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ORIGINAL ARTICLE

Adaptive radiotherapy in locally advanced prostate cancer using a 
statistical deformable motion model
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Mischa S. Hoogeman4, Ludvig P. Muren1,2,3 & Ben J. M. Heijmen4
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Rotterdam, The Netherlands, and 5Department of Radiation Oncology, University Hospital Grosshadern,  
LMU Munich, Munich, Germany

Abstract
Daily treatment plan selection from a plan library is a major adaptive radiotherapy strategy to account for individual inter-
nal anatomy variations. This strategy depends on the initial input images being representative for the variations observed 
later in the treatment course. Focusing on locally advanced prostate cancer, our aim was to evaluate if residual motion of 
the prostate (CTV-p) and the elective targets (CTV-sv, CTV-ln) can be prospectively accounted for with a statistical 
deformable model based on images acquired in the initial part of treatment. Methods. Thirteen patients with locally advanced 
prostate cancer, each with 9–10 repeat CT scans, were included. Displacement vectors fields (DVF) obtained from contour-
based deformable registration of delineations in the repeat- and planning CT scans were used to create patient-specific 
statistical motion models using principal component analysis (PCA). For each patient and CTV, four PCA-models were 
created: one with all 9–10 DVF as input in addition to models with only four, five or six DVFs as input. Simulations of 
target shapes from each PCA-model were used to calculate iso-coverage levels, which were converted to contours. The 
levels were analyzed for sensitivity and precision. Results. A union of the simulated shapes was able to cover at least 97%, 
97% and 95% of the volumes of the evaluated CTV shapes for PCA-models using six, five and four DVFs as input, respec-
tively. There was a decrease in sensitivity with higher iso-coverage levels, with a sharper decline for greater target movements. 
Apart from having the steepest decline in sensitivity, CTV-sv also displayed the greatest influence on the number of 
geometries used in the PCA-model. Conclusions. PCA-based simulations of residual motion derived from four to six DVFs 
as input could account for the majority of the target shapes present during the latter part of the treatment. CTV-sv displayed 
the greatest range in both sensitivity and precision.

Independent target motion is a challenge in radio-
therapy (RT) when multiple targets are treated. For 
locally advanced prostate cancer residual motion 
after positioning based on the primary target (the 
prostate) stems from independent motion of the 
pelvic lymph nodes as well as residual motion caused 
by both independent motion and deformations of 
the seminal vesicles [1–7]. We and others have 
shown large individual variations for margins 
required to cover this residual motion, in particular 
for the seminal vesicles [1,2,4,8]. For intra-prostatic 
fiducial setup, the suggested margin expansions for 

the seminal vesicles have ranged from 7 to 16 mm 
[4,8–11], while for the pelvic lymph nodes the  
suggested margins have been smaller, in the range 
5–10 mm [8–10]. These large expansions might  
be challenging in RT due the implied risk of  
toxicity [12].

Adaptive RT refers to the concept where the 
treatment is altered to the variations observed for 
the individual patient [13]. In RT of bladder cancer, 
adaptively selecting treatment plans according to the 
daily size and shape of the bladder target volume has 
presented encouraging results [14]. In gynecological 

Acta Oncologica, 2013; 52: 1423–1429

ISSN 0284-186X print/ISSN 1651-226X online © 2013 Informa Healthcare
DOI: 10.3109/0284186X.2013.818249



1424	 S. Thörnqvist et al. 

RT, modeling the deformable target of the uterus 
based on a bladder volume model has enabled a 
reduction of the treated volume [15]. However, in 
RT of prostate cancer, the motion of the involved 
targets are induced both by changes in bladder as 
well as in the rectum [13–18]. The modeling of tar-
get motion in locally advanced prostate cancer 
involving multiple targets is further complicated by 
the different motion patterns, e.g. seminal vesicles 
presenting large deformations while the prostate and 
the pelvic lymph nodes are assumed move more  
rigidly [1–3,7,11]. For the purpose of calculating 
these motion patterns, we previously established a 
statistical deformable model of residual target 
motion [8] based on principal component analysis 
(PCA) [19,20]. In the present study we will explore 
the PCA-model further for adaptation to patient-
specific target volumes based on residual motion 
following image-guidance on intra-prostatic fiducial 
makers. In this setting, it is of importance to evalu-
ate whether such motion patterns can be predicted 
and if the model can be used to prospectively account 
for subsequent variations in target shape. The cur-
rent study therefore had the aim of individualizing 
target volumes and evaluating if the residual motion 
patterns for the primary target (CTV-p) and the two 
elective targets (CTV-sv and CTV-ln) could be 
modeled with a limited number of deformation vec-
tor fields (DVFs) as input.

