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Cancer cell differentiation heterogeneity and aggressive behavior in
solid tumors
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1Department of Laboratory Medicine, Center for Molecular Pathology, Skåne University Hospital Malmö, Malmö,
Sweden, and 2CREATE Health, Lund University, Malmö, Sweden

Abstract
The differentiation stage of tumors is a central aspect in the histopathological classification of solid malignancies. The
differentiation stage is strongly associated with tumor behavior, and generally an immature tumor is more aggressive than
the more differentiated counterpart. While this is common knowledge in surgical pathology, the contribution of
differentiation-related gene expression and functions to tumor behavior is often overlooked in the experimental, tumor
biological setting. The mechanisms by which tumor cell differentiation stages are perturbed or affected are poorly explored
but have recently come into focus with the introduction.of the tumor stem cell concept. While developmental biologists
view the differentiation as a unidirectional event, pathologists and tumor biologists have introduced the concept of
dedifferentiation to explain phenotypic changes occurring in solid tumors. In this review we discuss the impact of the tumor
cell differentiation stage as used in surgical pathology. We further discuss knowledge gained from exploring the molecular
basis of the differentiation and dedifferentiation processes in neuroblastoma and breast cancer, two tumor forms where
the tumor cell differentiation concept is used in the clinical diagnostic work and where the tumor stem cell theory has been
applied.
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Introduction

The biological meaning of the term differentiation
denotes the developmental process whereby cells grad-
ually acquire the capacity for a more specialized func-
tion by change of phenotype. While developmental
biologists generally view this process as unidirectional,
observations in the context of cancer show that the
differentiation process can reverse and that cells can
dedifferentiate. Despite the fact that classical tumor
diagnostics based on surgical pathology and histology
for decades have used tumor cell differentiation status
as one important aspect to score, evaluate, and com-
municate tumor aggressiveness, overall experimental
tumor biology has over the years not focused on the

differentiation processes, but rather studied molecular
pathways leading to growth, migration, and cell death.
However, the rapid and recent development of stem
cell as well as tumor stem cell research have galvanized
the study of the differentiation processes in cancer,
which has provided insights into the cellular and
molecular biological underpinnings of cancer-driven
mechanisms leading to changes in the degree of cellular
differentiation or dedifferentiation. In this contribution
we discuss the impact of the tumor cell differentiation
stage on tumor behavior and the use of this important
concept in surgical pathology. We further summarize
knowledge gained from exploring the differentiation
and dedifferentiation processes in two tumor forms,
neuroblastoma and breast cancer.
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Differentiation as a prognostic parameter in
surgical pathology

In the realm of surgical pathology, the concept of
cellular differentiation is made very concrete although
used from a different angle and with a somewhat
different content than its usage in developmental
biology. Apart from performing the obvious task of
ruling out/determining whether a tumor is malignant
or benign, the pathologist also most often evaluates
malignancies aiming to assess their degree of differ-
entiation, implying that neoplastic cells have the
potential to slide back along the line of differentiation.
The result has prognostic implications where, as a
rule, a high degree of differentiation purports a better
prognosis than a low degree. Using morphological
criteria, the degree of resemblance between the neo-
plasia and its tissue of origin is gauged. A high degree
of differentiation means that the neoplasia is morpho-
logically similar to the native organ, forming neoplas-
tic organoid structures, whereas the opposite is true
for a low stage of differentiation, where cells gradually
lose the capacity for structural organization and start
to display reduced cohesiveness and where the term
anaplasia denotes tumor morphology where all sim-
ilarity with the origin has been lost.
The results from evaluating the degree of differ-

entiation are often presented using a two- or three-
tiered scale as exemplified by the common skin
malignancy, squamous cell carcinoma (SCC). If a
case of SCC grows in an outward (verrucous) fash-
ion, still maintains keratin-forming capacity, has
cells with ample cytoplasm, only slight nuclear aty-
pia, and only few mitotic figures, it is regarded as
highly differentiated. This means that no signs of
invasion below the basal membrane are seen and
metastatic disease is rare. On the other side of the
scale is the SCC of low differentiation, where cells
grow in sheets and with no signs of keratin formation.
In these cases the mitotic index is often high, and
occasionally immunohistochemistry has to be used
to conclude that this cancer indeed is derived from
the squamous epithelium. Biologically, these poorly
differentiated cancers often invade deeply through
the dermis and have a bad prognosis with a propen-
sity for lymph node metastasis. In between these
poles are the intermediately differentiated cases of
SCC.
Another pertinent example of how differentiation

