
flow applied in our study is depicted in Figure 1.

Test-retest cohort

Eleven patients with histology- or cytology-diagnosed 
NSCLC were included in this patient cohort, as 
described in [18]. Patients underwent two baseline  
18F-FDG-PET scans within a one day interval, before 
any treatment was delivered. PET images were acquired 
on an ECAT EXACT HR1 scanner (Siemens/CTI) 
and iteratively reconstructed using normalization- and 
attenuation-weighted ordered-subset expectation max-
imization with two iterations and 16 subsets (OSEM 
2i16s). All images had an in-plane resolution of 5.15 
 5.15 mm/pixel and a slice thickness of 2.43 mm. 
Further patient and imaging details are described by 
Frings et al. [18]. Lesions with adequate uptake were 
first identified and subsequently delineated by apply-
ing a threshold of 50% of the maximum uptake value 
within the tumor [19], using a semiautomatic delinea-
tion tool [18] (Figure 2A and B).

Inter-observer cohort

Twenty-three patients with histologically proven 
NSCLC were included in this patient cohort, as 
described previously in [20]. Patients underwent  
a diagnostic whole body PET-CT scan acquired  
on a SOMATOM Sensation 16 with an ECAT 
ACCEL PET scanner (Siemens, Erlangen, Germany). 
PET images were iteratively reconstructed using 

Figure 1. Schematic of the workflow applied in our study. A. Acquisition of PET images (fused CT for illustrative purposes), followed  
by tumor delineation. B. Extraction of Radiomics features from the defined volume of interest. C. Test-retest and inter-observer stability 
analysis.
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normalization- and attenuation-weighted OSEM 
4i8s. Images had an in-plane resolution of 5.31  
5.31 mm/pixel and a 5 mm slice thickness. Primary 
tumors and involved lymph nodes were identified 
and manually delineated based on fused PET-CT 
images, using a standardized clinical delineation pro-
tocol. Delineation of the lesions was performed inde-
pendently by five observers and all observers were 
blinded to the contours delineated by the others 
(Figure 2C and D). Manual delineations were per-
formed on XiO/Focal (Computer Medical System, 
Inc., St. Louis, MO, USA). For further details on the 
patient cohort, imaging and delineation, we refer to 
the publication of van Baardwijk et al. [20].

Image processing and feature extraction

All image analysis was performed in Matlab R2012b 
(The Mathworks, Natick, MA, USA) using an adapted 
version of the Computational Environment for Radio-
therapy Research (CERR) [21] extended with in-
house developed Radiomics image analysis software 

to extract imaging features. PET images and delin-
eated VOIs were first imported into CERR, where the 
image intensities were normalized to SUV [4].

First order statistics consisted of basic SUV mea-
surements and features describing the histogram of 
voxel intensity values contained within the VOI. A set 
of metrics was derived from intensity volume histo-
gram (IVH) representations [10], which summarize 
the complex three dimensional (3D) data contained 
in the image into a single curve, allowing for a simpli-
fied interpretation. Three IVH definitions were con-
sidered: the relative volume as a function of the 
relative intensity (RVRIx), the absolute volume as a 
function of the relative intensity (AVRIx) and the 
intensity threshold as a function of the relative vol-
ume having a maximum intensity lower than the 
threshold (AIRVx). Relative steps in volume and 
intensity (x) were taken in 10% increments, from 
10% to 90%. Furthermore, three differential IVH 
metrics were considered: RVRIx-RVRI(100-x), AVRIx-
AVRI(100-x), and AIRVx-AIRV(100-x). Geometric fea-
tures were calculated, describing the 3D shape and 