Material and methods

Patient material

Thirteen patients previously treated with intensity-
modulated RT (IMRT) for locally advanced prostate 
cancer were included in the study [21]. Each patient 
had an image set consisting of a planning CT in addi-
tion to repeat CTs (9–10) evenly acquired during the 
treatment course. Details of slice thickness, patient 
positioning and definitions of each clinical target vol-
ume (CTV) have been previously presented [8,22]. 
In short, for each CT scan the three CTVs – CTV 
of prostate (CTV-p), CTV of seminal vesicles 
(CTV-sv) and CTV of the pelvic lymph nodes 
(CTV-ln) – were delineated by an experienced radi-
ation oncologist [22]. The CTV-ln delineations fol-
lowed the RTOG guidelines [6] except for the 
pre-sacral nodes which were omitted.

Generation of individualized statistical motion models

This study focused on the residual geometric uncer-
tainties present after setup based on the intra- 
prostatic fiducial markers. Therefore, all residual 
motion, rigid as well as non-rigid, was derived  

relative to that of the intra-prostatic fiducial markers. 
In a previous study we developed a statistical deform-
able model of residual target motion based on  
PCA; all details of the model have been presented 
elsewhere [8] but for completeness the most impor-
tant parts are presented in the following.

Setup based on intra-prostatic fiducials was sim-
ulated through a rigid co-registration (translations 
only) on the markers in the repeat CTs to the mark-
ers in the planning CT. Hence, each target surface is 
defined in a common reference system defined by the 
fiducial markers in the planning CT. The target shape 
vector p consisted of M points (M  [1500;229 700]) 
distributed with an isotropic resolution of 1 mm on 
the target surface. Point correspondence of the target 
shapes in the planning CT and the target shapes in 
the repeat CT scans were calculated using an  
inverse-consistent version of the Thin-Plate Spline 
Robust-Point Matching (TPS-RPM) algorithm  
for non-rigid registrations [23,24]. From each 
deformable registration a DVF of all target points 
was obtained. Subsequently, the average target  
shape vector, p and the covariance matrix, C were 
calculated according to:
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for all, N target shape vectors, pi. In Equation 2, 
(…)T denotes the transposed vector and (…)  (…)T 
denotes the outer product.

Following the method introduced by Söhn et al. 
[19,20] these two moments of the shape vectors 
served as input to the PCA:
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where the eigenvectors ql are normalized orthogonal 
vectors. In PCA these eigenvectors are ordered by 
the largest eigenvalues ll quantifying the variability 
that is accounted for by each component, l  1...L,. 
The linear combinations of the components in 
Equation 3 describe the superposition of the  
eigenmodes. Since, in PCA the weight, cl is assumed 
to be normally distributed with an average of  
zero and a variance defined by ll, new displace-
ment vectors can be constructed by sampling of cl 
[19,25]. In our simulations new displacement  
vectors were sampled using Equation 3 and con
sidering all eigenmodes. Furthermore, a separate  
PCA-model was constructed for each target in 
every patient.
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Evaluation of individualized statistical motion models

Four different individual PCA-models were evalu-
ated, one with the DVFs from registration of all 
repeat scans as input, a second based on four input 
DVFs, a third based on five DVFs and a fourth 
using six. From each PCA-model, simulation of 
between 5000 and 10 000 shapes for each  
target were used to generate coverage probability 
maps. Fourteen iso-coverage levels varying from 
the union (denoted 0) of all the samples to  
the intersection (denoted 1) were evaluated.  
For each level the sensitivity and the precision was 
calculated as:

Sensitivity Precision
TP

TP FN
TP

TP FP
 

 
, � (4)

where the true-positive fraction was denoted TP, 
the false-negative fraction was denoted FN and the 
false-positive fraction denoted FP. Here, TP was 
the intersection of the volume enclosed by each 
iso-coverage level and the manually delineated 
structure volumes used for evaluation. FN was 
volume not considered target by the iso-coverage 
levels but enclosed by the manually delineated 
structures in contrast to FP, which was considered 
target by the iso-coverage levels but not enclosed 
by the manually delineated structures. For the 
PCA-model based on all geometries as input the 
same shapes were used for both input and evalua-
tion. For the PCA-models based on a reduced 
number of geometries as input the remaining (3–4) 
delineated geometries not included in the model 
were used for evaluation of all models. In addition, 
to assess the influence of iso-coverage levels on the 
evaluation parameters for patient experiencing 
small versus large target motion we divided the 
patients into two groups based on the relative vol-
ume of the union of simulated shapes from the 
PCA-model with all geometries as compared to the 
volume of the planning CTV.