staging is used in modern surgical pathology is the
Gleason scoring system developed for prostate can-
cer. Neoplastic prostate glands are here judged for
their capacity to form glandular structures. Grades
1 and 2 are similar to native glands, whereas
grade 3 demonstrates glands of reduced diameter

growing as separate units in the prostatic tissue, still
respecting other glands, malignant as well as benign.
Grade 4 heralds that the malignant glands start to
coalesce and fuse, whereas grade 5 show malignant
cells growing either in sheets or as single cell units,
totally devoid of gland-forming capacity. To arrive at
the Gleason score, the grade of the most commonly
seen cancer (e.g. 3) is added to that of the minority
pattern (e.g. 4), which gives a Gleason score of 7. In
this case a composite score based on the degree of
dedifferentiation is used, which has contributed sig-
nificantly to the prognostic power of the Gleason
grading system.
The morphological correlates of dedifferentiation

have been known to pathologists for over a century,
but an explanation of the mechanistic factors behind
this process has been lacking and unexplored until
recent times when the armamentarium of cellular
and molecular tumor biology has been deployed to
study this phenomenon. A process of interest in this
context is the epithelial to mesenchymal transition
(EMT). This term describes how epithelial cells
phenotypically transdifferentiate towards a more mes-
enchymal/fibroblastoid/spindle-shaped cell, simulta-
neously gaining increased capacity for invasiveness
and motility. An important question in this context is
to what degree EMT equates to dedifferentiation.
Addressing this issue, it is important to remember
that, by definition, carcinomas develop from epithelial
cells. Epithelial cells, however, are not defined at a
cellular but at an architectural level, where epithelial
cells form multidimensional cohesive cellular sheets
of varying thickness resting upon the basal lamina,
resulting functionally in immobile cells. The mesen-
chymal cell, on the other hand, is defined at a cellular
level, being spindle-shaped, bipolar, and motile.
These cellular categories are the two prototypic cells
of chordates (1) from embryogenesis and onwards.
Actually, the co-ordinated actions of these dual cell
types form the very basis for development of
higher life forms, above the level of amphioxi, under-
scoring their fundamental developmental importance.
With this definition in mind the terms dedifferentia-
tion and EMT show a considerable degree of con-
ceptual overlap. Although implicated during invasion,
intravasation, and metastasis, clear-cut examples of
clinically relevant EMT in cancers have been hard to
demonstrate, even if attempts have been made (2).
However, as pointed out, dedifferentiated tumors
indeed have a considerably worse prognosis, and
this category is more often found to invade vascular
and neural structures and transgress histological
boundaries such as organ capsules, which micro-
scopically recapitulates the in vitro data on cells
performing EMT.
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Neuroblastoma and tumor cell differentiation

There are few tumor forms that present such a tight
link between clinical behavior and tumor cell differ-
entiation stage as the childhood cancer neuroblas-
toma. Being derived from sympathetic nervous
system precursor cells or immature neuroblasts, neu-
roblastoma cells are arrested at varying stages of
differentiation, and, based on histopathology and
degree of morphological differentiation, three tumor
variants have been defined: 1) the benign ganglio-
neuromas exclusively containing ganglion-like cells
and stroma, 2) ganglioneuroblastomas containing
neuroblast-like immature cells with small nuclei
and scant cytoplasms intermixed with a smaller or
larger proportion of more differentiated tumor cells
with larger nucleus and cytoplasm, and 3) neuroblas-
toma proper with neuroblast-like cells and lacking
tumor cells that show apparent signs of morphological
ganglionic differentiation. More intriguing, neuro-
blastomas show one of the highest rates of spontane-
ous differentiation, a phenomenon first reported in
1927 by Cushing and Wolbach who described a child
with a sympaticoblastoma (later termed neuroblas-
toma) that spontaneously developed into a more
differentiated, non-aggressive tumor with a differen-
tiated sympathetic phenotype (3). At the molecular
level, the association between high expression of sym-
pathetic ganglionic marker genes and favorable dis-
ease was established 80 years later based on global
gene expression analyses (4). Through the pioneering
work by June Biedler, Robert Seeger, and others,
neuroblastoma was one of the first human tumors
to be established in culture, and some of these cell
lines were shown to have retained the capacity to
differentiate along a ganglionic lineage in vitro in
response to external stimuli such as phorbol esters
and retinoic acid (5,6). These findings suggested that
aggressive neuroblastomas might become treatable by
inducing a differentiation response as part of the
treatment protocol. Today 13-cis-retinoic acid at
pharmacological levels is used as adjuvant treatment
following myeloablative therapy; whether the
observed clinical effects are related to retinoic acid-
induced changes in the stage of tumor cell differen-
tiation has not been established.

