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  Abstract 
 Integration of molecular imaging PET techniques into therapy selection strategies and radiation treatment planning for 
head and neck squamous cell carcinoma (HNSCC) can serve several purposes. First, pre-treatment assessments can steer 
decisions about radiotherapy modifi cations or combinations with other modalities. Second, biology-based objective func-
tions can be introduced to the radiation treatment planning process by co-registration of molecular imaging with planning 
computed tomography (CT) scans. Thus, customized heterogeneous dose distributions can be generated with escalated 
doses to tumor areas where radiotherapy resistance mechanisms are most prevalent. Third, monitoring of temporal and 
spatial variations in these radiotherapy resistance mechanisms early during the course of treatment can discriminate 
responders from non-responders. With such information available shortly after the start of treatment, modifi cations can 
be implemented or the radiation treatment plan can be adapted tailing the biological response pattern. Currently, these 
strategies are in various phases of clinical testing, mostly in single-center studies. Further validation in multicenter set-up 
is needed. Ultimately, this should result in availability for routine clinical practice requiring stable production and acces-
sibility of tracers, reproducibility and standardization of imaging and analysis methods, as well as general availability of 
knowledge and expertise. Small studies employing adaptive radiotherapy based on functional dynamics and early response 
mechanisms demonstrate promising results. In this context, we focus this review on the widely used PET tracer  18 F-FDG 
and PET tracers depicting hypoxia and proliferation; two well-known radiation resistance mechanisms.   

 Over the last decades, treatment modalities for locally 
advanced head and neck squamous cell carcinoma 
(HNSCC) have shifted from mainly surgical to 
radiotherapy, increasingly with the addition of sys-
temic treatments such as chemotherapy or biologi-
cally modifying agents [1,2]. Intensity-modulated 
radiation therapy (IMRT) delivers high conformal 
doses and facilitates dose escalation to the tumor 
while reducing doses to normal tissues. Although 
treatment options have expanded, the locoregional 
recurrence rate is still relatively high and fi ve-year 
survival rate usually below 50% [3]. New possibilities 
are needed to improve outcome for this patient 
group. Currently, treatment decisions are based on 
several patient  –  as well as tumor – parameters deduced 

from clinical and imaging diagnostics. Individual 
biological parameters are rarely taken into account, 
although these are dominant factors in the eventual 
tumor response to therapy. Also, corrections for mor-
phological and biological tumor changes during 
(chemo)radiotherapy are seldom applied. In recent 
years, knowledge about predictive and prognostic 
biomarkers has increased. Using molecular and func-
tional imaging techniques such as positron emission 
tomography (PET)-computed tomography (CT) 
scanning and magnetic resonance (MR) imaging, 
critical tumor characteristics such as metabolic activ-
ity, proliferation, hypoxia and vascularization can be 
assessed in a non-invasive manner. Defi nition of bio-
logical characteristics before and early during therapy 
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may help to individually adapt and optimize treat-
ment schedules for patients in order to procure a 
better prognosis and decrease treatment toxicity [4]. 
Information from imaging modalities can be com-
bined to form a treatment plan, and monitoring of 
biological response can be used to adjust plans 
accordingly, instead of basing the entire schedule on 
a momentary situation before treatment. PET can be 
implemented to identify specifi c tumor (sub)volumes 
with increased radiation resistance that are to receive 
an escalated radiation dose, to investigate applicabil-
ity of specifi c treatment alternatives, or possibly to 
ascertain cases where treatment de-escalation is an 
option. 

 In this review, we discuss developments in the 
fi eld of molecular PET-CT imaging that can aid the 
improvement of radiotherapy delivery in HNSCC 
and thus the improvement of long-term outcome and 
reduction of toxicity. We focus on the widely used 
PET tracer  18 F-FDG and PET tracers depicting 
hypoxia and proliferation, which are well-known 
mechanisms responsible for radiation resistance.  

  18 F-FDG PET 

 PET with the glucose analogue 2-[ 18 F] fl uoro-2-
deoxy-D-glucose ( 18 F-FDG) is accepted as a power-
ful molecular imaging method exploiting the 
increased metabolic activity of cancer cells. Research 
is still focused on unearthing the molecular mecha-
nisms underlying the cancer cells ’  altered glucose 
metabolism [5]. Uptake of  18 F-FDG has been 
assessed for correlation with several biological char-
acteristics in tumors, such as glycolysis, glucose 
transporter-1 (GLUT-1) and hypoxic markers [6,7], 
proliferation [8], epithelial growth factor receptor 
(EGFR) [9], protein kinase B (AKT) [10,11] and 
combinations of several markers [12], with confl ict-
ing results. Overall, 18F-FDG uptake in malignan-
cies refl ects multifactorial mechanisms of increased 
metabolic activity and glucose utilization, performed 
by the glucose transporters and enzymes in the gly-
colytic pathway, which in turn are regulated by dif-
ferent signaling pathways triggered by endogenous 
and exogenous stimulators. Attempts to attribute 
18F-FDG uptake in different malignancies to expres-
sion of one specifi c protein are therefore debatable. 

 In HNSCC,  18 FDG-PET can lead to TNM stage 
differences and treatment strategy changes by detect-
ing lymph nodes and distant metastases not discov-
ered using other imaging modalities [13]. However, 
 18 F-FDG PET requires cautious interpretation due 
to uptake in non-malignant tissues caused by peritu-
moral infl ammation and physiologic changes in the 
head and neck region as well as limited sensitivity 
in evaluation of cervical node (micro)metastases 

[14,15]. Nonetheless, qualitative 18F-FDG PET is 
increasingly implemented before, during and after 
radiotherapy of HNSCC.  