Results

Eigenvalue spectra

The eigenvalue spectra for each target with the all 
DVF models and separated for small and large 
movers, are displayed in Figure 1. To account for 
at least 90% of the variance in CTV-ln five modes 
were necessary for patients considered as ‘small 
movers’ as compared to four modes for ‘large  
movers’. The large movers were defined as those 
patients where the volume confined to a union of 
the simulated target shapes from the PCA-model 
using all DVFs as input was at least twice as large 
as the volume of the CTV in the planning CT.  
This definition was applied to both CTV-ln and 
CTV-p, whereas for CTV-sv the volume increase as 
compared to the planning CTV had to be at least 
4.5 to be considered a large mover. For CTV-sv 
90% of the variance was accounted for by the first 
four modes for both large and small movers. 
Although CTV-p had the slowest decline as a func-
tion of modes, identical number of modes as for 
the CTV-p was needed to account for  90% of  
the modeled variance for small and large movers.

Prospectively accounting for motion patterns deduced 
from the PCA-model

The sensitivity and precision for all targets with  
varying number of DVFs for input is displayed in 
Figures 2 and 3, respectively. The sensitivity measure 
(Figure 2) was more influenced by the iso- 
coverage level than the precision. The inter-patient 
variation in sensitivity also increased at higher iso-
coverage levels (Figure 2). Based on the PCA-model 
with all DVFs as input, a union of the simulated 
target shapes (corresponding to an iso-coverage level 
of 0) accounted for all variation. The patient-average 
relative volume increase ( 1 standard deviation) of 
this volume as compared to the volume of the delin-
eated CTV in the planning CT was 2.0  0.4 for 
CTV-p, 5.4  2.4 for CTV-sv and 1.9  0.2 for 

Figure 1. Eigenvalue spectra for each target. Different colors denote patients with different degrees of movement, light gray for smaller 
movers and black for larger movers.
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CTV-ln. With a reduced number of DVFs included 
in the PCA-model a union (iso-coverage level  0) of 
the simulated shapes was still able to cover at least 
95%, 97% and 97% of the volumes of the CTV 

shapes not included in the model when four, five and 
six DVFs were used as input for the model, respec-
tively. In contrast, a large decrease in precision resulted 
when limiting the number of input geometries as 
compared to including all DVFs in the model (Figure 
3). However, the difference in average precision from 
a PCA-model based on six versus four DVFs was less 
than 0.04 across all targets and iso-coverage levels.

Large movers as compared to small movers dis-
played both reduced sensitivity and precision for 
each iso-coverage level, most pronounced for the 
elective targets. This finding was independent of  
the number of geometries used to build the PCA-
models (Supplementary Figures 1 and 2, available 
online at http://informahealthcare.com/doi/abs/ 
10.3109/0284186X.2013.818249). Comparing small 
and large movers, the difference in sensitivity for 
each iso-coverage level increased for higher levels 
but was relatively insensitive to the number of DVFs 
for the models (Supplementary Figure 1, available 
online at http://informahealthcare.com/doi/abs/10. 
3109/0284186X.2013.818249). However, it was the 
target with the largest relative volume of motion as 
compared to the delineated planning CTV (CTV-sv) 
that displayed the greatest influence of the number 
of geometries used in the PCA-model (Figure 2). 
For the sensitivity, this was most pronounced for 
the lower iso-coverage levels whereas for the preci-
sion this dependency was greater for higher  
iso-coverage levels. The decline in sensitivity for 
CTV-sv and larger movers with increasing iso- 
coverage levels were almost linear (R  0.99), irre-
spective of the number of DVFs used in the 
PCA-model (Supplementary Figure 1, available 
online at http://informahealthcare.com/doi/abs/ 
10.3109/0284186X.2013.818249). Both CTV-p and  
CTV-ln displayed similar patterns in both sensitiv-
ity and precision. For iso-coverage levels lower than 
0.2 both CTV-p and CTV-ln were equally success-
ful in accounting for shape variations of the CTVs 
used for evaluation but for iso-levels larger than 0.2, 
CTV-p displayed higher sensitivity (Figure 2, and 
Supplementary Figure 1, available online at http://
informahealthcare.com/doi/abs/10.3109/0284186X.
2013.818249). The iso-coverage levels where CTV-p 
is superior to CTV-ln in capturing the variations of 
the evaluated target shapes was slightly lower for 
larger movers (0.05–0.2) as compared to small 
movers (0.2–0.4) (Supplementary Figure 1, avail-
able online at http://informahealthcare.com/doi/ 
abs/10.3109/0284186X.2013.818249) across PCA-
models based on 4–6 DVFs for input. For the pre-
cision these differences between large and small 
movers were less pronounced (Supplementary  
Figure 2, available online at http://informahealthcare.
com/doi/abs/10.3109/0284186X.2013.818249).

