
Full Terms & Conditions of access and use can be found at
https://informahealthcare.com/action/journalInformation?journalCode=ibty20

Critical Reviews in Biotechnology

ISSN: 0738-8551 (Print) 1549-7801 (Online) Journal homepage: informahealthcare.com/journals/ibty20

Potential for green microalgae to produce
hydrogen, pharmaceuticals and other high value
products in a combined process

Kari Skjånes, Céline Rebours & Peter Lindblad

To cite this article: Kari Skjånes, Céline Rebours & Peter Lindblad (2013) Potential
for green microalgae to produce hydrogen, pharmaceuticals and other high value
products in a combined process, Critical Reviews in Biotechnology, 33:2, 172-215, DOI:
10.3109/07388551.2012.681625

To link to this article:  https://doi.org/10.3109/07388551.2012.681625

© 2013 The Author(s). Published by Taylor &
Francis.

Published online: 06 Jul 2012.

Submit your article to this journal 

Article views: 10574

View related articles 

Citing articles: 54 View citing articles 

https://informahealthcare.com/action/journalInformation?journalCode=ibty20
https://informahealthcare.com/journals/ibty20?src=pdf
https://informahealthcare.com/action/showCitFormats?doi=10.3109/07388551.2012.681625
https://doi.org/10.3109/07388551.2012.681625
https://informahealthcare.com/action/authorSubmission?journalCode=ibty20&show=instructions&src=pdf
https://informahealthcare.com/action/authorSubmission?journalCode=ibty20&show=instructions&src=pdf
https://informahealthcare.com/doi/mlt/10.3109/07388551.2012.681625?src=pdf
https://informahealthcare.com/doi/mlt/10.3109/07388551.2012.681625?src=pdf
https://informahealthcare.com/doi/citedby/10.3109/07388551.2012.681625?src=pdf
https://informahealthcare.com/doi/citedby/10.3109/07388551.2012.681625?src=pdf


172

Introduction

Use of algae
The concept of culturing microalgae in the labora-
tory was introduced by Warburg (1919), who cultured 
Chlorella for the purpose of photosynthesis research. The 
first attempts for mass culturing of algae were performed 
in 1950s, with Chlorella pilot plants in Massachusetts and 
Tokyo (Richmond and Soeder, 1986). In Southeast Asia 

algae culturing developed commercially at an early stage; 
in 1977 there were 30 Chlorella factories in Taiwan. Algae 
represent a highly diverse group of organisms, which are 
able to grow under a variety of different conditions. Algae 
are found at low and high temperatures, low and high 
light intensities, different pH, high salt concentration, 
in water bodies or in desert crusts, or in symbiosis with 
animals (Barsanti et al., 2008).
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Over the last decades, more attention has been paid 
to the possibilities of growing algae commercially, and 
several different fields within use of algal biomass have 
unfolded. Algae are presently produced and sold as 
health food all over the world. Algal biomass is commonly 
used for aquaculture feed, as well as for other animal 
feed. Extracts from algae can be used for production of 
cosmetics and many different pharmaceutical products 
(Apt and Behrens, 1999; Luiten et al., 2003; Yamaguchi, 
1997). The research on microalgal biotechnology has had 
a steady increase over the last decade (Plaza et al., 2009). 
During the same period, research has shown that the 
algae are able to produce fair amounts of the energy car-
rier hydrogen under sulfur (S) deprivation (Ghirardi et al., 
2000; Melis et al., 2000). In the process described below, 
hydrogen is, in principle, produced from solar energy 
by direct and indirect biophotolysis under anaerobic 
conditions. This mechanism for handling sulfur depriva-
tion prevents oxidative stress in the algae. It was proven 
already in 1948 that there were possibilities to manipulate 
the chemical composition of green microalgae by vary-
ing their different growth conditions (Spoehr and Milner, 
1949). Since then, it has been shown that applying differ-
ent forms of stress to the cells promote the production of 
secondary metabolites, some of which can have pharma-
ceutical and/or industrial value as thoroughly described 
in the following. Figure 1A shows the principle of a two-
step process of producing algal biomass with valuable 
metabolites. The algae in the first step are grown under 
optimal conditions for an efficient production of biomass, 
followed by a second step where stress factors are applied 
in order to induce production of the valuable metabolites.

Food
Microalgae have most likely been used as a human 
nutrient source since ancient times. The first known 
report about a food source made from blue-green algae 

(cyanobacteria) was published in 1520 by Hernán Cortés, 
describing findings from Lake Texcoco in Mexico. The 
Aztecs who lived there are assumed to have used tecuit-
latl, a cake made from Spirulina, as a major part of their 
diet. In Central Africa, the population around Lake Chad 
is still using dihé made from Spirulina as a food source, 
as they have done for probably hundreds of years (van 
Eykelenburg, 1980). The option of using algae as a food 
source today is dependent on many variables. Some 
requirements have to be fulfilled regarding, for example, 
content of protein and other nutrients, content of anti-
oxidants and other health-promoting agents, taste and 
odor, contents of toxic compounds and general safety of 
oral intake by humans. Currently algal biomass is sold as 
health food in many parts of the world, produced from 
only a limited number of species.

Aquaculture
Microalgae are at the base of the aquatic food chain and 
are, in general, highly acknowledged for their nutritional 
value (Brown et al., 1997). The first reports of culturing 
microalgae for use as feed in aquaculture were published 
a 100 years ago (Allen and Nelson, 1910) and, since then, 
the use of microalgae for this purpose has developed rap-
idly. Today, microalgae are widely used as one of the most 
important feed sources for different groups of commer-
cially important aquatic organisms in both freshwater 
and marine aquaculture (Duerr et al., 1998). Aquaculture 
is a growing industry, and the industry of cultivation of 
microalgae for this purpose is consequently increasing.

Secondary metabolites and stress
Green microalgae are known to contain a very high 
amount of nutrients, proteins in particular. Under opti-
mal growth, the relative content of the various nutrients is 
fairly similar among species (Hu, 2004). However, during 
sub-optimal conditions, this changes. When algae apply 
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stress reactions for handling more difficult environmen-
tal conditions, algal species use very different methods 
for managing the change in the environment. Depending 
on their ability to handle the various types of stress, the 
algae will produce different secondary metabolites in 
order to increase their chance of survival.

Metabolites are defined as, all organic compounds 
involved in the metabolism of living cells. Some metabo-
lites are not part of the primary metabolic processes of 
growth, reproduction or general maintenance of the 
cell systems, but are produced for use in secondary 
cell functions. These are called secondary metabolites, 
and are often produced as a reaction to environmental 
stress. Their function can in some cases be, to increase 
the chance of survival or maintain the growth rate under 
specific conditions, but in other cases their function is 
not known. Numerous secondary metabolites are likely 
to be present in all algae; however, most of these are of 
no known practical or commercial interest. In this study 
the term “secondary metabolite” refers to compounds 
that can potentially be of pharmaceutical and/or other 
industrial interest.

Screening living organisms to identify new compounds 
with biological activities is referred to as bioprospecting. 
Lately there has been a particular interest in searching for 
new compounds in marine organisms, since the potential 
for new discoveries in the marine environment is particu-
larly high (Hunt and Vincent, 2006). The identification of 
new compounds from marine organisms in general, from 
chemical structure to activity and function, has been 

extensively reviewed by Blunt and co-workers (Blunt  
et al., 2007, 2008, 2009; Blunt et al., 2003, 2004, 2005, 2006) 
and Mayer and Gustafson (2003, 2008). However, it has 
been found that in some cases the bioactive compounds 
identified from marine organisms originate from dietary 
intake of algae (Harrigan and Goetz, 2002; Proksch et al., 
2002). General considerations on the reality of a future 
for pharmaceutical products from marine organisms can 
be found in Glaser and Mayer, (2009).

