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                        ORIGINAL ARTICLE    

 Functional imaging to monitor vascular and metabolic response in 
canine head and neck tumors during fractionated radiotherapy      

    JAN     R Ø DAL  1  ,       ESPEN     RUSTEN  1,2  ,        Å STE     S Ø VIK  3  ,       HEGE KIPPENES     SKOGMO  3     
&         EIRIK     MALINEN  1,2    

  1 Department of Medical Physics, Oslo University Hospital, Oslo, Norway,  2 Department of Physics, University of Oslo, 
Norway and  3  Department of Companion Animal Clinical Sciences, Norwegian School of Veterinary Science, 
Oslo, Norway                             

  Abstract 
 Radiotherapy causes alterations in tumor biology, and non-invasive early assessment of such alterations may become useful 
for identifying treatment resistant disease. The purpose of the current work is to assess changes in vascular and metabolic 
features derived from functional imaging of canine head and neck tumors during fractionated radiotherapy.  Material and 
methods.  Three dogs with spontaneous head and neck tumors received intensity-modulated radiotherapy (IMRT). Contrast-
enhanced cone beam computed tomography (CE-CBCT) at the treatment unit was performed at fi ve treatment fractions. 
Dynamic  18 FDG-PET (D-PET) was performed prior to the start of radiotherapy, at mid-treatment and at 3 – 12 weeks 
after the completion of treatment. Tumor contrast enhancement in the CE-CBCT images was used as a surrogate for tumor 
vasculature. Vascular and metabolic tumor parameters were further obtained from the D-PET images. Changes in these 
tumor parameters were assessed, with emphasis on intra-tumoral distributions.  Results.  For all three patients, metabolic 
imaging parameters obtained from D-PET decreased from the pre- to the inter-therapy session. Correspondingly, for two 
of three patients, vascular imaging parameters obtained from both CE-CBCT and D-PET increased. Only one of the 
tumors showed a clear metabolic response after therapy. No systematic changes in the intra-tumor heterogeneity in 
the imaging parameters were found.  Conclusion . Changes in vascular and metabolic parameters could be detected by the 
current functional imaging methods. Vascular tumor features from CE-CBCT and D-PET corresponded well. CE-CBCT 
is a potential method for easy response assessment when the patient is at the treatment unit.   

 Assessment of tumor response is important with 
respect to evaluating the effi cacy of a given treat-
ment, in particular when introducing novel therapy 
regimens. Longitudinal tumor volume measurement 
is the conventional method for such assessments [1]. 
However, although the treatment may be effective, 
there are many tumor types where the volume changes 
slowly [2], making short-term response evaluation 
diffi cult. Thus, there is a need for methods that look 
for biological rather than anatomical features, as 
biological alterations precede tumor shrinkage. 

 Functional medical imaging comprises non-
invasive methods for measuring and depicting bio-
logical processes in the living body. Contrast-enhanced 
computed tomography (CT) and magnetic reso-
nance imaging (MRI), either in static or dynamic 
mode, provides images largely refl ecting vascular 

status [3,4]. Positron emission tomography (PET) 
with 2-deoxy-2-[18F]fl uoro-D-glucose (FDG) as 
tracer may be used to depict hypermetabolism, as 
FDG acts as a glucose analogue [5]. Studies have 
shown the usefulness of contrast-enhanced CT or 
MRI and FDG-PET for monitoring the short-term 
response following both chemotherapy and radio-
therapy [2,6,7]. In dynamic FDG-PET (D-PET), 
as opposed to conventional static FDG-PET, the 
spatiotemporal distribution of FDG may be depicted, 
which opens for imaging of both vascular and 
metabolic features [8 – 11]. Furthermore, D-PET has 
shown a promising potential for response assessment 
[10,12 – 15]. 

 Functional imaging has a distinct advantage over 
biopsy-based assays, as tumor heterogeneity is 
directly available from the voxelwise distribution of 
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image parameters. However, single parameters such 
as the maximum standard uptake value (SUV max ) 
following FDG-PET examinations are still most 
common [16], while tumor heterogeneity in, e.g. 
SUV has been explored in much less detail. 