Neuroblastoma and phenotypic heterogeneity

In a subset of neuroblastomas, tumor cells are orga-
nized in lobular structures with zones of necrotic cells
in the lobule center (7). In these lobules a neuronal-
to-neuroendocrine lineage conversion occurs with the
neuroendocrine cells located adjacent to the necrosis
(8). The sympathetic nervous system lineage markers

used in these studies could not distinguish between
sympathetic paraganglionic and sympathetic SIF
(small intensely fluorescent) phenotypes. Hence,
the exact nature of the neuroendocrine cells detected
in lobular neuroblastomas has not been established,
although the adrenal chromaffin marker gene PNMT
is not expressed, ruling out a neuroblastoma-to-
pheochromocytoma conversion pathway. These old
data exemplify the frequently occurring intra-tumoral
phenotypic heterogeneity in solid cancers and do
suggest that such heterogeneity is not exclusively a
result of mosaicism of genetic aberrations. Our
data further imply the existence of intra-tumoral
mechanisms regulating the differentiation stage of
tumor cells.

Hypoxia promotes an immature, stem
cell-like neuroblastoma phenotype

Concurrently with our report that peri-necrotic neu-
roblastoma cells differ in phenotype compared to cells
located closer to the fibrovascular stroma, the corre-
lation between tumor hypoxia and aggressive disease
was demonstrated (9), and the molecular basis for
cellular adaptation to hypoxia began to be resolved.
Semenza and co-workers identified hypoxia inducible
factor HIF-1 (10), which together with HIF-2 is the
central transcription factor governing cellular adap-
tation to hypoxia (11). These dimeric transcription
factors have a b-subunit (also called ARNT) in com-
mon and an oxygen-sensitive a-subunit unique for
HIF-1 and HIF-2, respectively. At hypoxia the
a-subunits become stabilized, transported into the
nucleus to dimerize with ARNT, and by additional
mechanisms activated to induce the transcription of a
number of hypoxia-driven genes (12). Based on the
potential impact by which the HIF transcription fac-
tors can affect the tumor cell phenotype, we asked if
hypoxic cells of established neuroblastoma cell lines
gained a neuroendocrine phenotype similar to that of
peri-necrotic, lobular, neuroblastoma cells. As
reported, none of the tested cell lines showed a
hypoxia-induced neuronal-to-neuroendocrine lineage
shift, but instead hypoxia promoted an immature,
neural crest-like phenotype (13,14). As classical neu-
roblastoma cell lines are all derived from high-stage,
most often MYCN-amplified tumors, and not tumors
of the lobular type described above, our current
hypothesis is that we did not use the adequate cells
for testing in vitro the capacity of lobular neuroblas-
toma cells to convert into a neuroendocrine cell under
hypoxic conditions. The important outcome of these
experiments was the observation that hypoxia can
dedifferentiate tumor cells, a finding now corrobo-
rated in many different tumor forms (15), including
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breast cancer as described below. Our observation
provides one mechanism behind phenotypic hetero-
geneity in solid tumors and, importantly, highlights
how hypoxia can contribute to the aggressive behavior
of tumors with an overall low grade of oxygenation.