Energy
Hydrogen is an energy carrier with unique properties, 
like extremely low density, high energy content and 
with water being the only by-product after combustion. 
Technology for use of hydrogen as an energy carrier has 
rapidly developed during the last decades (Momirlan 
and Veziroglu, 2002; Seymour et al., 2008; Stiller et al., 
2010). Currently all major car producers offer cars run-
ning on hydrogen as fuel. Gaffron and Rubin discov-
ered in 1942 that the green microalgae Scenedesmus 
was able to produce hydrogen gas (Gaffron and Rubin, 
1942), which opened up to a search for a way of using 
algae to convert solar energy into this useful energy 
carrier. Several methods for producing hydrogen from 
algae have been explored, as described in the Section 
“Hydrogen production”. Production of hydrogen is 
part of a survival mechanism used by the algae to cope 
with certain stress factors. Figures 1B and 1C illus-
trate a potential process where stress factors can be 
applied to induce production of hydrogen and valuable 

Figure 1.  Production of valuable metabolites from algae in commercial use today (A), compared to the proposed processes where stress 
factors are applied to induce both hydrogen production and production of valuable metabolites simultaneously (B), or in sequence (C).



Combined process using microalgae  175

© 2013 Informa Healthcare USA, Inc.�  

metabolites, either simultaneously or in sequence. 
Although a simultaneous production as shown in Figure 
1B would involve one less step compared to process 
Figure 1C, it is unlikely that this can reach the same pro-
duction efficiency, see discussion in Section “Summary 
and perspectives”.

Algae are also used as a source of biofuel such as bio-
diesel or bioethanol, and significant research has been 
performed over several years in order to make conversion 
of algal biomass to fuel a viable process. Several attempts 
have been made to produce algae for biofuel commer-
cially. The topic of biofuel production from green algae is 
previously examined thoroughly, however, this study will 
focus on the other uses of algae mentioned above, and 
will not discuss aspects of the field of biofuel from algae. 
Extensive discussions on the issue of biofuel from algae 
can be found (Hu et al., 2008b; Khan et al., 2009; Mata  
et al., 2010; Posten and Schaub, 2009; Schenk et al., 2008; 
Vasudevan and Briggs, 2008).

Species
Clearly, many different phyla of algae have been used 
historically for different purposes, and many different 
phyla are in practical use today. However, this paper 
will only cover possibilities for use of green microalgae, 
as defined by Lewis and McCourt, (2004). This is due to 
the focus of this study on hydrogen production. A sig-
nificantly higher number of green algae have the ability 
to produce hydrogen, compared to other types of algae 
(Boichenko and Hoffmann, 1994; Brand et al., 1989). 
Many species of green macroalgae also have potential 
use within some of the fields mentioned above. However, 
this study searches for species which are able to con-
tribute to several stages of an overall process, including 
hydrogen production. Microalgae are here defined as 
single celled algae, or colony forming algae which in 
general form small colonies that are individually not vis-
ible to the eye.

A combined multidisciplinary process for using solar 
energy to capture CO

2
 while producing hydrogen and 

different high value products has previously been pre-
sented (Skjånes et al., 2007). That paper summarizes, in 
an integrated manner, different technologies for use of 
algae, demonstrating the possibility of combining dif-
ferent areas of algae technology to produce hydrogen 
from solar energy and using the obtained algal biomass 
for various industrial applications, thus bringing added 
value to the hydrogen production processes. While the 
algae are cultivated under close-to-optimal conditions 
in a first stage, a second stage will apply stress by sulfur 
deprivation, which induces hydrogen production. After 
the hydrogen production phase, the microalgal biomass 
can be collected and used for different purposes: it can be 
used directly as health food for human consumption, as 
animal feed or in aquaculture. It is believed that in some 
cases after nutrient limitation, algal biomass may contain 
large amounts of valuable biomolecules, which can be 
extracted for pharmaceutical or industrial purposes. This 

concept is the starting point for the current study. A gen-
eral overview of a proposed process, where certain stress 
factors are applied to an algal culture in order to induce 
production of hydrogen and produce several products 
with high commercial value, is presented in Figure 2. 
The multidisciplinary process described in Skjånes et 
al. (2007) has some resemblances to the biorefinery 
approach to algal biofuel production; see for example 
Subhadra (2010).

In some cases, species have been selected as a result 
of their useful properties, such as growth rate or produc-
tivity of certain valuable metabolites. In other cases, the 
algal species have been selected since an already sig-
nificant amount of research and experience allow for a 
simpler and less complicated further development of the 
process.

Desired properties for algae to be used in this com-
bined process are to:

•	 produce hydrogen during stress conditions like for 
example nutrient deprivation,

Figure 2.  Overview of the combined process for production of 
hydrogen and bioactive metabolites. Green microalgae can be 
cultured under optimal growth conditions, followed by exposure 
to stress conditions (high light intensity, nutrient deprivation). The 
algal biomass can be harvested and used for different purposes, for 
example direct use as food supplement, aquaculture and animal 
fodders. Several valuable components can be extracted for the 
purpose of pharmaceutical industry, cosmetics or other types of 
industrial purposes.
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•	 produce high content of nutrients for health food/
animal feed purposes in a hydrogen production 
process,

•	 produce metabolites with pharmaceutical or other 
industrial interest,

•	 produce hydrogen and valuable metabolites either 
simultaneously or in sequence,

•	 have fast growth rates under optimal conditions.

Aim

The main aim of this review has been to present the 
possibilities for using green algae species for hydro-
gen production from solar energy combined with the 
potential for additional products of pharmaceutical or 
other industrial value. The starting point for the review 
is a multidisciplinary process where several different 
areas of algal technology is combined, as previously 
described in Skjånes et al. (2007). This review will sum-
marize stress factors and the algae’s ability for adaptation 
to stressful conditions, and the mechanisms that can be 
used to induce the production of valuable metabolites, 
which then will be linked to the stress factors that induce 
hydrogen production in green algae. The most important 
metabolites of potential commercial interest known to 
be produced in green algae will be described. Species 
that have a potential for production of certain valuable 
metabolites will be presented and correlated to species 
with the ability to produce hydrogen. Furthermore, the 
review will describe current commercial uses of algae for 
purposes such as health food and animal feed. In addi-
tion to the above mentioned issues, this review also aims 
at establishing a platform for selection of green algal spe-
cies for use in a future process whereby hydrogen pro-
duction from solar energy is combined with production 
of valuable metabolites, and/or with other commercial 
uses of the algal biomass.

Analysis of current knowledge, stress and 
adaptation mechanisms

Many algae have the ability to survive harsh environ-
mental conditions due to different adaptation strategies 
(Barsanti et al., 2008; Seckbach, 2007). Many mechanisms 
for adaptation lead to changes in the algae’s physiology, 
and as a consequence, the algae will produce different 
secondary metabolites as part of their adaptation strate-
gies. In order to explore the possibilities within use of the 
algae’s production of metabolites with valuable proper-
ties, it is important to elucidate how the algae react dur-
ing different forms of stress.