 Target volume delineation for radiotherapy 

 The use of  18 F-FDG PET for target volume delinea-
tion in radiotherapy planning for HNSCC has been 
investigated in single institution studies [13,16 – 25]. 
The simplest method for segmentation, visual inter-
pretation of the PET tumor signal, has been com-
monly applied in many studies, but is highly operator 
dependent and infl uenced by window level settings 
[13,19,22,24]. Other investigators used fi xed thresh-
olds based on standardized uptake value (SUV) to 
segment PET tumor volumes, such as a SUV of 2.5 
or 40%/50% of the maximum tumor intensity 
[23,26]. Models using a fi xed (relative) threshold 
relying on SUV are questionable, notwithstanding 
tumoral uptake heterogeneity; the head and neck 
region contains several structures that tend to have 
a high physiological  18 F-FDG uptake, such as the 
vocal cords and the tonsillar area, which can be erro-
neously included in the segmented area. Further-
more, SUV can show variation depending on the 
scanning protocol, blood glucose levels and other 
patient factors. 

 Various (semi-)automated PET segmentation 
algorithms have been proposed to reduce inter-
observer variation. Several investigators used 
advanced adaptive relative threshold segmentation 
methods based on maximal tumor uptake and/or 
background uptake [17,18,25,27]. Other techniques 
have been introduced to refi ne HNSCC (semi-)
automated segmentation, such as methods using 
image gradients to defi ne tumor areas [28,29], halo-
based contouring [21], graph-based segmentation 
using information from co-registered PET and CT 
together [30], or an adaptive region growing/dual 
front active contour model [31]. Several studies 
addressed impact to the gross tumor volume (GTV) 
when using  18 F-FDG PET segmentation alongside 
CT images; reported changes mostly concerned a 
decrease in GTV, especially for the more sophisti-
cated segmentation methods [13,17 – 21,23,24]. 

 A comparative study by Schinagl et   al. [32] of 
fi ve different segmentation methods reported that 
PET-segmented volumes frequently extended out-
side CT delineations, while being smaller on average. 
Few groups have validated HNSCC delineation 
using different imaging modalities against surgical 
resection specimens. In these studies, although 
describing various PET segmentation methods, 
 18 F-FDG PET-defi ned GTVs were better related to 
surgical resection specimens than CT- or MRI-
defi ned GTVs [17,33], but still did not encompass 
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the entire pathological GTV. A gradient-based 
method using the watershed transform and hierar-
chical cluster analysis, developed by Geets et   al. [20], 
outperformed the adaptive signal-to-background 
ratio thresholding method by overestimating macro-
scopic pathological tumor volume by only 20% 
instead of 68%. Zaidi et   al. [34] tested nine different 
segmentation methods against surgical specimens 
and found the best performance (i.e. underestima-
tion of the actual volume by an average of 6%) for a 
spatial wavelet-based algorithm, which incorporates 
spatial information during the segmentation process. 
As more specialized segmentation tools that exploit 
the differences in metabolism between tumors and 
surrounding tissues are being developed, the use of 
 18 F-FDG PET for correct primary tumor delineation 
alongside CT/MRI diagnostics can become a sub-
stantial asset. This not only holds true for primary 
tumors, but also for the correct identifi cation and 
delineation of lymph node metastases [35]. Further-
more,  18 F-FDG PET directed dose distribution could 
lead to better sparing of organs at risk, such as the 
parotid glands [18]. However, it is imperative that val-
idated independent and robust methods, which of yet 
seem to function in highly specialized study settings, 
become readily available for the clinical practice.   

 IMRT planning and adaptive radiotherapy based on  
18 F-FDG PET 

 Integration of  18 F-FDG PET in IMRT planning has 
been described as benefi cial for treatment individu-
alization and dose escalation [36 – 38]. Groups have 
reported two-year overall survival of 80 – 90% and 
locoregional control of 70 – 80% after implementa-
tion of  8 F-FDG PET-CT-based IMRT [39,40]. In a 
study of 10 HNSCC patients who underwent fi ve 
 18 F-FDG PET-CT scans before and during therapy, 
Castadot et   al. [29] found not only changes in the 
volume, but also in the position of target volumes 
and organs at risk during concomitant chemoradio-
therapy. This may give rise to adaptive strategies, 
where patients are re-imaged and re-planned during 
therapy. However, implementation of adaptive 
schemes may not be straightforward. Automated 
delineation methods based on signal-to-background 
ratios may erroneously expand PET tumor volumes 
far beyond the actual tumor area during (chemo)
therapy, because of decreasing SUV values in tumors 
and increasing background signals due to induced 
infl ammation during therapy [41,42]. The use of an 
adequate delineation method during treatment is 
mandatory for planning adaptation. Geets et   al. 
[28] found that, using a gradient-based algorithm on 
fi ve pre- and per-treatment  18 F-FDG PET scans in 
10 HNSCC patients treated with chemoradiotherapy, 

PET-segmented target volumes reduced signifi cantly 
during treatment. Adaptive IMRT lead to a decrease 
in the high-dose volumes compared to pre-treatment 
CT planning, with little further impact on selected 
organs at risk, proving this approach useful for dose 
escalation schemes. 