HIF-2a-defined pseudohypoxic phenotype and
tumor aggressiveness in neuroblastoma

According to well-established models, both HIF-1a
and HIF-2a subunits become degraded via the
proteasomes’ conditions of proper oxygenation
(16). However, in clinical samples we found that
HIF-2a but not HIF-1a protein was highly expressed
in a small subset of neuroblastoma cells close to blood
vessels (17-19). In cell lines we could establish that
HIF-2 was active at a subphysiological level of
oxygenation (5% oxygen) and transcribing known
hypoxia-driven genes such as VEGF. Importantly,
presence of tumor cells with strong immunohisto-
chemical staining for HIF-2a correlates to high
clinical neuroblastoma stage and unfavorable out-
come (17). A closer examination of the HIF-2a-
positive, peri-vascular cells revealed that they are
immature and have a neural crest-like phenotype
(18). They further express VEGF, and we specu-
late that this subset of tumor cells actively attracts
vascular endothelial cells. Glioma tumor stem/tumor-
initiating cells as defined functionally are immature,
have neural stem cell properties, and express high
HIF-2a protein levels (20). Like the strongly HIF-2a
and VEGF-positive neuroblastoma cells, glioma stem
cells are located in a peri-vascular niche and express
VEGF (20). Thus, these two neutrally derived tumors
contain subsets of cells that are immature, and their
presence is associated with an aggressive, unfavorable
disease. HIF-2 appears to be involved in keeping the
stemness of both neuroblastoma and glioma cells,
and, as discussed below, HIF-2a expression in breast
cancer is also associated to unfavorable disease, sug-
gesting HIF-2a as a potential treatment target in these
tumor forms. As shown in neuroblastoma, by down-
regulating HIF-2a in stem cell-like cells, sympathetic
neuronal differentiation can be induced (21), and we
speculate that HIF-2 inhibition could be a strategy to
push immature stem cell-like cells into a more differ-
entiated, bulk-like cell population that can be treated
by established treatment protocols.

Breast cancer and tumor cell differentiation

Breast cancer is an additional tumor type where
impaired development is an important component
of the malignant process and where the tumor cell
differentiation stage is used in histopathological

tumor grading. The Nottingham grading system,
widely employed for diagnosis and prognosis of breast
tumors, is based on three parameters: extent of tubule
formation, mitosis frequency, and nuclear pleomor-
phism, where at least the first and last elements are
related to differentiation stage. Tubule formation
requires presence of differentiated polarized epithelial
cells and that these cells orientate in relation to
adjacent cells. Thus, the capacity to form tubules
is indicative of the differentiation stage of a group
of breast cancer cells. In breast cancers cells are
unable to distinguish between apical and basal surface
and organize themselves into tubule-like organoid
structures, have a low stage of differentiation, and
receive a high score in the Nottingham grading
system. Increased nuclear-to-cytoplasmic ratio is
also a marker of low differentiation, and when it is
associated with variation in nuclear size between
cancer cells the tumor gets a high score also in this
element of the Nottingham grading system. A high
Nottingham score (8–9, or grade III) is associated
with poor prognosis and progressing disease. The
relation between differentiation stage and prognosis
in breast cancer implies that the understanding of
processes of cancer initiation and progression should
be paralleled by insight into mechanisms of normal
breast development and function.
The tissue origin in breast cancer, the mammary

gland, is continuously in a developmental phase in
fertile women. Puberty and pregnancy are phases of
intense epithelial cell growth, migration, and differ-
entiation. The life cycle of the mammary gland in
addition holds phases of epithelial regression and
tissue remodeling, i.e. the dramatic involution after
lactation and tissue regression after menopause. The
involution process involves extensive cell death in the
epithelial compartment, intense remodeling of the
stromal compartment, and infiltration of inflamma-
tory cells. In this apparently chaotic environment the
mammary epithelial tissue stem cells must be pre-
served to ensure rebuilding of the functional gland in
future pregnancies. All these processes of the mam-
mary gland functional cycle, proliferation, differenti-
ation, and regression also occur in each monthly
estrous cycle but to a lesser extent. There is a strong
correlation between the total number of estrous cycles
during lifetime (depending on early menarche, late
menopause, and number of child-births) and the risk
of breast cancer, implying that stem cell activation
and differentiation processes are linked to breast
tumorigenesis (22).
In breast ductal carcinoma in situ (DCIS) with