Figure 2. A and B. Representative images of repeated imaging of a patient from the test-retest cohort, with the 50% SUVmax tumor 
delineation shown outlined in green, for, respectively, the first and second baseline PET scan. C. Representative image of a patient from 
the inter-observer cohort, where the lesion area is outlined with the green square (fused CT for illustrative purposes). D. Enlargement of 
the lesion area with in different colors the five independent tumor delineations by multiple observers.
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size of the lesions. Textural features describing pat-
terns or the spatial distribution of voxel intensities,  
were calculated from, respectively, gray level co-
occurrence (GLCM) [22], gray level run-length 
(GLRLM) [23] and gray level size-zone texture 
matrices (GLSZM) [9]. Determining texture matrix 
representations requires the voxel intensity values 
within the VOI to be discretized. Voxel intensities 
were therefore resampled into equally spaced bins 
using a bin-width of 0.5 units SUV. This discretiza-
tion step not only reduces image noise, but also 
normalizes intensities across all patients, allowing 
for a direct comparison of all calculated textural 
features between patients. Texture matrices were 
determined considering 26-connected voxels (i.e. 
voxels were considered to be neighbors in all 13 
directions in three dimensions) and a distance of one 
voxel between consecutive voxels was set for co-
occurrence and gray level run-length matrices. 
Features derived from co-occurrence and gray level 
run-length matrices were calculated by averaging 
their value over all 13 considered directions in three 
dimensions. Overall, the extracted imaging features 
comprised 15 first order statistics, 39 descriptors of 
intensity volume histograms, eight geometric fea-
tures and 44 textural features. Mathematical defini-
tions, if applicable, for features assessed in our study 
can be found in Supplementary Appendix A, to be 
found online at http://informahealthcare.com/doi/ 
abs/10.3109/0284186X.2013.812798

Statistical analysis

The intra-class correlation coefficient (ICC) [24] 
was calculated to provide an indication of both the 
test-retest and inter-observer reliability of feature 
measurements. The ICC is a statistical measure 
between 0 and 1, where 0 indicates no and 1 indi-
cates perfect reliability. To determine the ICC, vari-
ance estimates were obtained through partitioning 
the total variance by means of non-parametric 
analysis of variance (ANOVA) by ranks. To assess 
test-retest reliability of imaging features, we used 
the definition of ICC(1,1), given by:

ICC
BMS WMS

( ,
( )

1
1

1)


 

BMS WMS
k

Where BMS and WMS are respectively the 
between- and within-subjects mean squares, obtained 
by Kruskal-Wallis one-way ANOVA, and k is the 
number of repeated measurements (i.e. PET scans). 
Inter-observer stability was determined with the def-
inition of ICC(3,1), with the form:

ICC
BMS EMS
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( )

3
1

1)


 
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k

Where BMS and EMS are the between-subjects 
and residual mean squares acquired from Friedman’s 
two-way ANOVA, and k is the number of observers 
(i.e. delineators). Absolute variability was estimated 
as the coefficient of variability (COV), defined as the 
value below which the difference between two mea-
surements will be with 95% probability [25]:

COV  1.96  SD

Where SD is the standard deviation for single differ-
ences on different subjects (i.e. lesions). To provide 
a basis for evaluating the magnitude of the test-retest 
and inter-observer COV values, we normalized them 
to a percentage of the mean feature value (COV%mean) 
as well as the range of feature values (2.5–97.5 per-
centile; COV%range) over all included lesions. To 
assess the similarity of the test-retest and inter-ob-
server stability rankings of features we ranked them, 
per feature group, in terms of their ICC. The similar-
ity of feature rankings was determined with Spear-
man’s rank correlation coefficient (rs). All statistical 
analysis was performed in Matlab R2012b (The 
Mathworks, Natick, MA, USA).

Results

Lesion identification and delineation resulted in a total 
number of 18 lesions to be included for the test-retest 
analysis and, respectively, 27 lesions for the inter- 
observer analysis. Test-retest and inter-observer ICC, 
COV%mean and COV%range values are summarized per 
feature group in, respectively, Supplementary Appen-
dix Tables BI and BII, to be found online at http://
informahealthcare.com/doi/abs/10.3109/0284186X. 
2013.812798, where we classified features into three 
groups, as having a high (ICC  0.8), medium (0.8  
ICC  0.5), or low (ICC  0.5) stability. Results for 
all individual features are given in Supplementary 
Appendix Tables BIII–BVI, to be found online at http://
informahealthcare.com/doi/abs/10.3109/0284186X. 
2013.812798.