 Another concept in the range of PET-based 
IMRT planning is theragnostic  “ dose painting by 
numbers ” , where voxel-wise dose prescription and 
escalation is related to PET tracer uptake to procure 
a non-uniform radiation dose distribution [43]. A 
phase I trial at the University of Ghent used adaptive 
IMRT planning based on dose painting by numbers 
according to  18 F-FDG PET voxel intensities [44]. 
Median total doses of 80.9 Gy or 85.9 Gy, in a total 
of 32 fractions, were planned to the high-dose target 
volumes remaining after 20 fractions. The research-
ers concluded that although treatment to the 85.9 
Gy dose level is feasible, development of late onset 
mucosal ulcers designated the 80.9 Gy dose level as 
maximum tolerated dose. Per-treatment re-planning 
can be benefi cial, as described in a prospective trial 
involving adaptive CT-based IMRT planning mid-
treatment [45]. A dosimetric benefi t and no negative 
effects on outcome events were found in 22 patients 
after a median follow-up of 31 months. The afore-
mentioned studies show that treatment plans can be 
adapted during therapy, following the metabolic 
response pattern.   

 Prognostic value of  18 F-FDG PET before, during 
and after radiotherapy in HNSCC 

 Increasing numbers of treatment centers use  18 F-
FDG PET scans for routine diagnostic staging in 
HNSCC patients. Investigators have looked at the 
prognostic value of such imaging. Studies in often 
non-uniformly treated cohorts of HNSCC patients 
reported that a high pre-treatment  18 F-FDG uptake 
was associated with poor outcome [46 – 49]. A recent 
prospective study, however, did not report an overall 
consistent prognostic PET-parameter (SUV- or met-
abolic volume-based) for tumors within different 
regions of the head and neck area in 77 patients 
treated with (chemo)radiotherapy [50]. 

 Others have focused on the ability of  18 F-FDG 
PET-CT to provide prognostic information and to 
serve as a tool for treatment response assessment 
after completion of (chemo)radiotherapy [51]. 
A meta-analysis concluded that best accuracy in 
detecting residual or recurrent disease is achieved 
three months after completion of therapy [52].  18 F-
FDG PET could be used for decisions on salvage 
neck-nodal dissections after (chemo)radiotherapy 
[53]. However, post-therapy assessment is useless 
when aiming for early treatment modifi cation to 
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improve outcome or reduce overtreatment. Brun 
et   al. [54] reported more complete remissions and 
better fi ve-year overall survival in HNSCC patients 
with tumors showing a low metabolic rate on  18 F-
FDG PET scans performed 5 – 10 days after one 
cycle of neoadjuvant chemotherapy (n    �    10) or after 
a median of 24 Gy radiotherapy (n    �    37). One recent 
study in 37 HNSCC patients treated with chemora-
diotherapy reported superior two-year overall sur-
vival and locoregional control for patients with a 
decrease in  18 F-FDG PET SUV max  of 50% or more 
after 10 – 20 Gy compared to patients who had a 
lesser decrease [55]. Conversely, another group did 
not observe a correlation between reduction of  18 F-
FDG uptake after two weeks of chemoradiotherapy 
and outcome in 26 patients [56]. They found a prog-
nostic value for  18 F-FDG PET-CT performed 8 – 12 
weeks after therapy with regard to disease specifi c 
survival and relapse free survival. The prognostic 
value of  18 F-FDG PET before or during treatment 
therefore remains debated. 

 In conclusion, information from widely available 
 18 F-FDG PET can complement other diagnostic 
modalities for treatment decisions and guidance of 
radiotherapy planning, but it cannot replace clinical 
examination or CT/MRI scans to obtain important 
details. Defi ning the primary tumor boundaries with 
PET is diffi cult. For example, it seems impossible to 
defi ne superfi cial tumor spread as is mostly found by 
clinical examination [17,24]. To assess invasion of 
tumor surrounding tissues, it seems best to use the 
combined qualities of fused PET-MRI scans [57]. 
Tumor limits can be misconstrued due to  18 F-FDG 
uptake in surrounding non-malignant tissue or due 
to a decrease in tumor-to-background ratio during 
therapy. Highly specialized segmentation methods 
seem to comply best with histological resection spec-
imens as compared to CT or MRI in a few small 
studies, and can result in an accurate reduction of 
GTV and in sparing of normal tissues for radiother-
apy planning. Larger multi-institutional studies 
should generate the most robust imaging quality 
and segmentation methods [58 – 60]. Adaptive IMRT 
planning per-treatment is possible with  18 F-FDG 
PET determination of metabolic HNSCC activity, 
but more knowledge is needed on the potential 
volume and spatial shift in  18 F-FDG uptake during 
therapy and its correlation with actual tumor activity 
as opposed to an infl ammatory reaction. Also, more 
should be known about the relation of  18 F-FDG 
uptake with the site of HNSCC tumor recurrence, 
which is situated predominantly but not exclusively 
inside the pretreatment PET-derived target volume 
in small retrospective series [38,61]. The prognostic 
value of  18 F-FDG PET before and early during 
treatment may be a valuable asset in assigning and 

redirecting therapy, but the fi rst outcomes are derived 
from small heterogeneous non-randomized studies 
that show confl icting results and have not produced 
validated and applicable cut-off values for the clinic.    

 Hypoxia 

 Hypoxia is an important mechanism of radioresis-
tance in HNSCC [62]. It also impacts on the 
tumor micro-environment by stimulating angiogen-
esis and metastatic potential [63]. A high hypoxic 
fraction in HNSCC is associated with a decreased 
clinical outcome after radiotherapy [64,65]. Several 
options to modify hypoxia have been proven suc-
cessful in improving therapy outcomes, such as 
accelerated radiotherapy with carbogen and nicotin-
amide (ARCON) [66] and the hypoxic radiosensi-
tizer nimorazole [67]. Also, dose escalation can be 
applied to the hypoxic tumor regions. A recent 
meta-analysis showed an overall benefi cial effect of 
the addition of hypoxic modifi cation to radiotherapy 
of HNSCC [68]. 