comedo lesions, layers of transformed epithelial cells
fill up the ductal space and due to intra-lesional
hypoxia a central necrotic core arises (Figure 1A).
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Cell layers close to the central necrosis are hypoxic
and have increasing protein levels of e.g. HIF-1. We
have reported that the breast cancer cells close to the
necrotic core have a less differentiated phenotype as
assessed by histopathological criteria (23). The hyp-
oxic cells have increased nuclear-to-cytoplasmic ratio
and decreased expression of markers of differentia-
tion, including estrogen receptor (ER) in ER-positive
lesions. Furthermore, small duct-like structures fre-
quently form within DCIS lesions and represent
transformed epithelial cells striving to organize them-
selves into polarized epithelial structures, structures
that are rarely encountered in the hypoxic peri-
necrotic regions of the DCIS lesions. Thus, intra-
lesional hypoxia has direct bearing on two of the
elements of the Nottingham grading system, nuclear
phenotype and tubule formation. Our hypothesis
is that the hypoxic conditions lead to a less differen-
tiated tumor cell with lost ability to form organized
and polarized structures. In support of this hypo-
thesis, cells of established human breast cancer cell
lines cultured at hypoxic conditions showed down-
regulated expression of ER and up-regulation of
CK19, indicating that, both in vitro and in vivo,
hypoxic conditions promote a less differentiated
breast cancer phenotype (23).
DCIS is an instance of a typical carcinoma in situ

lesion where the basal membrane has not been
breached, meaning that the cancer is non-invasive.
Initially regarded as a fairly homogeneous disease
divided into non-comedo versus comedo type,
DCIS is now seen as a multi-faceted entity where
the degree of differentiation within the DCIS lesion
has a large impact on the outcome. Cases displaying

low differentiation most often progress to invasive
carcinoma, whereas cases of high differentiation are
less likely to do so. This underscores the importance
of assessing differentiation also in pre-invasive can-
cers. As a whole, DCIS may be seen as an interme-
diate step in the malignification process of tumors,
and the typical hallmark trait of low differentiation in
this form of neoplasia is the presence of comedo-
type necrosis. This means that the cancer tissue has
a necrotic and hypoxic center. This implies that
hypoxia might contribute to the conversion of
DCIS cells into invading tumor cells. One question
we have addressed is whether the observed hypoxic
impairment of differentiation in DCIS lesions is
restricted to cancer cells. A related question is
whether hypoxia can arrest normal breast epithelial
cells at an immature differentiation stage and by
doing so contribute to onset of tumorigenesis. We
have studied the non-malignant immortalized mam-
mary epithelial MCF-10A cells in 3D cultures where
these cells form mammary acini with polarized rim
cells and evacuated lumen. Hypoxia impaired both
polarization and lumen formation as demonstrated in
MCF-10A cells (Figure 1B and C) (Vaapil et al.,
unpublished paper, 25). Furthermore, a fraction of
hypoxic MCF-10A cells remained in cell cycle, while
the vast majority of the normoxic cells entered a
differentiated post-mitotic state. Still the hypoxic
structures were smaller, which we could attribute
to increased apoptosis. We conclude that hypoxia
confers a cancer-like phenotype to the mammary
epithelial cells.
It is nowadays well established that intra-tumor