AVRIx and RVRIx for x  50% were excluded 
from test-retest analysis, since they represent the 
entire (relative) tumor volume and therefore provide 
no additional information on test-retest variability. 
In summary, 71% of all assessed features had a high, 
18% a medium and 11% a low stability in terms  
of their test-retest ICC. We found a high inter-
observer stability for 91% of the imaging features, 
whereas 8% and 1% of the features had a medium 
or respectively low stability. As expected, SUVmax 
and SUVpeak showed perfect inter-observer stability 
(ICC  1). Due to the same reasoning outlined 
above, we also excluded RVRIx and AVRIx for x  
50% from the comparative analysis. Scatter plots of 
stability rankings for every feature group are depicted 
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in Figure 3A–D. Considering all features, we 
observed a good overall similarity in feature stability 
rankings in terms of test-retest and inter-observer 
ICCs (rs  0.665, p  0.001). Comparing stability 
rankings per feature group, we found a high simi-
larity for both the first order statistics (rs  0.877, 
p  0.001) and the textural features (rs  0.719, 
p  0.001). As can be observed from Figure 3D, fea-
tures based on GLSZM have the overall lowest ranks 
in both analyses, indicating these features  
have the highest variability amongst all textural 
features. For the IVH features the observed similar-
ity was more moderate (rs  0.572, p  0.001). Com-
paring the rankings for the geometric features 
resulted in a non-significant rs of 0.663 (p  0.086). 
However, from Figure 3C, a positive trend in  
similarity can be observed. Overall, these results 
show that features that are more stable in repeated 

PET imaging are also more robust against inter-
observer variability.

Discussion

Increased investigation of quantitative imaging features 
to monitor response to treatment, treatment outcome 
or as potential imaging biomarkers, raised the requisite 
to validate their accuracy, robustness and stability. We 
first independently investigated the stability of imaging 
features in both a test-retest and inter-observer setting 
and subsequently performed an integrated analysis. 
Our results indicated high ICC values and high stabil-
ity for the majority of assessed PET image features in 
both the test-retest (71%) and inter-observer analysis 
(91%). Furthermore, we found that features that  
were more stable in repeated imaging were also more 
robust against multiple tumor delineations. These 

5 10 15

2

4

6

8

10

12

14

First order statistics

Test-retest ranking

In
te

r-o
bs

er
ve

r r
an

ki
ng

5 10 15 20 25

5

10

15

20

25

IVH features

Test-retest ranking

In
te

r-o
bs

er
ve

r r
an

ki
ng

2 4 6 8
1

2

3

4

5

6

7

8
Geometric features

Test-retest ranking

In
te

r-o
bs

er
ve

r r
an

ki
ng

10 20 30 40

5

10

15

20

25

30

35

40

Test-retest ranking

In
te

r-o
bs

er
ve

r r
an

ki
ng

Textural features
 

GLCM
GLRLM
GLSZM

(A)

(D)(C)

(B)

Figure 3. Scatter plots of stability rankings of test-retest versus inter-observer intra-class correlation coefficients. A higher rank corresponds 
with a higher stability. Plotted diagonal illustrates perfect correlation. A. First order statistics (rs  0.877, p  0.001). B. Intensity volume 
histogram features (rs  0.572, p  0.001). C. Geometric features (rs  0.663, p  0.086). D. Textural features (rs  0.719, p  0.001), 
with GLCM features in blue circles, GLRLM features in green triangles and GLSZM features in red squares.
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the magnitude of the COV. The larger the COV is 
compared to inter-patient variability or changes in 
feature values, the less likely it is that the feature 
under consideration is a useful predictor or bio-
marker. One has to note, however, that like the ICC, 
COV values are sample specific estimates and typical 
feature values (i.e. mean and range) are likely to be 
different when considering different patient popula-
tions. Furthermore, the level of variation of a feature 
that is considered acceptable, depends on its intended 
purpose.