 Hypoxia can be measured by invasive methods 
such as polarography electrodes or immunohis-
tochemical staining for hypoxia-related markers in 
tumor biopsies [69]. These methods are prone to 
sampling errors and have a limited use because of 
their invasive and technically demanding nature. 
Biopsies only represent a fraction of the total tumor 
volume. The extent of hypoxia can vary widely 
between but also within head and neck tumors. Also, 
results of hypoxia-modifi cation within individual 
tumors cannot be monitored rapidly using repeated 
invasive procedures. Non-invasive hypoxia imaging 
can provide an attractive substitute. In the fi eld 
of PET imaging, multiple hypoxia-related markers 
have been tested during the years. Initially  18 F-FDG 
was thought to be a hypoxic marker, since hypoxic 
(tumor) cells display an elevated glycolytic activity. 
However, this depends on the type of glucose 
metabolism preferred by a tumor; since most 
HNSCC display an aerobic glycolysis with high glu-
cose utilization even under well-oxygenated circum-
stances,  18 F-FDG uptake is not specifi cally related 
to the level of hypoxia [70,71].  

 Nitroimidazole-based PET tracers 

 Nitroimidazole-based compounds such as misonida-
zole and pimonidazole are exogenous markers that 
selectively bind to hypoxic cells after administration 
and are frequently used for immunohistochemical 
staining of tumor sections. Labeled nitroimidazoles 
can be used as PET tracers of hypoxia. The fi rst 
and best-known is [ 18 F] Fluoromisonidazole ( 18 F-
FMISO) [72]. In 10 HNSCC xenograft models, 
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autoradiography of  18 F-FMISO compared with the 
fraction of pimonidazole-stained tumor on immuno-
histochemistry revealed that  18 F-FMISO accumula-
tion depended on the type of hypoxia distribution 
pattern; ribbon-like, patchy or homogeneous, with 
the highest correlation found in ribbon-like hypoxia 
[73]. Studies evaluating  18 F-FMISO uptake in cervi-
cal lymph node metastases displayed confl icting cor-
relations with pO 2  polarography measurements 
[74,75]. Several authors stress the methodological 
limitations of  18 F-FMISO and other nitroimidazole-
based PET tracers.  18 F-FMISO is reduced under 
hypoxic conditions by intracellular nitroreductase 
enzymes and bound to cellular macromolecules.  18 F-
FMISO displays a slow washout of unbound tracer 
from background tissues, creating a relatively low 
contrast in images. The spatial separation of hypoxic 
cells from perfused vessels results in long diffusion 
times for the tracer to reach hypoxic areas. Spatial 
information in small tumors is hampered by the 
inherent PET resolution and by the fact that tracer 
uptake only occurs in viable hypoxic cells often 
constituting a small subpopulation of the tumor. 
There has been debate regarding the ideal imaging 
time of  18 F-FMISO, but overall reliable imaging 
can take place from two hours after injection 
onwards, when normal tissues have equilibrated with 
plasma and hypoxic tissues still show retention of 
 18 F-FMISO [76] (Figure 1). SUV-defi ned contrast 
between HNSCC and background tissues is likely 

optimal four hours after injection [77], but kinetic 
modeling can make early quantifi cation more reli-
able, more appropriate for heterogeneous tumors 
and therefore more adjusted for individually adapted 
treatment planning [78]. In order to procure a better 
contrast between tumor and background, efforts 
have been made to fi nd nitroimidazole compound 
tracers with a faster diffusion in tumors as well as a 
faster whole body clearance than FMISO. Studies 
focused on more lipophilic nitroimidazoles, such as 
EF3 and EF5 based on the radiosensitizer etanida-
zole, resulted in tracers with a good penetration and 
diffusion in tumors but a simultaneous limited clear-
ance and therefore a varying potential in tumor 
detection [79,80]. 

 A more lipophilic and consequentially more 
rapidly clearing nitroimidazole compound,  18 F-
fl uoroazomycin arabinoside ( 18 F-FAZA), displayed a 
good correlation between PET/autoradiography 
uptake and pimonidazole and Hoechst (perfusion 
marker) immunohistochemical staining in xenograft 
models [81]. In two clinical pilot studies, seven of 
11 and six of nine HNSCC patients, respectively, 
showed adequate tumor PET-imaged uptake of 
 18 F-FAZA two hours after injection [82,83]. In the 
DAHANCA 24 study,  18 F-FAZA PET-CT scans 
prior to and during (chemo)radiotherapy combined 
with nimorazole, resulted in an identifi able hypoxic 
tumor volume in 25 of 40 and six of 13 HNSCC 
patients, respectively [84]. If a hypoxic tumor volume 

  Figure 1.      18 F-FMISO PET-CT scan of a cT4N0M0 oral cavity tumor 30 min after injection with diffuse uptake in tumor and normal 
tissues (A – C) and 3 hours after injection with specifi c tumor retention (D – F). Transversal (A    �    D), coronal (B    �    E) and sagittal (C    �    F) 
planes.  
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of different PET hypoxia tracers, with a highly vari-
able non-linear curve after administration followed 
by an approximately linearly sloped signal [93]. 
Repeated  18 F-FMISO PET imaging performed three 
days apart and a mean 162 minutes (range 117 – 195) 
after injection in 13 HNSCC patients showed 
variability in spatial tracer uptake  –  only six 
patients showed well-correlated tracer uptake distri-
bution [94]. However, a recent study showed highly 
stable hypoxic tumor areas in 10 of 11 HNSCC 
patients, on  18 F-FMISO PET scans performed four 
hours after injection with a two-day interval [95]. 
Multiple effects, such as a more stabilized tumor-
to-blood ratio four hours after injection as opposed 
to 2 – 3 hours, a longer time-span between the 
repeated scans of the former study and differences 
in imaging- and reconstruction-protocols, might 
partly explain these outcome differences. Neverthe-
less, hypoxia regions may show fl uctuation during 
a radiotherapy course and this should be taken 
into account if hypoxic tumor volumes are utilized 
for radiotherapy planning. 