 In this work, we have used contrast-enhanced 
cone beam CT (CE-CBCT) and D-PET to assess 
changes in image parameters of canine head and 
neck tumors during the course of fractionated radio-
therapy. CE-CBCT was performed at the treatment 
unit, facilitating fast response assessment with the 
patient already scheduled for treatment. We compare 
image parameters derived from the different modal-
ities and discuss their potential clinical role.  

 Material and methods  

 Animals and treatment 

 Three companion dogs with spontaneous head and 
neck tumors were investigated in the present study, 
which study was approved by the National Commit-
tee on Animal Research. Written informed consent 
was obtained from the dogs ’  owners. The animals 
have been described previously [9]. Tumors were 
located in the right (patient A) and left (patient C) 
maxilla and in the right nasal cavity (patient B). The 
tumor volumes prior at the start of radiotherapy were 
14 (A), 25 (B), and 65 (C) cm 3 . Tumor histological 
subtypes were plasma cell tumor (A), adenocarci-
noma (B), and fi brosarcoma (C). 

 The dogs were treated with curative intent at an 
Elekta Synergy linear accelerator (Elekta AB, Stock-
holm, Sweden), equipped with a CBCT system 
(XVI). Fractionated intensity-modulated radiother-
apy (IMRT) using 6 MV photons with a total dose 
40 – 46 Gy was given in 10 fractions over two weeks. 
The dogs were positioned in prone position on a 
vacuum cushion at both treatment and imaging (see 
below). All imaging and treatments were performed 
under general anesthesia.   

 Imaging 

 CE-CBCT imaging with Omnipaque 300 mg/ml at 
a dose of 600 mg/kg was performed at fi ve of the 
treatment sessions (no. 1, 3, 5, 7 and 10) using the 
linac-mounted XVI system [17,18]. Here, a CBCT 
scan was taken before manual contrast injection, and 
a second scan was started one minute post-injection 
(p.i.). The total duration of the CBCT scans was 
about one minute. The reconstructed axial CBCT 
images had 270    �    270 voxels with vozel size 1    �    1 �    1 
mm. The images were analyzed using custom made 
software in IDL (Exelis VIS, Boulder, CO, USA), 
where the pre-contrast images were subtracted from 
the post-contrast images. This difference image series 

thus depicts the amount of contrast agent in tissue, 
where the contrast enhancement is given in Hounsfi eld 
units (HU). As contrast was injected manually, there 
may have been variations between fractions in injec-
tion time and injected volume. The difference images 
were thus normalized according to the normal tissue 
contrast enhancement. 

 Dynamic FDG-PET/CT was performed at a Sie-
mens Biograph 16 scanner (Siemens AG, Munich, 
Germany). An FDG activity per body weight of 
roughly 6 MBq/kg was administered intravenously 
using a manual syringe. The scan duration was 45 
minutes, with the sampling rate varying from 1/15 to 
1/120/s. The longitudinal fi eld of view (FOV) was 16 
cm and the images were reconstructed with a slice 
resolution of 2 – 3 mm and an in-plane resolution of 
5.5 mm, using three-dimensional (3D) OSEM itera-
tive reconstruction (four iterations, eight subsets) 
and a Gaussian convolution kernel with FWHM    �    5.0 
mm. PET/CT was performed three days prior to 
treatment ( ‘ Pre ’ ), after fi ve fractions of radiotherapy 
( ‘ Mid ’ ) and four months (four weeks for patient A) 
after treatment ( ‘ Post ’ ). As for CBCT, to account for 
unintended variations in injected FDG, the uptake 
in normal tissue was used as a reference. The stan-
dard uptake value (SUV), normalized to body weight, 
was used as a measure of FDG uptake. Two metrics 
were extracted from the dynamic FDG-PET series; 
SUV E  and SUV L . The former represents the mean 
uptake during the fi rst two minutes of the dynamic 
acquisition, while the latter is the mean uptake dur-
ing the last fi ve minutes of the uptake.   