hypoxia correlates to a worse prognosis in many

A B C21% 1%DCIS

Figure 1. A: Ductal carcinoma in situ of the breast, the comedo form, with several cell layers of epithelial cells surrounding a central necrotic
area. The inner cell layers, adjacent to the necrosis, show low differentiation with unorganized structures and increased nucleus-to-cytoplasm
ratio (scale bar: 500 mm). B: Non-malignant mammary epithelial cells cultured in a three-dimensional differentiation-inducing assay. After
21 days of culture at normoxia (21% O2), the mammary epithelial cells (MCF-10A) differentiate into growth-arrested, organized acini
structures with polarized cells surrounding a hollow lumen, resembling the in vivo mammary gland appearance. The differentiated mammary
cells have a polarized expression pattern of proteins, here laminin V (green), and small compact nuclei (blue, actin in red) in a palisade
structure. C: At hypoxia (1%O2) theMCF-10Amammary epithelial cells fail to arrange into organized structures and appear as cell aggregates
without lumen or polarized protein localization. The hypoxic cells have larger nuclei, remain proliferative, and express markers of
undifferentiated cell stage—characteristics often seen in breast carcinoma (scale bar: 20 mm).
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tumor types including breast cancer (9). Increased
tumor protein levels of HIF-1 and HIF-2, respec-
tively, are also linked to poor patient outcome in
breast cancer (reviewed in (26)). In particular, we
have shown that HIF-2 protein accumulation corre-
lates to worse breast cancer specific survival and
distant metastasis (26). Formation of distant metas-
tases has been attributed to the presence of cancer
stem or tumor-initiating cells, and we speculate that
HIF-2 is a marker of such cell populations. The
nature of the breast cancer stem cell is still far from
established; the CD44+/CD24- phenotype reported
by Al-Hajj et al. (27) does not seem to be the exclusive
breast tumor-initiating cell totem. It has not been
established that breast tumor-initiating cells have
breast stem cell phenotype, and it has lately been
implied that stem cell-like cancer cells can arise
from more differentiated cells, e.g. through the pro-
cess of EMT (28). Hypoxia has been shown to induce
EMT in tumors (29) and may be one process wherein
breast cancer cells with stem cell properties arise. This
general differentiation-counteracting effect of hypoxia
has direct bearing on tumor aggressiveness, as tumors
with immature features are more aggressive than the
corresponding differentiated tumors.

Tumor cell differentiation/
dedifferentiation pathways in relation to
normal development

Tumor cells recapitulate morphology and central
gene expression profiles of non-malignant cells, which
is the basis for histopathological and immunohisto-
chemical classification of solid tumors. The differen-
tiation traits, apparent or delicate, together with
location of the primary tumor, determine the histo-
pathological diagnosis. Both at the morphological and

molecular levels, the degree or stage of differentiation
of the tumor cells is estimated, and depending on the
outcome of these estimations tumors are often viewed
as being arrested at early or late stages of differenti-
ation. However, whether a given tumor cell differen-
tiation stage reflects a distinct stage during normal
development has to our knowledge not been studied
in any detail. Based on our own neuroblastoma data,
we would claim that this is not the case. While
normally developing human sympathetic neuro-
blasts appear to express a given set of genes in a
co-ordinated and repeated fashion between embryos
(30), only a subset of the same set of genes is usually
expressed in a given tumor, and this subset can differ
from one tumor to another and between tumor cells
within a tumor as exemplified by the neuron-specific
enolase (ENO2) expression (in neuroblastoma and
ganglioma, the differentiated form of neuroblastoma)
(Figure 2) (31). Thus, we would like to claim
that differentiation pathways are disorganized in
neuroblastoma and that this aberrant differentiation
is a tumor characteristic. We hypothesize that this
might also be the case in many other tumor forms.
Similarly, when tumor cells dedifferentiate, do

they then play back and recapitulate in reverse the
developmental stages that once formed them? And
when for instance hypoxic cells develop stem cell-like
phenotypes, do they indeed become stem cells?
These are central questions as they relate to the
concept of tumor stem cells or tumor-initiating cells.
Without formal proofs and experimental backup, we
assume that the stem cell phenotype of tumor cells
only mimics that of the cognate stem cell. However,
as demonstrated in glioma, the glioma stem cells
have the capacity of neural stem cells to give rise to
distinct non-glial differentiation lineages (32,33).
Thus, while the transcriptome of tumor stem cells

A B

Figure 2. Human neuroblastoma specimens stained for neuron-specific enolase by immunohistochemistry. Sections of a neuroblastoma bone-
marrow metastasis (A) and a ganglioneuroma specimen (B), respectively, stained for neuron-specific enolase (ENO2) expression. Note that
tumor cells differ considerably in neuron-specific enolase levels, both at a more immature (panel A) and at a differentiated (panel B) stage.
Arrows show enolase-positive and arrow-heads show enolase-negative tumor cells.
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may not fully match that of the cognate stem cells,
pluripotent tumor cells with stem cell phenotype and
capacity probably contribute significantly to the
phenotypic heterogeneity seen in solid cancers where
the EMT process perhaps is the most extensively
studied.