 It is hard to argue a preference for any specifi c 
hypoxia (-related) PET tracer for HNSCC based 
on the currently available data. Most knowledge 
has been gathered concerning the characteristics of 
 18 F-FMISO. However, more extensive clinical testing 
might designate another nitroimidazole-based com-
pound, such as  18 F-FAZA or  18 F-HX4, as the most 
convenient and reliable tracer in terms of uptake and 
clearance, earliest post-injection time for imaging, 
simplicity and cost of production and general appli-
cability in multi-institutional settings. This is unclear 
as of yet and efforts should focus on defi ning the best 
tracer at hand instead of developing yet another 
hypoxic marker in small (pre-)clinical settings.   

 Hypoxia PET for radiotherapy planning 

 Hypoxia PET imaging can be incorporated into the 
radiotherapy planning process to apply a radiotherapy 
boost for focal hypoxia. In in silico studies, Chao et   al. 
[96] and Dalah et   al. [97] demonstrated that IMRT 
dose to hypoxic regions defi ned by high  60 Cu-ATSM 
or  64 Cu-ATSM uptake in head and neck tumors 
could be escalated while normal tissues were spared. 
The concept of  18 F-FMISO or  18 F-FAZA PET-
guided dose escalation in HNSCC using IMRT was 
applied by multiple groups [98 – 104]. Boost doses up 
to 84 Gy could be achieved without exceeding nor-
mal tissue tolerance in silico (however, as mentioned 
before, 80.9 Gy seems to be the maximum tolerated 
dose to avoid late-onset mucosal ulcers inside the 
GTV area [44]). The hypoxic volume demarcation 
was determined using set tumor uptake/background 
tissue ratio thresholds or by visual contouring. 

was discernible on the scan procured during therapy, 
the location was similar but the total volume smaller 
compared to the pre-therapy scan. During a median 
follow-up of 19 months there was a signifi cant better 
disease free survival for patients with non-hypoxic 
tumors on  18 F-FAZA PET-CT than for patients with 
hypoxic tumors; 93% versus 60%, respectively 
(p    �    0.04). 

 Another nitroimidazole-based tracer with 
better water solubility than  18 F-FMISO,  18 F-HX4 
(3-[ 18 F]fluoro-2-(4-((2-nitro-1H-imidazol-1-yl)
methyl)-1H-1,2,3,-triazol-1-yl)-propan-1-ol), based 
on the 2-nitroimidazole pharmacophore, is currently 
undergoing clinical evaluation. In eight of 12 HNSCC 
patients, Cheng et   al. [85] found similar tumor-to-
muscle ratios on  18 F-HX4 PET scan performed 1.5 
hours after injection compared to  18 F-FMISO scans 
performed two hours after injection on the following 
day. Two lesions showed no tracer uptake, while two 
tumors only showed uptake of either  18 F-HX4 or 
 18 F-FMISO. 

 One study describes dynamic PET imaging with 
the fl uorinated nitroimidazole  18 F-labeled fl uoro-
erythronitroimidazole (FETNIM) [86].   

 Other hypoxia PET tracers 

 An alternative lipophilic PET tracer of hypoxia is 
based on a metal complex of radioactive copper with 
ATSM, diacetyl-bis(N4-methylthiosemicarbazone) 
[87]. The precise mechanisms of hypoxic cell reten-
tion of Cu-ATSM and other processes affecting 
Cu-ATSM stability are unclear [88]. While a clinical 
study supported the potential of  (62) Cu-ATSM as 
prognostic marker of radiotherapy outcome [89], 
additional investigations need to establish Cu-
ATSM as a specifi c marker of hypoxia. 

 Quantifi able PET imaging of endogenous 
hypoxia-associated markers, such as the membrane 
protein carbonic anhydrase IX that is upregulated by 
HIF-1 α  under hypoxic conditions, is feasible using 
specifi c monoclonal antibody (fragments) such as 
G250 [90,91]. Even though endogenous markers 
are attractive for use in the clinic, no clinical studies 
have been undertaken as of yet.   

 Hypoxia instability 

 One issue infl uencing hypoxia imaging with any 
PET tracer is the instability of hypoxia in HNSCC. 
A shift in hypoxic regions of head and neck tumors 
develops over time, with life-times of hypoxic cells 
spanning from several hours to multiple days [92]. 
It is argued that the dynamic cellular and micro-
environmental processes infl uencing hypoxia in 
tumor areas dictate the uptake and retention kinetics 
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Grosu et   al. [100] also escalated doses to  18 F-FAZA 
positive cervical node subvolumes, but found that 
specifi c demarcation was not feasible in 39% of 
patients when hypoxic areas were diffusely distrib-
uted. Most planning studies relied on the assumption 
of hypoxic tumor region stability, which may not 
refl ect the actual situation. Lin et   al. [105] observed 
that IMRT planned boost doses of 84 Gy on  18 F-
FMISO positive tumor areas did not cover dissimilar 
hypoxic areas on PET images obtained three days 
later (before start of treatment) in four of seven 
HNSCC patients; the average equivalent uniform 
dose to the hypoxic tumor volume decreased from 
87 Gy to 80 Gy. 