 Analysis 

 The tumor at each imaging session was manually 
delineated. For a given image, the full distribution of 
voxel values within the tumor outline was extracted. 
In the data presentation, main emphasis has been on 
the median value, as this is the best compromise of 
the tumor tissue as a whole. Furthermore, the 5th, 
25th, 75th, and 95th percentiles were also extracted. 
First order linear regression was used for analyzing 
trends in the CBCT images during fractionated 
radiotherapy.  χ  2 -tests were used to assess differences 
in the voxel value histograms. A signifi cance level of 
p    �    0.05 was chosen.    

 Results  

 Contrast-enhanced cone beam computed tomography 

 The contrast enhancement pattern, overlayed pre-
contrast CBCT images, is shown in Figure 1 for all 
cases at fi ve different treatment fractions. For each 
case, by inspecting the contrast enhancement pat-
tern, the tumor may clearly be distinguished from the 
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normal tissue. For Case A, the tumor was particu-
larly prominent in the CE-CBCT images. For case 
B, the tumor regressed markedly during the fraction-
ated treatment, but the remaining tumor tissue 
showed a pronounced enhancement. For case C, 
little or no changes could be seen in the images 
during the course of therapy. 

 The intra-tumor contrast enhancement during 
the course of radiotherapy is given in Figure 2. 
Here, the median and the 5th, 25th, 75th and 95th 
percentile are given to illustrate the distribution of 
values for a given tumor at a given fraction. A sig-
nifi cant increase in median contrast enhancement 
per treatment fraction of 4.2 HU and 4.5 HU was 
found for case A and B, respectively, using fi rst order 
linear regression. For case C, a non-signifi cant 
decrease in median tumor enhancement during the 
course of therapy was found. The intra-tumor con-
trast enhancement histogram obtained prior to 
treatment was compared with the histograms from 
the different treatment fractions using the  χ  2 -test. 
For case A, the histograms obtained at all treatment 
fractions were signifi cantly different from the histo-
gram prior to treatment. For case B, signifi cant 
differences were found for fractions 5, 7, and 10, 
while for case C, signifi cant differences were found 
for fractions 6 and 10.   

 Dynamic FDG-PET 

 Figure 3 shows DPET images for the early and late 
acquisition phase for all cases prior to, during and 
after fractionated therapy. For each case and session, 

quite similar tumor extensions for were found for 
images acquired during the early and late acquisition 
phase. Also, rather small changes could be seen com-
paring images acquired prior to and during treat-
ment. For case A and B, small changes were observed 
throughout, but case C showed a reduction in both 
tumor size and FDG uptake after treatment. 

 The temporal uptake patterns, given as the depen-
dence of the median SUV on the time p.i., in the three 
different tumors prior to treatment showed substantial 
variations (Supplementary Figure 1, available online 
at http://informahealthcare.com/doi/abs/10.3109/
0284186X.2013.812800). Case A exhibited an 
extremely pronounced vascular peak with an SUV of 
roughly 11 at about 30 s p.i. For case B and C, rather 
small vascular peaks could be seen. In the late uptake 
phase, case B showed a high and persistent increase 
in SUV, case C showed a slow but persistent increase, 
while case A plateaued already 10 minutes p.i. 

 The intra-tumor SUV pre-, mid- and post-
radiotherapy is given in Figure 4. Here, the median 
and the 5th, 25th, 75th and 95th percentile are given 
to illustrate the SUV distribution. For case A, median 
SUV E  was higher than median SUV L  at all imaging 
sessions, while median SUV L  was higher than median 
SUV E  at fi ve of six sessions for the other two cases. 
The changes in SUV E  and SUV L  from pre- to mid- 
to post-therapy were not systematic. For instance, 
median SUV E  increased from pre- to mid-therapy 
for cases A and B, while little or no change was 
observed for case C. Median SUV L  decreased from 
mid- to post-therapy with 43% for case C, while a 
75% increase was seen for case B. For all cases, the 

  Figure 1.     Contrast-enhanced cone beam CT images of patients A – C. The numbers corresponds to the treatment fractions where imaging 
was performed. The tumor is indicated by an arrow. The contrast enhancement window was [10,100] HU.  
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intra-tumor histograms obtained at prior to, during 
and after treatment were all signifi cantly different 
from each other, both for SUV E  and SUV L .    