Figure 2. Sensitivity as a function of iso-coverage level for a  
PCA-model based on all DVFs as input (solid line), with six DVFs 
as input (dashed line), with five DVFs as input (dashed-dotted 
lines) and with four DVFs as input (dotted lines). The target of 
CTV-p is in red, CTV-sv (green) and CTV-ln (blue). All data is 
displayed as average values with   1 SD in error bars.

Figure 3. Precision as a function of iso-coverage level for a PCA-
model based on all DVFs as input (solid line), with six DVFs  
as input (dashed line), with five DVFs as input (dashed-dotted 
lines) and with four DVFs as input (dotted lines). The target of 
CTV-p is in red, CTV-sv (green) and CTV-ln (blue). All data is 
displayed as average values with  1 SD in error bars.



	 PCA-model used for adaptations in locally advanced prostate cancer �1427

Discussion

In this study we have investigated whether a statisti-
cal motion model with a limited number of input 
geometries can account for subsequent target shapes 
excluded from the model building. This evaluation 
has been conducted for targets displaying different 
motion patterns in relation to intra-prostatic fiducial 
markers. We showed that a union of all simulated 
shapes successfully enclosed  97% of the volumes 
in the target shapes used for evaluation with PCA- 
models based of 5–6 DVFs as input. However,  
this volume had the lowest precision. Ideally, the vol-
ume used to account for geometric uncertainties 
should have both a high sensitivity and precision. In 
the current study this would firstly recquire that  
the variations seen in the initial part of the treatment 
are representative for the motion during the latter 
part and secondly that the applied model can  
account for the motion. For large motion a greater 
trade-off between sensitivity and precision is to  
be expected, which was observed both regarding  
targets and regarding individual patients where 
CTV-sv and large movers had the largest range in 
both sensitivity and precision.

For uncertainties caused by target motion; the 
sensitivity can be argued to be the most important 
parameter. In that context the common derivation of 
a planning target volume (PTV) can also be consid-
ered the most robust method to handle geometric 
uncertainties but we and others have shown that, in 
particular, for the seminal vesicles large isotropic 
expansions are needed to cover the target motion 
[1,4,8–10]. However, treatment plans with these 
large expansions might not be feasible to deliver due 
to normal tissue toxicity. Instead we aimed at adapt-
ing to the patient-specific motion patterns of the tar-
gets. Using the patient-specific union derived from 
the PCA-models and comparing it to the volume 
derived from a 5 mm isotropic expansion in the plan-
ning CT, resulted in slightly smaller volumes 
(expressed in relation to the delineated structures in 
the planning CT) of 1.9 as compared to 2.3 for 
CTV-p and 1.8 as compared to 2.0 for CTV-ln. Con-
sidering CTV-sv a union, i.e. iso-coverage  0 would 
result in a slightly larger relative volume expansion 
of 5.6 as compared to 4.1 with a 5 mm isotropic 
expansion. However, several studies investigating 
seminal vesicle motion and margin requirements 
have found expansion larger than 5 mm to be needed 
[4,8–11]. For comparison, margins using the  
formalism described by van Herk et al. [26] derived 
from rigid shift between the intra-prostatic fiducial 
markers and the CTV-sv would have yielded margins 
with an average sensitivity and precision of 0.9 and 
0.6, respectively. For CTV-ln deriving the margins 

from rigid shifts between the markers and bony anat-
omy would have resulted in an average sensitivity of 
1.0 and an average precision of 0.5 (detailed data not 
shown). For CTV-sv an average sensitivity of 0.9 and 
an average precision of 0.6 for PCA-models gener-
ated with 4–6 DVFs was obtained for iso-coverage  
levels between 0.05 and 0.1. For CTV-ln iso-coverage 
levels between 0.05 and 0.1 resulted in an average 
sensitivity 1.0 and an average precision of 0.9.