Acknowledgements

This work was supported by the Swedish Cancer
Society, the Children’s Cancer Foundation of
Sweden, the Swedish Research Council, the SSF
Strategic Center for Translational Cancer Research—
CREATE Health, BioCARE, a Strategic Research
Program at Lund University, Hans von Kantzows
Stiftelse, Gyllenstiernska Krapperup Foundation,
Gunnar Nilsson’s Cancer Foundation, Jeanssons
Stiftelser, Magnus Bergvalls Stiftelse, The Royal
Physiographic Society, and the research funds of
Malmö University Hospital.

Declaration of interest: The authors report no
conflicts of interest. The authors alone are responsible
for the content and writing of the paper.

References

1. Hay ED. Themesenchymal cell, its role in the embryo, and the
remarkable signaling mechanisms that create it. Dev Dyn.
2005;233:706–20.

2. Boström A-K, Möller C, Nilsson E, Elfving P, Axelson H,
Johansson ME. Sarcomatoid renal cell carcinoma may denote
a biological example of epithelial to mesenchymal transition.
Hum Pathol. 2011.

3. Cushing H, Wolbach SB. The transformation of a malignant
paravertebral sympathicoblastoma into a benign ganglioneur-
oma. Am J Pathol. 1927;3(3):203–216.

4. Fredlund E, Ringner M, Maris JM, Påhlman S. High Myc
pathway activity and low stage of neuronal differentiation
associate with poor outcome in neuroblastoma. Proc Natl
Acad Sci USA. 2008;105:14094–9.

5. Påhlman S, Odelstad L, Larsson E, Grotte G, Nilsson K.
Phenotypic changes of human neuroblastoma cells in culture
induced by 12-O-tetradecanoyl-phorbol-13-acetate. Int J
Cancer. 1981;28:583–9.

6. Sidell N. Retinoic acid-induced growth inhibition and mor-
phologic differentiation of human neuroblastoma cells in vitro.
J Natl Cancer Inst. 1982;68:589–96.

7. Hedborg F, Ohlsson R, Sandstedt B, Grimelius L,
Hoehner JC, Påhlman S. IGF2 expression is a marker for
paraganglionic/SIF cell differentiation in neuroblastoma. Am J
Pathol. 1995;146:833–47.

8. Gestblom C, Hoehner JC, Hedborg F, Sandstedt B,
Påhlman S. In vivo spontaneous neuronal to neuroendocrine
lineage conversion in a subset of neuroblastomas. Am J Pathol.
1997;150:107–17.

9. Höckel M, Vaupel P. Tumor hypoxia: Definitions and current
clinical, biologic, and molecular aspects. J Natl Cancer Inst.
2001;93:266–76.

10. Semenza GL, Roth PH, Fang HM,WangGL. Transcriptional
regulation of genes encoding glycolytic enzymes by hypoxia-
inducible factor 1. J Biol Chem. 1994;269:23757–63.

11. Semenza GL. Defining the role of hypoxia-inducible factor
1 in cancer biology and therapeutics. Oncogene. 2010;29:
625–34.

12. Löfstedt T, Fredlund E, Holmquist-Mengelbier L, Pietras A,
Ovenberger M, Poellinger L, et al. Hypoxia inducible
factor-2alpha in cancer. Cell Cycle. 2007;6:919–26.

13. Jögi A, Persson P, Grynfeld A, Påhlman S, Axelson H. Mod-
ulation of basic helix-loop-helix transcription complex forma-
tion by Id proteins during neuronal differentiation. J Biol
Chem. 2002;277:9118–26.

14. Jögi A, Vallon-Christersson J, Holmquist L, Axelson H,
Borg A, Påhlman S. Human neuroblastoma cells exposed to
hypoxia: induction of genes associated with growth, survival,
and aggressive behavior. Exp Cell Res. 2004;295:469–87.

15. Pietras A, Johnsson AS, Påhlman S. The HIF-2alpha-driven
pseudo-hypoxic phenotype in tumor aggressiveness, differen-
tiation, and vascularization. Curr Top Microbiol Immunol.
2010;345:1–20.

16. Kaelin WG Jr, Ratcliffe PJ. Oxygen sensing by metazoans: the
central role of the HIF hydroxylase pathway. Mol Cell. 2008;
30:393–402.