 Discussion 

 In this work, we have used CE-CBCT and DPET 
for tumor depiction and treatment monitoring during 
and after fractionated radiotherapy of canine head 
and neck tumors. There was a clear resemblance 
between the CE-CBCT and DPET images, and all 
images showed about the same tumor extensions 
in the patients. This is due to that both vascular 

and metabolic features may be prominent in solid 
tumors, although these features are not necessarily 
signifi cantly correlated voxel-by-voxel [19,20]. 
Although the study is limited by few patients, it illus-
trates the attractiveness of doing multi-parameter, 
multi-modal imaging for assessing therapy-induced 
tumor alterations. 

 Conventional therapy response evaluation may be 
performed according to the RECIST criteria [1], 
where a partial response is defi ned as at least 30% 
reduction in tumor diameter compared to baseline. 
Tumor volume assessment was not a key issue in the 
current work, although the tumor was delineated at 
every imaging session. Patient B showed a partial 
response during radiotherapy (but had progressive 
disease after treatment), while patient C showed a 
partial response comparing the baseline scan with 
the post-therapy scan. Patient A exhibited more or 

  Figure 2.     Box plot of showing the distribution of contrast 
enhancement values in the tumor as a function of treatment 
fraction for patients A – C. The thick line shows the median, the 
box covers the 25th to the 75th percentile, while the bars indicate 
the 5th and the 95th percentile.  

  Figure 3.     FDG-PET/CT images of patients A – C taken pre-, mid- 
and post-therapy. Images acquired in the early (0 – 2 min p.i.) and 
late (40 – 45 min p.i.) phase of the dynamic acquisition are shown. 
The SUV window was [0.5, 6].  
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less stable disease throughout. In the RECIST guide-
lines, FDG-PET was also recognized a potential 
response marker, but only by using standard radio-
logical procedures (positive vs. negative PET fi nd-
ing). In the review leading to the PET Response 
Criteria in Solid Tumors (PERCIST) guidelines [2], 
the limitations of using anatomical tumor changes 
was discussed. In that work, the liver was recom-
mended as the reference tissue in FDG-PET studies 
to account for, e.g. poor intravenous injection and 
inaccurate radiotracer dose calibration. Here, a par-
tial metabolic response (PMR) was defi ned when the 
FDG-uptake dropped by more than 30%. If we use 
the median tumor SUV L  as the relevant metric, only 
case C showed PMR. It should be noted that the 

median tumor contrast enhancement, as assessed 
by CE-CBCT, for patients A and B increased by 
more than 40 HU (more than 40%) during the full 
course of therapy. An increase in contrast enhance-
ment during radiotherapy has previously shown a 
positive predictive value for patients with locally 
advanced cervical cancer [7], and it may thus be 
speculated that patients A and B also showed a 
positive response to treatment. However, none of 
the tumors in the current study showed a complete 
response, indicating that the applied radiotherapy 
doses were too low. 

 Vascular parameters derived from DCE-CT, 
DCE-MRI and D-PET have shown substantial 
spatial correlations in previous studies [9,11,21], 

  Figure 4.     Box plot of showing the distribution of PET uptake values in the tumor pre-, mid- and post-therapy for patients A – C. The thick 
line shows the median, the box covers the 25th to the 75th percentile, while the bars indicate the 5th and the 95th percentile.  * Please 
note different ordinate scaling.  
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 χ  2 -test seemed quite strict, as testing the original 
histograms against corresponding histograms shifted 
only 5 – 10 percentage points along the abscissa gave 
signifi cant differences (data not shown). Test-retest 
studies, where patients have been investigated 
multiple times prior to treatment, have revealed a 
variability in PET quantitative PET parameters of 
typically 10%, but over 40% has been reported 
(see [2] and references therein). Thus, improved tests 
taking such variability into account when assessing 
intra-tumor heterogeneity are needed. 

 In conclusion, we have shown that imaging 
parameters derived from CE-CBCT and D-PET 
provide both overlapping and complementary infor-
mation. Both vascular and metabolic parameters 
changed during and after treatment, and CE-CBCT 
should be explored in future clinical trials to eluci-
date the potential clinical usefulness.                      

  Declaration of interest:  The authors report no 
confl icts of interest. The authors alone are respon-
sible for the content and writing of the paper.   
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