Light intensity
Algae can be found in areas where the light intensity 
can become very high, as for example in deserts, and in 
areas where the light intensities in addition vary con-
siderably during the year, as for example in the Arctic 
region. These conditions require the cells to develop 

defense mechanisms against damaging effects of irra-
diant stress (Barsanti et al., 2008). Photodamage of the 
photosynthetic systems is a continuous process that 
occurs during light conditions in all photosynthetic 
eukaryotes. There are several theories explaining the 
mechanisms involved, some of which are summarized 
by Nishiyama et al., 2006; Takahashi and Badger, 2011; 
Tyystjärvi, 2008.

High light intensity can cause strong damaging 
effects in the cell due to over-excitation of the photo-
chemical apparatus. When the solar energy absorbed 
by the antenna pigments exceeds the capacity of the 
photosynthetic system to process the energy, this will 
lead to generation of long lived excited triplet state 
chlorophyll which can interact with oxygen to cause 
the formation of reactive oxygen species (ROS). ROS 
can cause a great deal of damage to the cell; possible 
effects are briefly described in the Section “Antioxidants 
in general”. One of these effects from ROS is the inhi-
bition of protein synthesis. Although it was previously 
shown that the biosynthesis of the important protein D1 
is fairly constant both under low and high light inten-
sities (Vasilikiotis and Melis, 1994), it is now clear that 
light induced ROS cause inhibition of synthesis of the 
D1 protein in photosystem II (PSII) (Nishiyama et al., 
2011).

As mentioned above, there are several theories that 
have been proposed regarding the mechanisms for 
photodamage to PSII. The photodamage to PSII is most 
likely not caused by ROS, but rather as a direct con-
sequence of the exposure of the PSII complex to solar 
energy. Some of the most recent studies show that the 
primary reaction in the photodamage of PSII is caused 
by absorption of light by Mn containing oxygen evolving 
complex (OEC), which leads to formation of high valent 
Mn species by disruption of the Mn complex and release 
of Mn ions. This damage is particularly sensitive to UV 
wavelengths (Takahashi et al., 2010; Wei et al., 2011). 
Absorption of visible light leads to an oxidized chloro-
phyll in the PSII reaction center, and without a supply 
of electrons from the OEC, this strong oxidant can cause 
damage to the D1 protein (Nishiyama et al., 2011). The 
damaged D1 protein is removed by proteolytic degrada-
tion, and replaced with newly synthesized protein. The 
electron acceptor Q

A
 of PSII may, under high light, be 

converted to a stable reduced form, thereby inhibiting 
further electron transport to photosystem I (PSI). When 
PSII is closed in this way, excitation leads to increased 
damage to the reaction center (Melis, 1999). Some stud-
ies indicate that the evidence demonstrating that the 
Mn complex is the primary site for photoinhibition does 
not exclude the theory that the chlorophyll reaction 
center may in some cases be the primary site (Oguchi 
et al., 2011).

Photoinhibition increases when the cell is under 
stress conditions that limit growth, for example CO

2
 

limitation (Baroli and Melis, 1998), other nutrient limita-
tion (Grossman, 2000), pH-, salt- or temperature stress 
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(Morgan-Kiss et al., 2006; Neale and Melis, 1989). One 
of the reasons for this is that slower growth decreases an 
electron sink, thereby increasing the oxidative stress.

ROS are toxic products of the metabolism, but 
also have important roles in regulation and signaling 
(McCord, 2000). Nevertheless, photodamage in PSII is 
likely to occur under normal circumstances, and algal 
photosynthetic systems are dependent on efficient 
repair mechanisms to prevent lethal damage to the cells. 
Photoinhibition has been found to be strictly propor-
tional to light intensity (Tyystjärvi, 2008). Mechanisms 
for adaptation to high light intensities are essential for 
survival of algae during stressful irradiant conditions. 
Adaptation mechanisms that balance the energy input 
with the energy output through CO

2
 assimilation and 

other metabolic pathways are important. One method 
used by algae exposed to high light intensities involves 
reduction of the antenna size, thereby limiting the 
amount of energy absorbed. Some potential mecha-
nisms for dissipation of excess energy in photosynthesis 
have been summarized by Niyogi, 2000.

The primary defense system for radiant stress is 
considered to be the thermal dissipation mechanisms, 
a system that leads the excess energy away from the 
reaction centers and dissipates the energy as heat. 
This mechanism protects the photosystem at an early 
stage by preventing the formation of ROS, since the 
triplet state chlorophyll formed by the oxidative stress 
can be inactivated before ROS formation using the 
xanthophyll cycle. The triplet state chlorophyll can, in 
this mechanism, be deactivated by excitation energy 
transfer, directly or indirectly, to the light harvesting 
carotenoid violaxanthin, which is subsequently con-
verted to the energy quenching carotenoid zeaxanthin 
via the intermediate antheraxanthin. This is referred 
to as energy- and delta pH dependent quenching (qE), 
and is induced by the rapid decrease in lumen pH that 
occurs under high light electron transport. The xantho-
phyll cycle is a reversible reaction and when the light 
intensity conditions return to normal, the zeaxanthin 
is converted back to the light harvesting violaxanthin 
(Jahns et al., 2009). It was shown that, if Dunaliella was 
prevented from performing the qE quenching mecha-
nism, alternative quenching mechanisms were able 
to compensate and offer sufficient protection towards 
excess light (Thaipratum et al., 2009).

Oxidative damage can also occur as a consequence of 
uneven distribution of absorbed light between PSII and 
PSI. Reorganization of the antennae complexes leads to 
a redistribution of the excitation energy between PSII 
and PSI; this mechanism is referred to as state transition 
quenching (qT) and is regulated by the redox state of the 
PQ pool (Nield et al., 2004). Light harvesting proteins 
become phosphorylated under high irradiance condi-
tions in state 1, when the PQ pool is reduced. The pro-
teins then dissociate from PSII and migrate to the stromal 
lamellae, where they are incorporated into the peripheral 
antenna of PSI; the system is then converted to state 2. 

This method enables the algae to respond within minutes 
to changes in illumination.

Another possible form of quenching is called inactive 
PS II mediated quenching, where functional PSII centers 
are protected by inactivated reaction centers, which can 
dissipate the excess energy as heat. This mechanism has 
been observed in plants when less than 30% of the PSII 
reaction centers remain active (Chow et al., 2002).

The secondary defense system targets to quench the 
ROS before they cause damage to the photosystems. This 
is accomplished by producing antioxidants, a group of 
molecules thoroughly described in the Section “Analysis 
of current knowledge, potential products from algae”. 
All algae produce a number of antioxidants that are 
able to scavenge these free radicals, carotenoids being 
the most common. The carotenoids of the xanthophyll 
cycle described above have been shown in plants to have 
additional roles as antioxidants in the photo protection 
(Havaux et al., 2007).

Other reactions to prevent oxidative damage of the 
photosystems include releasing the reductive pressure 
of the electron transport chain. Excess electrons can be 
used by alternative electron sinks, for example to reduce 
oxygen (photorespiration) (Niyogi, 2000), or to use the 
assimilatory reaction of CO

2
 reduction resulting in stor-

age materials like starch and lipids (Hu, 2004; Richmond 
and Soeder, 1986; Rodolfi et al., 2009). As described in 
the Section “Nutrient limitation”, lack of nutrients like C, 
N, P or S prevents growth, thereby removing one of the 
photosynthesis electron sinks; a situation which can lead 
to increased photoinhibition also at low light intensities 
that would normally not cause damage. In some cases, 
reductive pressure can be released in the form of hydro-
gen gas.