Using patient-specific PCA-models for various 
treatment sites, 3–6 measurements have been reported 
to account for  90% of the variations, which is in 
agreement with our findings [19,20,27,28]. We also 
found a larger number of modes needed to account 
for 90% of the variations for small movers compared 
to large movers. This can be explained by large mov-
ers having a distinct and dominating motion as com-
pared to small movers. In addition, this can explain 
the slower decline of the first modes for CTV-p as 
compared to both CTV-sv and CTV-ln (Figure 1) 
since the residual motion after setup based on intra-
prostatic markers can be assumed to be more random/
noisy. From these results mathematically at least  
4–7 input geometries would be needed to model the 
motion patterns. For lung cancer Badawi et al. evalu-
ated the impact of reducing the number of input 
geometries (4–7) in PCA-models and found the 
results to be comparable to that when all geometries 
(12–21) were used to build the model [27].

Besides being labor intensive, manual delinea-
tions in multiple CTs may suffer from delineation 
uncertainties [29–32]. To limit these uncertainties, 
the current study used delineations from one onco
logist who made the segmentations in a short time 
interval. However, it cannot be excluded that part of 
the motion modeled in the study is caused by diffi-
culties in differentiating the borders of the targets. 
For a clinical implementation, other deformable 
image registration algorithms not requiring manual 
delineations can be considered as well as improve-
ments of image quality or using images from other 
image modalities, e.g. MR with better soft-tissue 
contrast [29–32]. This could reduce the work-load 
for clinician as well as reducing the contribution of 
delineation uncertainties when deriving motion pat-
terns for the proposed method.

The CTV-sv was the target where the sensitivity 
and precision was most influenced by the number 
of DVFs included in the PCA-model (Figures 2 and 
3), with an increasing number of input geometries 
leading to more reliable estimates of subsequent 
target shapes excluded from the model. This is to 
be expected since larger movements causing wider 
probability distribution and wider distribution in 
turn require more samples to accurately estimate 
the mean value. However, even for CTV-sv the  



1428	 S. Thörnqvist et al. 

the mean geometry with certain fractions of the 
standard deviations. In addition, different combi
nation of input geometries for the mode building  
versus for evaluation might alter the results. The 
motivation of our choice of using the initial scans 
for deriving PCA-models for a reduced number of 
inputs was that this reflects what would be available 
in an adaptive setting. To reduce the sensitivity of 
input selection a boot-strap method could be applied 
and used to derive a ‘soft-margin’ to account for 
variations in input sampling as similar to the method 
proposed by Hysing et al. [33].

In conclusion, this study showed that using PCA-
based simulations of residual motion derived from 
four to six DVFs as input could account for the 
majority of the volume enclosed by the target shapes 
excluded from building the model. Hence, it seems 
feasible to use PCA-model in a prospective manner 
within an adaptive RT strategy for locally advanced 
prostate cancer. The target most sensitive to the 
number of input geometries used was the seminal 
vesicles, where a model of six geometries was found 
superior. We also showed the decrease in sensitivity 
with higher iso-coverage levels was steeper with larger 
movement.
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thresholds used for classifying patients into small and 
large movers are a bit arbitrary and different thresh-
olds might lead to slightly different results. If apply-
ing the same threshold for CTV-sv as for the other 
two targets, i.e. twice the volume of the planning 
CTV, every CTV-sv would have been selected as 
large movers. Of note is that with the current applied 
thresholds the majority of the patients considered 
small movers were patients requiring margins less or 
equal to 3 mm in a previous study [8].

The strength of our method for adaptations is 
that the statistical inter- and extrapolation in the 
multidimensional space described by the target 
shapes is not limited to rigid motion. Another 
advantage is that a large number of iso-coverage 
levels can be derived through these inter- and 
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iso-coverage levels and assessing the trade-off 
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