A limitation of our study is the small number of 
patients in both cohorts. Although a broad range of 
tumor sizes and levels of tracer uptake were included, 
external validation is needed to assess if our results 
are representative for NSCLC patients in general. 
Besides feature variability due to repeated imaging 
and inconsistency between multiple manual tumor 
delineations, there are more sources of variability 
that can be taken into consideration. Galavis et  al. 
[17] pointed out that quantitative imaging features 
are also subject to vary due to different acquisition 
modes and reconstruction parameters. Also the level 
of image discretization has been shown to impact the 
variability of certain textural features, as demon-
strated by Tixier et al. [16]. Taking these sources of 
variability into account, it is evident that standardiza-
tion is desirable with the prospect of FDG-PET 
Radiomics features for treatment monitoring, out-
come prediction or imaging biomarkers.

Conclusion

The aim of this study was to perform an integrated 
stability analysis of PET Radiomics features obtained 
from FDG-PET imaging in NSCLC. Our results 
showed that the majority of assessed features had 
both a high test-retest (71%) as well as inter-observer 
stability (91%) in terms of their ICC. Furthermore, 
it was observed that features more stable in repeated 
PET imaging were in general also more robust against 
inter-observer variability. Results suggest that further 
research of quantitative imaging features is warranted 
with respect to more advanced applications of PET 
imaging as being used for treatment monitoring,  
outcome prediction or imaging biomarkers.

Declaration of interest: The authors report no 
conflicts of interest. The authors alone are respon-
sible for the content and writing of the paper.

Authors acknowledge financial support from the 
QuIC-ConCePT project, which is partly funded by 
EFPI A companies and the Innovative Medicine Ini-
tiative Joint Undertaking (IMI JU) under Grant 
Agreement No. 115151. Authors also acknowledge 

results suggest that, even though there are different 
sources of feature variability, one can define a set of 
features being overall most reliable.

We focused our results mainly on the ICC. Being 
a dimensionless statistic, the ICC is useful when 
comparing the stability of measures with different 
units, as is the case with the PET imaging features 
assessed in this study. We chose arbitrary ICC thresh-
olds to define high, medium and low stability. There 
is however no consensus how high the ICC should 
be to for a measure to be considered to have an 
acceptably high reliability, since the ICC is a relative 
measure determined from the between- and within-
subject (i.e. lesion) variance, which makes it a sample 
specific measure. This implies that ICC values 
obtained from our test-retest analysis were not 
directly comparable to those from the inter-observer 
analysis, since they were independently obtained 
from two different patient cohorts (i.e. different 
lesions and differences in image acquisition and 
reconstruction). To overcome this limitation, we 
ranked features according to their ICC, allowing us 
to compare stability rankings of features between the 
two analyses.

In the inter-observer analysis, SUVmax and  
SUVpeak both had an ICC of 1, indicating perfect 
stability. However, we did observe a small COV for 
these features, which was unexpected. A detailed 
look into all delineations revealed that for only one 
lesion, one delineator did not include the maximum 
uptake voxel in the delineated tumor region. Tixier 
et al. [16] studied the reliability of a number of basic 
and textural FDG-PET features in a test-retest set-
ting in esophageal cancer. Although the results pre-
sented in that study are not directly comparable to 
our test-retest results, it can be observed that textural 
features based on gray-level size-zone matrix repre-
sentations appear to be the least stable ones, which 
is also supported by our test-retest, inter-observer 
and integrated analysis.

While the ICC is a useful tool in assessing the 
reliability of feature measurements, it is not directly 
related to a feature’s clinical usefulness. For a more 
complete picture, one would like to know if the inter-
patient variability or, respectively, the change in fea-
ture values between a reference time point (e.g. 
pre-treatment) and a point of interest (e.g. during or 
post-treatment) is large enough to be considered use-
ful. To assess this aspect of feature variability, a mea-
sure besides the ICC is necessary that provides 
information on the variability in terms of the fea-
ture’s unit of measurement. In our study we therefore 
estimated both the test-retest and inter-observer 
COV for every feature and normalized them to a 
percentage of the mean feature value as well as the 
range, to provide easy to interpret values regarding 
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