Light stress can be used as a mechanism for induc-
ing the production of antioxidants such as carotenoids, 
vitamins, butylated hydroxytoluene (BHT), and others. 
These compounds can be extracted and used for a num-
ber of applications, as described in the Section “Analysis 
of current knowledge, potential products from algae”.

Temperature
Several green algae are able to tolerate very low tem-
peratures, examples are algae growing on snow and ice 
like Chlamydomonas nivalis and Chloromonas nivalis. 
However, for mesophilic algae, cold stress can have 
considerable inhibiting effects. One important factor 
causing cold stress is increased rigidity in the membrane 
systems, when temperature is reduced. Membrane fluid-
ity is essential for electron transport by mobile carriers; 
optimal photosynthetic function relies on the correct 
folding of the complex membrane associated proteins 
of the photosynthetic electron transport chain. Other 
effects caused by cold stress include decreased enzyme 
reaction rates, which can lead to problems like oxidative 
stress (Morgan-Kiss et al., 2006).

Psychrophilic strains have a number of adaptation 
mechanisms that help the organisms to tolerate the cold. 
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A necessary factor for algae to adapt to lower tempera-
ture is to maintain membrane fluidity by incorporating 
unsaturated fatty acids in the membranes. The amount 
of unsaturated lipids in the membranes and the extent 
of their unsaturation represent a major factor for avoid-
ing membrane rigidity. Other adaptation mechanisms 
include cold shock and antifreeze proteins that bind to 
ice crystals and prevent cell damage.

At suboptimal temperatures, enzymes will in general 
have decreased reaction rates. One mechanism for adapt-
ing to cold environment is to produce more enzymes to 
compensate for lower specific activity, as already shown 
for Ribulose-1,5-bisphosphate carboxylase (RuBisCO) in 
psychrophilic Chloromonas species (Devos et al., 1998). 
Psychrophilic algae can also have increased amounts of 
ATP synthase, which may compensate for the reduced 
molecular diffusion rates. Elevated contents of ATP 
in the cells have been observed, and may be related to 
decline of energy consumption (Napolitano and Shain, 
2005). Improved catalytic efficiencies can be obtained 
by increasing turnover numbers or by decreasing the 
substrate concentration required for optimal activity. 
Enzymes from psychrophiles may also exhibit a shift in 
optimal activity towards lower temperatures (Morgan-
Kiss et al., 2006).

Another mechanism for cold adaptation involves dif-
ferential energy partitioning. As absorption of light is an 
temperature independent process, it must be coordinated 
with the temperature dependent formation and utiliza-
tion of ATP and NADPH. Low temperature can cause an 
imbalance between the energy that is absorbed by the 
photosystems and the energy that is consumed by the 
metabolic processes due to decreased metabolic rates. 
The problem with excess energy absorbed can be solved 
by reducing the antenna size, thereby limiting the amount 
of energy absorbed, photosystem transition from state 1 to 
state 2, or dissipating excess energy non-photochemically 
as heat. The situation can also be solved by increasing the 
sink capacity, as for example increasing the amount of 
Calvin cycle enzymes (Huner et al., 1998). High amounts 
of potential energy sinks like starch, lipids and secondary 
carotenoids have been observed in psychrophilic green 
algae (Leya et al., 2009; Remias et al., 2009).

Algae living in certain cold ecosystems, in particular on 
snow and ice surfaces, are often exposed to high irradia-
tion, including high UV levels, which they need to handle 
in order to survive, see also the Section “Light intensity”. 
More than 100 species of green algae are identified as 
dominant organisms on snow, causing red, yellow, green 
and grey snow patches; Chlamydomonas nivalis being the 
best studied example (Morgan-Kiss et al., 2006). The red 
color in the algal cells is a result of increased astaxanthin 
production providing an UV-screening effect (Remias  
et al., 2005). This alga is also known to produce pheno-
lic compounds as a photo protective response (Duval  
et al., 2000). In addition to have antioxidant activity, these 
substances have been attributed to chemotherapeutic, 
antimicrobial and anticancer activities (Blunden, 1993).

Two psychrophilic strains of Chlorella showed produc-
tion of unsaturated fatty acids and antifreeze proteins. 
One strain showed an increased ability for adaptation 
when pre-cultivation temperatures were lower, while the 
other species showed the same reaction pattern during 
cold stress regardless of pre-cultivation temperature. This 
indicates that the adaptation mechanisms towards cold 
may vary widely between psychrophilic strains within 
the same genera (Hu et al., 2008a). Two different strains 
of Chlamydomonas raudensis, one psychrophilic and one 
mesophilic, showed different adaptive responses to irra-
diance stress at suboptimal temperatures (Szyszka et al., 
2007); confirming that psychrophilic reaction patterns 
are not species specific. Algae have a general tendency 
to survive temperatures below their optimum for growth 
better than temperatures above optimum (Ukeles, 1961). 
This is most likely because enzymes can be denatured 
and therefore irreversibly inactivated by heat, while low 
temperatures often cause only a reversible inhibition.

Thermotolerant green algae are highly uncommon; 
photosynthetic organisms in hot springs are usually dom-
inated by prokaryotes (Barsanti et al., 2008). However, 
some green algae have tolerance to temperatures up to 
42°C, like Chlorella sorokiniana (de-Bashan et al., 2008; 
Sakai et al., 1995). Mutants with higher saturation of 
chloroplast membrane lipids had a higher tolerance for 
higher temperature (Sato et al., 1996). Under elevated 
temperatures, a large increase in astaxanthin content 
has been detected in the mesophilic Haematococcus sp. 
(Tjahjono et al., 1994), and in Chlorococcum sp. a simi-
lar astaxanthin increase was shown to lead to a relative 
decrease of β-carotene content (Liu and Lee, 2000). This 
can be explained by temperature derived increase in 
oxidative stress, leading to increased need for secondary 
carotenoids, or temperature dependent enzymatic reac-
tions. Heat-shock response in Chlorella has been shown 
to involve cytochrome f in a programmed cell death pro-
cess (Zuppini et al., 2009).

Temperature induced stress responses can be used 
for production of useful metabolites such as unsaturated 
fatty acids, antifreeze proteins, astaxanthin and other 
antioxidants like phenols, which have showed medical 
effects.

Osmotic stress
Green microalgae are found in freshwater, brackish water 
and seawater, but also in highly saline environments; 
some species can tolerate a wide range of different salini-
ties (Chen and Jiang, 2009; Strizh et al., 2004). The most 
studied halophilic green algae are Dunaliella spp, which 
are widely distributed in high salinity environments 
(Hadi et al., 2008; Kaçka and Dönmez, 2008; Oren et al., 
2008).