 Dose painting by numbers according to PET 
tracer uptake level in tumors in different head and 
neck areas was technically feasible using  18 F-FMISO 
or  61 Cu-ATSM PET images [106 – 108]. A kinetic 
model based on repeated  18 F-FMISO imaging 
during radiotherapy indicated that individual re-
oxygenation times are linked to tumor control prob-
ability (TCP) [109]. Two studies incorporated 
models into the radiotherapy planning system that 
could also adjust for tumor re-oxygenation during 
therapy. Thorwarth et   al. [106] estimated that 
TCP would increase from 56% to 70% using dose 
painting by numbers based on hypoxia PET. 
Toma-Dasu et   al. [107] proposed a dose-painting 
model that calculated prescription doses in the events 
of static or dynamic oxygenation status in tumors 
during therapy. Tumors with low and homogeneous 
tracer uptake could theoretically be controlled by 
prescription doses between 64 and 76 Gy. However, 
for hypoxic tumors with heterogeneous uptake, 
doses up to 121 Gy would be required to gain 95% 
TCP in the event of static oxygenation, which is 
not an attainable goal. When oxygenation dynamics 
were incorporated into the model, the 95% TCP 
dose for the same tumor would be 77 Gy, which is 
closer to doses used in current practice. 

 The common limitation in these studies is that 
they were planning exercises that were not actually 
delivered to patients.   

 Outcome prediction using hypoxia PET 

 The relevance of hypoxia for outcome prediction of 
advanced HNSCC has been demonstrated in several 
imaging studies. Elevated pre-therapy  18 F-FMISO 
uptake is related to a worse prognosis for patients 
treated with (chemo)radiotherapy [110 – 113]. More 
hypoxic tumors could therefore be candidates 
for intensifi ed treatment protocols based on baseline 
values. But, as mentioned before, hypoxia is a 
dynamic process and therapy induces re-oxygenation 
of HNSCC. If partial or total re-oxygenation takes 

place during therapy, a single pre-therapy hypoxia 
measurement will be insuffi cient to allocate or con-
tinue hypoxia targeting modalities. Lee et   al. [114] 
found  18 F-FMISO uptake in 18 of 20 stage III-IV 
HNSCC patients before chemoradiotherapy. In the 
fourth week of treatment, only two patients showed 
residual hypoxia, but regional/distant recurrence 
occurred in another patient during follow-up. In 29 
patients with repeated  18 F-FMISO scans during 
chemoradiotherapy with or without tirapazamine, all 
six patients with residual  18 F-FMISO uptake after 
four weeks displayed locoregional or distant failure 
during follow-up [112]. Zips et   al. [115] reported 
that, in a prospective cohort of 25 patients,  18 F-
FMISO imaging parameters after 1 – 2 weeks of 
chemoradiotherapy provided stronger prognostic 
potential for local recurrence than pre-treatment 
parameters. In the  18 F-FMISO imaging substudy 
of a phase II randomized trial that randomized 
between concurrent chemoradiotherapy alone or 
combined with tirapazamine as hypoxic cytotoxin, 
patients with hypoxic tumors showed less locore-
gional failure in the tirapazamine group than in the 
chemoradiotherapy-only group [112]. Absence of 
hypoxia was associated with low risk of locoregional 
failure in the group treated with chemoradiotherapy 
alone, suggesting that this group would not benefi t 
from more intensive therapy. This indicates that 
 18 F-FMISO could identify patients who are most 
likely to benefi t from a tirapazamine containing 
chemoradiotherapy regimen. This notion is under-
lined by the outcome of a phase III trial analyzing 
chemoradiotherapy versus chemoradiotherapy with 
tirapazamine in patients unselected for hypoxia, 
where addition of tirapazamine to chemoradio-
therapy did not improve outcome [116]. 

 In conclusion, non-invasive imaging of the 
therapy resistance factor hypoxia is feasible and 
achieved with multiple PET tracers displaying spe-
cifi c accumulation in hypoxic HNSCC areas.  18 F-
FMISO has been evaluated most extensively and 
seems to represent hypoxic subvolumes within 
HNSCC tumors adequately, but no widely applica-
ble quantifi cation and evaluation methods are avail-
able for the clinical practice as of yet. Several 
hypoxia-related PET tracers have been applied for 
in silico radiotherapy dose escalation planning. The 
hypoxic tumor subvolume provides a basis for 
radiotherapy boosting, but small though relevant 
hypoxic volumes or patterns can remain unnoticed 
due to the limited PET spatial resolution. Further-
more, reliable dose escalation to resistant tumor 
regions requires repetitive hypoxia PET imaging 
during therapy due to fl uctuation in oxygenation sta-
tus, and it is still uncertain which dose levels are 
necessary to eradicate hypoxic subpopulations. 
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Hypoxia PET results have been shown to have a 
prognostic as well as a predictive value in small pro-
spective series. This provides a basis for further 
studies allocating hypoxia modifying treatment 
according to hypoxia status.    