17. Holmquist-Mengelbier L, Fredlund E, Löfstedt T,
Noguera R, Navarro S, Nilsson H, et al. Recruitment of
HIF-1 alpha and HIF-2 alpha to common target genes is
differentially regulated in neuroblastoma: HIF-2 alpha pro-
motes an aggressive phenotype. Cancer Cell. 2006;10:413–23.

18. Pietras A, Gisselsson D, Øra I, Noguera R, Beckman S,
Navarro S, et al. High levels of HIF-2alpha highlight an
immature neural crest-like neuroblastoma cell cohort located
in a perivascular niche. J Pathol. 2008;214:482–8.

19. Noguera R, Fredlund E, Piqueras M, Pietras A, Beckman S,
Navarro S, et al. HIF-1alpha and HIF-2alpha are differentially
regulated in vivo in neuroblastoma: high HIF-1alpha corre-
lates negatively to advanced clinical stage and tumor vascu-
larization. Clin Cancer Res. 2009;15:7130–6.

20. Li Z, Bao S,WuQ,WangH, Eyler C, Sathornsumetee S, et al.
Hypoxia-inducible factors regulate tumorigenic capacity of
glioma stem cells. Cancer Cell. 2009;15:501–13.

21. Pietras A, Hansford LM, Johnsson AS, Bridges E, Sjölund J,
Gisselsson D, et al. HIF-2alpha maintains an undifferentiated
state in neural crest-like human neuroblastoma tumor-
initiating cells. Proc Natl Acad Sci USA. 2009;106:16805–10.

22. Brisken C, Duss S. Stem cells and the stem cell niche in the
breast: an integrated hormonal and developmental perspec-
tive. Stem Cell Rev. 2007;3:147–56.

23. Helczynska K, Kronblad A, Jögi A, Nilsson E, Beckman S,
Landberg G, et al. Hypoxia promotes a dedifferentiated phe-
notype in ductal breast carcinoma in situ. Cancer Res. 2003;
63:1441–4.

24. Vaapil et al., unpublished paper.
25. Jögi A, Helczynska K, Vaapil M, Johansson E, Beckman S,

Larsson C, et al. Hypoxia impairs morphological and func-
tional differentiation of immortalized human breast epithelial
cells in 3D basement membrane matrix-culture. Abstract
#235. AACR Annual Conference. AACR 100th Annual
Meeting, Denver, Colorado, April 18-22. 2009.

26. Helczynska K, Larsson AM, Holmquist Mengelbier L,
Bridges E, Fredlund E, Borgquist S, et al. Hypoxia-inducible
factor-2alpha correlates to distant recurrence and poor out-
come in invasive breast cancer. Cancer Res. 2008;68:9212–20.

27. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ,
Clarke MF. Prospective identification of tumorigenic

Differentiation and cancer 223



breast cancer cells. Proc Natl Acad Sci USA. 2003;100:
3983–8.

28. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A,
Zhou AY, et al. The epithelial-mesenchymal transition
generates cells with properties of stem cells. Cell. 2008;133:
704–15.

29. Haase VH. Oxygen regulates epithelial-to-mesenchymal tran-
sition: insights into molecular mechanisms and relevance to
disease. Kidney Int. 2009;76:492–9.

30. Hoehner JC, Gestblom C, Hedborg F, Sandstedt B, Olsen L,
Påhlman S. A developmental model of neuroblastoma: dif-
ferentiating stroma-poor tumors’ progress along an extra-
adrenal chromaffin lineage. Lab Invest. 1996;75:659–75.

31. Odelstad L, Pahlman S, Nilsson K, Larsson E, Lackgren G,
Johansson KE, et al. Neuron-specific enolase in relation to
differentiation in human neuroblastoma. Brain Res. 1981;224:
69–82.

32. Piccirillo SG, Reynolds BA, Zanetti N, Lamorte G, Binda E,
Broggi G, et al. Bone morphogenetic proteins inhibit the
tumorigenic potential of human brain tumour-initiating cells.
Nature. 2006;444:761–5.

33. Lee J, Son MJ, Woolard K, Donin NM, Li A,
Cheng CH, et al. Epigenetic-mediated dysfunction of the
bone morphogenetic protein pathway inhibits differentia-
tion of glioblastoma-initiating cells. Cancer Cell. 2008;13:
69–80.

224 A. Jögi et al.