Osmotic changes caused by for example variation in 
salinity can inflict hypo- or hyperosmotic stress on the 
cells by impact on the cellular water potential and loss/
uptake of ions through the cell membrane. Stress reac-
tions, as measured by decreased growth rates, can vary 
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considerably, but stress measured as survival rate often 
show that algae can survive salt stress over a much wider 
range of salinities than the case is for growth rates (Kirst, 
1989). A consequence of high salinity can for example be 
impaired electron transfer between antenna pigments, 
electron transfer on the water splitting side of PSII and 
impaired photo activated electron flow of PSI (Satoh et 
al., 1983). Mechanisms involved in osmotic acclimation 
include water flux, which is a result of most changes in 
salinity and, in some cases, can be a sufficient way of pre-
venting negative effects on the cell. Ion transport, which 
can be passive or active, leads to uptake or release of ions 
to adjust salt concentration inside the cells. Some spe-
cies will also produce vacuoles to sequester the excessive 
ions (Stoynova-Bakalova and Toncheva-Panova, 2003). 
The organisms can also produce one or several organic 
osmolytes that can be present in high concentrations 
without inhibiting enzymatic activities (Oren, 2007). This 
can sometimes be a more long-term adjustment strat-
egy as a response to large changes in salt concentration. 
One example of an organic osmolyte is glycerol, which is 
produced in large amounts in for example Dunaliella sp 
under salt stress (Hadi et al., 2008; Kaçka and Dönmez, 
2008). It has been hypothesized that marine strains are 
able to maintain the glycerol molecules within the cell, 
which allow them to have a higher internal concentration 
of this important osmolyte, thereby being able to toler-
ate higher external salt concentrations. In fresh water 
strains, glycerol can diffuse more easily across the cell 
membrane. In this case, glycerol will be produced at a 
stable rate to provide equilibrium and is continuously 
excreted (León and Galván, 1994), leading to a lower 
salinity tolerance of the cell. In some marine algae, like 
Chlamydomonas pulsatilla and Dunaliella salina, there 
is a correlation between glycerol synthesis and degrada-
tion of starch; this is seen in particular as a consequence 
of high salinity shock during light exposure (Goyal, 2007; 
Hellebust and Lin, 1989; Kaplan et al., 1980). A variety of 
other osmolytes such as mannitol, proline and sucrose 
are produced by halotolerant green algae (Oren, 2007). A 
summary of osmotic responses to changes of salinity can 
be found in Chen and Jiang, (2009). Strains with a high 
ability to adapt to variations in salt concentrations in 
the environment are able to increase their energy yield-
ing processes, which improve the ability to pump ions 
out of the cell and increase the tolerance to high salinity 
(Alyabyev et al., 2007).

Salinity tolerance and salinity optimum are strongly 
dependent on light and temperature conditions, in addi-
tion to nutrient limitation (Cho et al., 2007; Coesel et al., 
2008). Photoinhibition can for example increase under 
high salt concentrations (Neale and Melis, 1989). Salinity 
stress usually leads to a decrease in growth rate. In some 
cases, increased salinity can lead to an increase in metab-
olites like palmitic and oleic acids, carotenoids like lutein 
and β-carotene, as shown in Botryococcus braunii (Rao 
et al., 2007) or astaxanthin, as shown in Haematococcus 
(Orosa et al., 2001). These products will in this case 

function as an energy sink to relieve the reductive pres-
sure. Dunaliella spp. show an optimal production of 
β-carotene as a photo protective response under high salt 
concentrations (Ben-Amotz and Avron, 1983), as well as 
increased production of unsaturated fatty acids in micro-
somes (Azachi et al., 2002). High salinity tolerance is an 
advantage in commercial production since it can be used 
as a protection against contamination of other species.

Green algae are also found in desert crusts, for 
example Desmococcus olivaceus, Chlamydomonas 
sp, Chlorococcum humicola, Chlorella vulgaris, 
Palmellococcus miniatus, along with cyanobacteria, 
diatoms and euglenoids (Barsanti et al., 2008). These 
algae have high tolerance to dry conditions, high irradia-
tion and fluctuating temperatures. There is a strong link 
between desiccation and osmotic stress, as described 
above, and increased salinity has been used experimen-
tally to mimic effects of drying (Satoh et al., 1983).

Valuable metabolites that can be produced during 
osmotic stress include for example glycerol, carotenoids 
and unsaturated fatty acids, as mentioned above. These 
products have many applications and are described in 
the Section “Analysis of current knowledge, potential 
products from algae”.

pH
Green microalgae can be found in many different pH 
environments; a limited number of species are able to 
grow and photosynthesize under very low pH. The most 
studied species of green algae isolated from acidic envi-
ronments is Chlamydomonas acidophila. This acidophilic 
alga can grow at pH as low as 1.5, with an upper limit of pH 
7 (Gerloff-Elias et al., 2005). Growth rates in this organ-
ism under low pH are comparable with growth rates of 
mesophilic organisms under neutral pH, showing that 
the algae are well adapted to the acidic conditions and are 
not inhibited by low pH. There are several strategies for 
algae to handle an acidic environment. Both acidophilic 
and acidotolerant species are dependent on being able 
to maintain a close to neutral pH in the cytosol in order 
to prevent damage to intracellular systems (Gerloff-Elias 
et al., 2006). Maintaining a neutral internal pH when 
the external pH is low requires specific ATP driven H+ 
pumps, which is an energy demanding process. The H+ 
can be transported both into vacuoles and also out of the 
cells. Vacuolar proton pumps remove the H+ from the 
cytosol at a rate proportional with the H+ concentration. 
The plasma membrane, however, removes the protons at 
a constant rate, triggered by internal acidification, as has 
been found in the acidophilic green alga Eremosphaera 
viridis (Bethmann and Schönknecht, 2009). H+ influx 
into the vacuoles was compensated by cation release, 
while H+ efflux out of the cell was compensated by anion 
efflux. At very low pH, more than 50% of the synthesized 
ATP was in this case used for H+ pumping. One example 
of a mechanism applied to handle the increased energy 
demand has been suggested to be cyclic electron trans-
port around PSI that leads to increased proton potential 
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across the thylakoid membrane, which then is used for 
ATP production (Gerloff-Elias et al., 2005). However, 
the suggestion that there is a cyclic electron transport 
around PSI for this purpose has been disputed (Langner 
et al., 2009). Another strategy is increased metabolism. 
Photosynthetic rates can be significantly higher under 
low pH than under neutral pH, possibly as a compensa-
tion for increased respiration rates. In Chlamydomonas 
acidophila, modifications in the electron transport at low 
pH leads to increased PSII excitation pressure in the light, 
partly compensated by higher electron transport capac-
ity of PSII and increased nonphotochemical quenching 
(Gerloff-Elias et al., 2005). Increased fatty acid satura-
tion in the membranes and acid tolerant cell wall pro-
teins are also mechanisms related to low pH adaptation 
(Tatsuzawa et al., 1996). Low external pH is, like some 
other forms of stress, shown to induce production of heat 
shock proteins (Gerloff-Elias et al., 2006). Effects of expo-
sure to pH stress in Chlamydomonas applanata include 
reduction of cell volume, increase in pyrenoidal volume, 
reduction of starch reserves, and production of mucilage 
leading to palmelloid colonies (Visviki and Santikul, 
2000). Haematococcus has shown increased astaxanthin 
production at low pH when exposed to light stress and 
N-deprivation (Orosa et al., 2001). In Chlorococcum sp, 
the content of the dominant secondary carotenoid can-
thaxanthin increases when pH is below optimum for 
growth (Liu and Lee, 2000).

Nutrient limitation
Limitation of photosynthetic growth in nature is very 
often caused by limiting access of nutrients, in particular 
the major nutrients nitrogen (N), phosphorus (P) and 
sulfur (S). Inhibition of growth is a natural consequence 
of lack of nutrients since important building blocks of 
the cell contain these elements. One example is the high 
amount of N and P in DNA and RNA, where they serve 
as important building blocks in the structure. N is also 
essential in proteins, each amino acid building block 
contains at least one atom of this major element. P is 
also essential for transporting energy in the form of ATP, 
and is a component of phospholipids that make up the 
cellular membranes. Pollutants containing phosphate 
is a common cause of eutrophication and algal blooms, 
showing that P is often a limiting factor for algal growth 
in natural freshwater environments. S is also an essential 
component of proteins, since the important amino acids 
cysteine and methionine, among others, contain this 
element. In particular disulphide bridges made up of 
cysteine–cysteine disulphide covalent bonds are impor-
tant in protein assembly and structure. In green algae, N 
is mostly taken up in the form of ammonium (NH

4
+) or 

nitrate (NO
3

−), P in the form of phosphate (PO
4

3−) whereas 
S is taken up in the form of sulfate (SO

4
2−).