 Proliferation 

 In HNSCC, enhanced proliferative activity and 
compensatory tumor cell proliferation during treat-
ment adversely affect outcome [117]. Various 
treatment regimens have been developed to counter-
act this effect, such as accelerated radiotherapy 
[118,119], chemoradiotherapy [1], or radiotherapy 
combined with cetuximab [120], but these approaches 
also increase side effects [121]. PET monitoring of 
proliferative activity of tumors before and during 
treatment may potentially assist in better patient 
selection and in treatment strategy modifi cation 
based on early response assessment. PET of prolif-
eration has focused on imaging of thymidine ana-
logue tracers. Thymidine is a native nucleoside, 
which is incorporated into deoxyribonucleic acid 
(DNA). Shields et   al. [122] introduced the thymi-
dine analogue 3 ′ -deoxy-3 ′ -[ 18 F] fl uorothymidine 
( 18 F-FLT) as PET tracer, exploiting the activity of 
the enzyme thymidine kinase 1 (TK1) as measure of 
proliferative activity.  18 F-FLT is phosphorylated by 
TK1 and trapped intracellularly [122]. During 
DNA synthesis, TK1 activity increases almost ten-
fold.  18 F-FLT trapping is related to TK1 activity and 
closely associated with proliferative activity [123]. 
 18 F-FLT has been validated against histopathology 
in a variety of tumor types [124 – 126]. In a study of 
17 HNSCC patients,  18 F-FLT PET SUV max  and 
SUV mean  could not or only weakly be correlated 
with immunohistochemical staining for proliferation-
related markers and TK1 in resected tumor sections 
[127]. The discrepancy might have been due to 
differences in biomarker characteristics, discrepan-
cies in resolution of the imaging modalities, and 

differences in quantifi cation methods. Troost et   al. 
[128] found that  18 F-FLT PET in 10 HNSCC 
patients did not discriminate between metastatic and 
reactive lymph nodes, since the latter also displayed 
reactive B-lymphocyte proliferation. 

 A clinical study of De Langen et   al. [129] exhib-
ited the reproducibility of quantitative  18 F-FLT 
PET measurements. Pre-clinical and clinical studies 
confi rmed that radiotherapy reduced  18 F-FLT uptake 
in head and neck tumors early, while no apparent 
changes in tumor size or morphology could be 
noted [130,131]. Menda et   al .  [132] reported kinetic 
 18 F-FLT PET analysis of eight HNSCC patients at 
baseline and after fi ve days of chemoradiotherapy. 
Uptake in tumor and metastatic lymph nodes showed 
a signifi cant decrease after fi ve days of treatment 
relative to baseline.  18 F-FLT PET response was also 
noted after induction cetuximab in a pilot study 
with six patients [133]. An example of reduction of 
 18 F-FLT uptake following cetuximab and radiother-
apy is shown in Figure 2. 

 Troost et   al. [131] demonstrated that high 
proliferative tumor subvolumes, as defi ned by  18 F-
FLT PET, can provide the basis for an IMRT plan 
with dose escalation within these regions (Figure 3). 
In this study concerning 10 oropharyngeal carci-
noma patients, repeated  18 F-FLT PET indicated that 
the highly proliferative volumes (delineated by 80% 
of SUV max ) displayed moderately stable spatial simi-
larity between baseline PET and PET after one week 
of (chemo)radiotherapy, but large inter-individual 
differences occurred. Although SUV max  decreased 
signifi cantly between scans as well, which might 
have infl uenced the segmentation method, this 
indicates that therapy induces spatial instability 
in proliferative subvolumes, similar to hypoxic 
subvolumes. 

 Repeated  18 F-FLT PET in HNSCC has been 
demonstrated to correlate with treatment outcome 
[47,134]. In a study of 48 HNSCC patients treated 
with (chemo)radiotherapy, Hoeben et   al. [134] 

  Figure 2.      18 F-FLT PET-CT scans of a patient with a cT4N2M0 hypopharyngeal tumor before therapy (A), after induction cetuximab 
(B), after 1 week of radiotherapy (two doses of cetuximab, 10 Gy) (C) and after 3 weeks of radiotherapy (four doses of cetuximab, 
32 Gy) (D). Note the concurrent reduction in cervical vertebra marrow proliferation after start of radiotherapy.  
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  Figure 3.     Dose-escalation to GTV 80%1  (as delineated using a cut-off of 80% of maximum tumor uptake signal in a  18 F-FLT PET-CT scan 
performed before start of radiotherapy) and GTV 80%2  (as delineated in a  18 F-FLT PET-CT scan performed after 1 week of radiotherapy) 
for a cT3N0M0 oropharyngeal tumor. Using IMRT with integrated simultaneous boost technique, total dose was 50.3 Gy to bilateral 
cervical lymph node regions (large planning target volume, red) and 68 Gy to primary tumor (small planning target volume, blue); in 34 
fractions. GTV 80%1  (black) and GTV 80%2  (green) were consecutively irradiated with 2.3 Gy for 10 fractions, resulting in a dose of 71 Gy 
in total and a dose of 74 Gy in the overlapping region. (A and B) Dose distributions for fi rst 2 weeks of treatment (A) and weeks 3 and 4 (B). 
(C) Dose distribution for remaining 14 fractions without dose-escalation. (D and E) Dose distributions of total treatment plan in transverse 
(D) and sagittal (E) planes. Parotid glands are delineated in sky blue and spinal cord in green. This fi gure was originally published 
in JNM. Troost EG, Bussink J, Hoffmann AL, Boerman OC, Oyen WJ, Kaanders JH. 18F-FLT PET/CT for early response monitoring 
and dose-escalation in oropharyngeal tumors. J Nucl Med 2010;51:866 – 74.  (©)  by the Society of Nuclear Medicine and Molecular 
Imaging, Inc.  