Furthermore, green algae are dependent on trace 
metals that are important components of proteins, often 
as enzyme cofactors. A trace metal that is important in 
photosynthesis in algae, is for example iron (Fe), being 

a component in cytochromes, and thereby vital for elec-
tron transport. Fe is also an important part of enzymes 
like hydrogenase (Capon et al., 2009). Other important 
trace metals in photosynthesis are manganese (Mn), 
which is a component of the water splitting complex at 
PSII, and magnesium (Mg), which is a component of 
chlorophyll. Some algae also depend on vitamins from 
the environment, in particular vitamin B. As an example, 
out of 154 species of Chlorophyta, that were examined 
for Vitamin B

12
 dependency, 105 were able to synthesize 

this vitamin themselves, while 49 species were showed 
to require B

12
 from the environment (Croft et al., 2005). 

As described in the Section “Analysis of current knowl-
edge, potential products from algae”, most algae are able 
to produce Vitamins A, C, D and E, some species also in 
amounts that have economical potential.

When the algal cells are deprived of any major nutri-
ents, the growth cycle ceases and there is a shift in 
production of cell metabolites. The cell starts produc-
ing enzymes that enhance uptake mechanisms for the 
limiting nutrient. At the same time, certain proteins and 
lipids that are not essential during the deprivation are 
degraded, which is, in many cases, a way of releasing the 
limiting nutrient that can be used for essential processes 
in the cell (Pollock et al., 2005; Schreiner et al., 1975; Yildiz 
et al., 1994; Zhang et al., 2004). During sulfur deprivation, 
the important enzyme RuBisCO is specifically degraded, 
and the Calvin cycle stops (Zhang et al., 2002b).

Another general response to nutrient limitation is a 
decrease in photosynthetic activity, which is vital for the 
cells survival. Chlamydomonas reinhardtii has shown a 
75% decrease of oxygen evolution in cells being starved 
from P after 4 days, and a similar decrease in oxygen evo-
lution after 1 day of S deprivation (Wykoff et al., 1998). 
The same study also showed the following changes after 
deprivation of these major nutrients: Inhibited electron 
flow in PSII caused by photodamage which left 30% of 
the PSII inactivated, formation of non-reducing Q

B
 pre-

venting e-transfer from PSII to PSI, and transition of the 
photosystems from state 1 to state 2, as described in the 
Section “Light intensity”. Light saturation occurs at lower 
light intensities in nutrient deprived algae compared to 
algae supplied with sufficient quantities of nutrients, 
and there is a correlation between the cells’ reactions 
to nutrient deprivation and light intensity. Some algae 
have the ability for intracellular storage of P in the form 
of polyphosphate bodies located in the cytosol (Olsen et 
al., 1983). Algae do not have a similar storage system for 
S, a fact that explains the longer interval before inhibition 
of oxygen evolution of P starved cells compared to cells 
exposed to S starvation. The sulfolipid sulfoquinovosyl 
diacylglycerol (SQDG) located in the chloroplast mem-
branes is associated with PSII (Sato et al., 1995), and 
has been shown to degrade faster than RuBisCO during 
sulfur deprivation. The degradation of this sulfolipid is 
believed to function as a source of sulfur during the first 
few hours of sulfur deprivation, before the degradation of 
RuBisCO starts (Sugimoto et al., 2007).
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When the Calvin cycle is inhibited, oxidative stress 
will consequently occur, unless the cells provide alterna-
tive pathways to dissipate the excess reducing power. In 
response to nutrient deprivation, many algae respond 
by creating energy- and carbon sinks by producing 
large amounts of starch, carotenoids and lipids. Many of 
these have useful properties in terms of medical effects 
or industrial use. They are described thoroughly in the 
Section “Analysis of current knowledge, potential prod-
ucts from algae”.

A well-studied species is the halotolerant green 
algae Dunaliella salina, which is able to produce large 
amounts of carotenoids. Many algae have shown the 
ability for increased accumulation of carotenoids during 
nutrient deprivation, some are listed in Table 1. These 
pigments are deposited as hydrophobic globules in the 
cytoplasm and are thought to function as a “sunscreen” 
to dissipate excess energy as heat, and thereby protecting 
the reaction centers. This reaction to nutrient deprivation 
is commonly seen and is particularly well studied in the 
astaxanthin producing Haematococcus (He et al., 2007; 
Imamoglu et al., 2009; Jin et al., 2006), and β-carotene 
producing Dunaliella (Coesel et al., 2008; Salguero  
et al., 2003). Major nutrient deficiency, like lack of N, P 
or S, leads to significant increase of these protective pig-
ments. Another common reaction to nutrient deficiency 
is increased cellular content of lipids, although this has 
been mostly explored as a reaction to N-deprivation 
(Griffiths and Harrison, 2009; Illman et al., 2000; Wang et 
al., 2009; Zhekisheva et al., 2002). As an example, a high 
number of green algal species will increase their content 
of lipids from ~15–30% to ~25–65% when deprived of N, 
as summarized by Griffiths and Harrison, (2009). Other 
species will, on the other hand, maintain or decrease their 
lipid content, as is the case with for example Chlorella 
sorokiniana and some Dunaliella and Tetraselmis species 
(Becker, 2004b; Griffiths and Harrison, 2009). In some 
cases, the nutrient deprivation can lead to an increase of 
polyunsaturated fatty acid (PUFA) content, as for exam-
ple production of arachidonic acid (AA) by Parietochloris 
incisa (Solovchenko et al., 2008). An increased produc-
tion of starch is also often seen as a reaction to nutrient 
limitation (Cao et al., 2001; Libessart et al., 1995; Matagne 
et al., 1976; Rigano et al., 2000). A parallel increase of 
lipids and carotenoids and/or starch can sometimes 
be observed (Solovchenko et al., 2009; Timmins et al., 
2009b; Wang et al., 2009; Zhekisheva et al., 2002).

Some basic reactions of Chlamydomonas to major 
nutrient limitation are reviewed by Grossman, (2000). 
Nutrient limitation, in combination with other forms 
of stress factors, often causes a synergistic effect where 
the cells need to apply more efficient stress reactions 
and adaptation strategies in order to survive the stress-
ful conditions. Exposure to a combination of light stress 
and nutrient limitation has, for example, been stud-
ied extensively (Antal et al., 2007; Demeter et al., 1995; 
Domínguez-Bocanegra et al., 2004; Garcia-Malea et al., 
2005; Nield et al., 2004; Solovchenko et al., 2008).

The effects of sulfur limitation in green algae have 
recently been studied more specifically. One of the 
reasons for this is that sulfur limitation also can lead to 
photoproduction of hydrogen in green algae, a mecha-
nism that has been studied intensively (Ghirardi et al., 
2009; Melis, 2007). This process is described in detail in 
the Section “Hydrogen production”. While some species 
have shown the ability to produce significant amounts of 
hydrogen during S-deprivation (see Table 1), other spe-
cies have been explored and found not to have this abil-
ity, like for example Dunaliella salina (Cao et al., 2001).

Nutrient limitation can cause a number of different 
stress reactions, leading to production of for example 
high amounts of secondary carotenoids and PUFA. There 
are indications that also products with haemagglutinat-
ing activity are induced by nutrient deprivation. The 
oxidative stress caused by nutrient limitation is likely to 
induce production of antioxidants of different kinds, one 
example being induction of Vitamin E production during 
N-limitation (Durmaz, 2007). In general, production of 
carotenoids as antioxidants during nutrient deprivation 
is extensively studied in green algae (Del Campo et al., 
2007; Jin et al., 2006).

Hydrogen production

A large number of algae species have shown the ability 
to produce hydrogen gas, some of which are listed in 
Table 1, although the majority of research on hydrogen 
production from green algae has been performed with 
the model organism, Chlamydomonas reinhardtii. The 
ability of algae to produce hydrogen from solar energy 
has been explored for many years, and different methods 
have been developed and evaluated.

A prerequisite for hydrogen production from algae has 
been to create an anaerobic environment. This can allow 
the highly oxygen sensitive hydrogen producing enzyme 
FeFe-hydrogenase to be induced and remain active 
throughout the anaerobic phase, as discussed below.

The perhaps simplest method for inducing hydrogen 
production in green algae is to create anaerobic condi-
tions by physically or chemically removing oxygen from 
the culture medium. This can be done for example by 
adding a sodium dithionite solution, which will reduce 
the oxygen and thereby create a chemically induced 
anaerobic culture condition. Another approach is to 
physically remove the oxygen by aerating the culture 
with an inert gas like N

2
 or Ar. These methods can also 

be combined (Wünschiers and Lindblad, 2002), and are 
suitable for screening species of algae for the ability to 
produce hydrogen. A quick and simple method like this 
for inducing hydrogen production can be applied prior to 
more elaborate experiments, which are performed with 
species that are new or unexplored in respect to hydro-
gen production.

Alternatively, hydrogen production can be induced 
by creating an anaerobic environment during dark 
incubation. By incubating the culture in darkness, the 
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photosynthesis and oxygen production will pause and 
the remaining oxygen in the culture will be used up by 
the respiration. By cycling the culture between light and 
dark intervals, algal biomass can be built up by photosyn-
thesis in the light phase, and consumed by fermentative 
reactions in the dark phase. This method was found to 
be efficient in combination with fermentation of organic 
compounds during light by phototrophic bacteria (Kim 
et al., 2006b; Miura et al., 1997).

However, during the last decade the most well stud-
ied method for hydrogen production from green algae 
has been hydrogen production in the light during sul-
fur deprivation. This method, which was discovered in 
Chlamydomonas reinhardtii by Melis and co-workers 
(Ghirardi et al., 2000; Melis et al., 2000), takes advantage 
of stress reactions that are implemented by the algae in 
order to survive an environment without sulfur. When 
some green algae are deprived of sulfur, they will enter 
into a state where release of energy in the form of hydro-
gen is part of a survival mechanism in order to survive 
this form of environmental stress.

As described in the Section “Nutrient limitation”, algae 
that are deprived of a major nutrient will start several 
emergency reactions, including enhanced uptake sys-
tems of the nutrient from the environment, and break-
down of intracellular compounds which are no longer 
needed, but which contain the nutrient. When major 
nutrients are missing, the algae can no longer multiply, 
and production of structural components, like certain 
proteins, lipids and carbohydrates, will stop. During 
sulfur deprivation, there will be a specific degradation of 
RuBisCO, which contains a high amount of sulfur, result-
ing in an inactivation of the Calvin cycle (Zhang et al., 
2002b). The RuBisCO pool of the Chlamydomonas chlo-
roplast has been estimated to contain the equivalent of 
50mM sulfur (Grossman, 2000). A few days after the algae 
have been deprived of sulfur, this enzyme is degraded 
more rapidly than the total protein content (Zhang  
et al., 2002b). However, during the first 1-3 days of sulfur 
deprivation, there may be a specific increase in the cellu-
lar contents of starch (Hemschemeier et al., 2008). At the 
same time, there will be a gradual inactivation of the PSII 
reaction center, caused by several factors. A sulfolipid 
in the thylakoid membrane associated with PSII is spe-
cifically degraded during the first hours of sulfur depri-
vation. This is believed to function as a source of sulfur 
to maintain the synthesis of essential enzymes, and con-
tributes to a partial inactivation of the PSII complex (Sato 
et al., 1995; Sugimoto et al., 2007). A light inhibition of 
PSII occurs as described in the Section “Light intensity”. 
No similar inhibition is seen in PSI in this situation. The 
partial inactivation of PSII means that the oxygen pro-
duction in PSII also is partly impaired. When the algae 
are deprived of sulfur, the oxygen production from PSII 
is sufficiently low to enable the respiratory oxygen con-
sumption in mitochondria to turn the culture anaerobic 
(Antal et al., 2003). In this situation, when the Calvin 
cycle has stopped and can no longer function as a sink for 

carbon and energy, the system is in a reduced state and 
the cells will be dependent on releasing electrons from 
the system in order to prevent oxidative damage.

To release the reductive pressure in this anaerobic envi-
ronment, some algae are able to produce hydrogenases 
that catalyze the production of hydrogen by receiving elec-
trons from ferredoxin (Long et al., 2008). There are mainly 
two possible light dependent routes for electrons to reach 
hydrogen production: Electrons can either originate from 
the water splitting complex of PSII (PSII dependent path-
way), or from fermentation products from the degradation 
of starch, which enter into the thylakoid electron transport 
chain through the PQ pool (PSII independent pathway) 
(Chochois et al., 2009). It has been shown that hydrogen 
production during sulfur deprivation is closely linked to 
starch contents of the cells. Inhibition of starch synthesis 
has led to a significant decrease in hydrogen production 
(Posewitz et al., 2004), and increased starch reserves in 
the cells have had influence on increased hydrogen pro-
duction (Kruse et al., 2005). Some studies have indicated 
that the main source of electrons are the PSII water split-
ting and that starch contributes by increased metabolism 
(Antal et al., 2009; Chochois et al., 2009), while others 
indicate that the electrons are likely to originate from a 
combination of the two pathways (Hemschemeier et al., 
2008). Some studies have shown that in the early stages 
of sulfur deprivation, most of the electrons originate from 
water splitting through the direct pathway, while this 
amount decreases significantly during the final stages of 
sulfur deprivation (Laurinavichene et al., 2004). However, 
the reactions linked to electron transport from original 
donor to hydrogen form a very complicated process where 
there still are many uncertainties. Figure 3 provides a sim-
plified overview of the basic principles of hydrogen pro-
duction during sulfur deprivation, as it has been explored 
in Chlamydomonas reinhardtii, see the above mentioned 
studies for thorough discussions on this issue. The cor-
relation between starch content and hydrogen produc-
tion efficiency seen in Chlamydomonas reinhardtii could 
indicate that species with the ability to accumulate large 
amounts of intracellular starch also might be suitable for 
an efficient hydrogen production process. Examples of 
species that can accumulate large amounts of starch dur-
ing sulfur deprivation are, in addition to Chlamydomonas, 
Chlorella sp. such as Chlorella sorokiniana. This species is 
also able to produce significant amounts of hydrogen dur-
ing the same conditions (Chader et al., 2009; Rigano et al., 
2000).