reported early  18 F-FLT PET response between 
baseline and after one and three weeks of therapy. 
SUV max  and visually contoured proliferative volumes 
of the primary tumors decreased signifi cantly between 
consecutive scans, while signal-to-background and 
50%-of-maximum signal segmentation methods 
failed to delineate plausible proliferative tumor vol-
umes as the  18 F-FLT tumor uptake signal reduced 
during therapy. Baseline tumor SUV max  and visually 
delineated proliferative volume, as well as their 
decrease early during therapy, were prognostic 
for three-year locoregional control and disease free 

survival. Kishino et   al. [135] performed  18 F-FLT 
PET and  18 F-FDG PET scans before therapy, 
after four weeks of radiotherapy and fi ve weeks after 
completion of therapy in 28 patients.  18 F-FLT 
decreased most signifi cantly during radiotherapy, 
with a complete response in 63% of patients com-
pared to 16% on  18 F-FDG PET. Patients with resid-
ual post-treatment activity on either modality had 
signifi cantly worse three-year local control than 
patients with a complete response. Specifi city and 
overall accuracy of  18 F-FLT PET were signifi cantly 
higher than those of  18 F-FDG PET (i.e. 72% and 
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74% vs. 19% and 30% after 40 Gy radiotherapy, 
respectively, p    �    0.0001; and 80% and 81% vs. 48% 
and 57% fi ve weeks after radiotherapy, respectively, 
p    �    0.01). In a follow-up report, no clinical recur-
rences were diagnosed in patients showing a primary 
tumor SUV ratio  �    1.5 for the mid-treatment versus 
post-treatment scan, while no such correlation was 
found for  18 F-FDG PET [136]. 

 The high specifi city of  18 F-FLT PET, not infl u-
enced by infl ammatory processes in the primary 
tumor like  18 F-FDG, and its ability to characterize 
proliferation before and early during therapy, make 
it an attractive tracer in the development of indi-
vidualized HNSCC patient management. It could 
help clinical judgments concerning the addition 
of systemic therapy or targeted agents to radiother-
apy or concerning the application of accelerated 
radiotherapy. However, more detailed fundamental 
knowledge on  18 F-FLT uptake in different tumor 
types is needed; e.g. the extent to which tumors 
depend on a de novo thymidine synthesis pathway as 
opposed to on a thymidine salvage pathway infl u-
ences the degree in which  18 F-FLT uptake represents 
actual proliferative activity [137]. More information 
regarding the extent of region fl uctuation of prolif-
eration during therapy, as described by Troost et   al. 
[131], is of essence if  18 F-FLT PET were to be used 
for (adaptive) boost localization. Furthermore, 
the prognostic and predictive value in different stud-
ies has not been translated into applicable quantifi ers 
to be used for treatment allocation or patient risk 
group stratifi cation in prospective studies.   

 Conclusions and future perspectives 

 The material presented in this review exemplifi es a 
large basis for the implementation of molecular PET 
imaging in the management of HNSCC patients. 
However, this basis is multi-faceted and reliant on 
numerous heterogeneous small studies reporting on 
a range of tracers that are diversely applied, with 
varying analytic methodology for divergent research 
questions. PET tracers imaging distinct biological 
tumor characteristics offer specifi c possibilities for 
individualized therapy. Dirix et   al. [138] even 
reported the added value of combining  18 F-FDG 
PET,  18 F-FMISO PET, diffusion weighted MRI and 
dynamic contrast-enhanced MRI before and during 
chemoradiotherapy for radiotherapy planning, early 
response assessment and prognosis prediction in 
15 patients. However, it is hardly feasible to perform 
standard multiple molecular/functional imaging 
modalities alongside the routine imaging modalities 
in HNSCC patients. A priori research questions 
should be clearly formulated and HNSCC patient 
care should be centralized to prevent an inexorable 

expansion of diagnostic and therapeutic procedures 
that do not adhere to evidence-based protocols. 

 Before implementation of molecular PET imag-
ing in the clinical practice, several issues need to be 
addressed. The procedures for acquiring and pro-
cessing PET have to be standardized before insertion 
into radiotherapy protocols [139]. If repeated imag-
ing before and during therapy is warranted, efforts 
should be taken to assure patient comfort and repro-
ducibility. Random set-up errors in patient or tumor 
position should be kept to a minimum [140]. 

 Additionally, there is the issue of image resolu-
tion; a PET voxel size of approximately 4    �    4 mm 
cannot be optimally matched to the biological pro-
cesses on a microscopic level [141]. PET spatial 
resolution is also diminished by the physical charac-
teristics of the positron emitter, the inherent posi-
tron range of selected tracers and by blurring and 
partial volume effects. It may be diffi cult to distin-
guish heterogeneous uptake areas within tumors, 
certainly if signal-to-background ratios are low. 
However, any issues regarding spatial resolution of 
PET are counterbalanced by the also limited preci-
sion for dose calculation and delivery over a number 
of radiotherapy fractions. Such matters are certainly 
critical obstacles in the dependable implementation 
of, e.g., precision-based dose painting by numbers. 
Regarding the reliable delineation of target volumes, 
additional efforts are required. There is a defi nite 
need for a validated, reliable and robust delineation 
method that can be widely applied before and 
during therapy, applicable to multiple PET systems 
and tracers. A strong collaboration of radiotherapy 
and nuclear medicine departments in broader set-
tings can achieve the common goal of fi nding 
an optimal method in shared large, high-quality 
validation sets as suggested by Lee [59]. 

 Implementation of PET for tailoring of radiother-
apy-based treatment and ultimately for improving 
HNSCC patients ’  outcome will be feasible in the 
future, but signifi cant hurdles remain to be taken.  
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