For a practical implementation of this method for 
producing hydrogen from algae, several different solu-
tions have been proposed and tested. The most common 
suggestion has been a two-stage process whereby batch 
cultures are grown aerobically in the first stage, followed 
by a second stage where the algae are deprived of sulfur 
and produce hydrogen in an anaerobic environment 
(Melis et al., 2000). The algae can be collected from the 
growth phase by for example centrifugation and trans-
ferred to a separate reactor for hydrogen production or, 
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alternatively, sulfur can be removed by dilution tech-
niques (Laurinavichene et al., 2002). In such systems, the 
algae may produce hydrogen for 1–2 weeks, leaving the 
excess biomass for recycling or use for other purposes. 
The first stage of the system can take place in an open or 
closed reactor. The second step must be performed in a 
strictly anaerobic environment, which not only must be 
optimized to supply the best physical conditions for the 
culture, but also must be optimized for collection of the 
produced hydrogen gas. Different setups for this method 
have been discussed previously (Fouchard et al., 2008; 
Hankamer et al., 2007; Melis, 2002).

Prolonged hydrogen production has been obtained in 
S-deprived cultures by re-addition of sulfur. By re-adding 
small amounts of sulfur, the algal cells were able to recover 
from the stress reaction and reactivate PSII temporar-
ily without creating an aerobic environment (Kosourov  
et al., 2005). When small amounts of sulfur were re-added 
to sulfur-deprived cultures at regular intervals, the cells 
were allowed to reconstitute themselves. Re-addition of 
sulfur five times over a period of one month gave a three 
to four times increase in total hydrogen production com-
pared to a culture with no re-addition (Kim et al., 2010). 
The possibilities for establishing continuous systems for 
hydrogen production have also been explored. By using 
a two-stage chemostat bioreactor, and continuous dilu-
tion of the hydrogen producing culture with fresh cells 
and small amounts of sulfur, hydrogen production was 
maintained for a total of five and a half months (Fedorov 

et al., 2005). Immobilization of algal cells on a solid phase 
made of glass has also been used to obtain a continuous 
hydrogen production during 90 days (Laurinavichene 
et al., 2006). Alginate has also been used as a matrix for 
immobilization of hydrogen producing cells, and this 
method has led to increased specific hydrogen pro-
duction activity and better tolerance against oxygen 
compared to non-immobilized cultures (Kosourov and 
Seibert, 2009).

Initial experiments in this field all used cultures grown 
under photoheterotrophic or photomixotrophic condi-
tions, using acetate as a carbon source for Chlamydomonas 
reinhardtii. Later studies have shown that algae grown 
under photoautotrophic conditions are also able to accu-
mulate starch and produce significant amounts of hydro-
gen (Tolstygina et al., 2009; Tsygankov et al., 2006).

A significant amount of research has been performed 
to explore culture conditions for hydrogen production 
from green algae, mainly Chlamydomonas reinhardtii. 
It is clear that many environmental factors, such as light 
intensity, temperature, pH, nutrient composition, as well 
as cell density and cell age can have a significant effect on 
the efficiency of hydrogen production (Hahn et al., 2004; 
Jo et al., 2006; Kim et al., 2006a; Kim et al., 2005; Kosourov 
et al., 2003; Kosourov et al., 2002; Tsygankov et al., 2002). 
Light intensity was shown to have a considerable effect 
on the total hydrogen production under both autotro-
phic and heterotrophic sulfur deprived conditions. Light 
intensities below optimum gave, under heterotrophic 

Figure 3.  Schematic overview of suggested mechanisms for hydrogen production during sulfur deprivation in light, as it has been described 
for Chlamydomonas reinhardtii. Deprivation from sulfur leads to a degradation of PSII components, which partly inhibits the oxidation of 
water, and less oxygen is thereby produced in the photosystem. The low level of oxygen that is still produced in PSII is continuously consumed 
by the respiration, and the culture becomes anaerobic. Sulfur deprivation also leads to degradation of the enzymes in the Calvin cycle, causing 
this CO

2
 fixation pathway and energy sink to come to a halt. When the Calvin cycle is no longer available for reducing CO

2
, the whole system 

of PSII and PSI is reduced, creating a potentially dangerous situation for the algae. To remove the reductive pressure, the algae dispose of the 
electrons by transferring electrons from ferredoxin to hydrogenase. This enzyme then uses the reductive energy to form hydrogen which can 
easily be released from the cell. Depending on culturing conditions and other factors, a certain amount of electrons released in the form of 
hydrogen may originate from degradation of starch. This reducing power enters the electron transport chain from the PQ pool.
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conditions, a longer lag-phase before the culture became 
anaerobic and thereby a shorter hydrogen production 
period, in addition to a lower specific hydrogen produc-
tion rate. Light intensities above optimum gave a shorter 
lag-time before anaerobiosis, but a lower specific hydro-
gen production rate (Kim et al., 2006a). During autotro-
phic conditions, hydrogen production was shown to be 
highly dependent on light intensities both during pre-
growth of the cultures and during the oxygen consump-
tion- and hydrogen production phases. The optimal 
hydrogen production occurred using low light intensities 
during pre-growth and higher light intensities during the 
oxygen consumption stage. This allowed for a temporal 
degradation of PSII activities and accumulation of a high 
amount of starch. A lower intensity during the hydrogen 
production stage allowed for a maintained production. 
Light intensities above optimal led to an irreversible 
inactivation of PSII (Tolstygina et al., 2009; Tsygankov  
et al., 2006). It has also been shown that small changes 
in pH can have a marked effect on hydrogen production, 
possibly caused by implications on the degradation of 
PSII or changes in starch accumulation (Kosourov et al., 
2003; Tolstygina et al., 2009).

Possibilities for optimization of the hydrogen pro-
duction process are explored by many researchers, and 
there is a significant attention towards gene modifica-
tion. Gene modification issues are not addressed in this 
review, other than in general terms. However, some sig-
nificant possibilities should be mentioned, for example, 
modifications of the hydrogenase enzyme itself. Studies 
have been performed to create a more oxygen tolerant 
system by screening activity of random mutations (Flynn 
et al., 2002), by using gene shuffling techniques (Nagy  
et al., 2007), and studies of possibilities for narrowing 
oxygen channels (Ghirardi et al., 2006). Other approaches 
include mutations for increased starch accumulation, and 
state transition block in state 1, leading to an inhibition of 
cyclic electron transport around PSI, an approach which 
has led to a five times increase in hydrogen production 
compared to the wild type of Chlamydomonas reinhardtii 
(Kruse et al., 2005). Additionally, worth mentioning is 
the possibility of creating a sulfur deprived environment 
inside the chloroplast by impairing the sulfate transport 
systems (Chen et al., 2005; Lindberg and Melis, 2008), 
and generation of strains with truncated light-harvesting 
chlorophyll antenna size (Melis, 2009). Further possibili-
ties for an efficient hydrogen production process in the 
future, using molecular biology and gene modifications, 
might be within the field of synthetic biology (Picataggio, 
2009), see also the Section “Summary and perspectives”.

Even if the majority of research on hydrogen pro-
duction by sulfur deprivation has been performed on 
Chlamydomonas reinhardtii, other wild type species 
of green algae have also been explored in this respect 
and found to produce hydrogen under these conditions 
(Chader et al., 2009; Guan et al., 2004; Meuser et al., 
2009; Skjånes et al., 2008; Timmins et al., 2009a). These 
species are listed in Table 1. In many of these cases, no 

attempts have yet been made to optimize the conditions 
for hydrogen production from each individual species 
and, at the moment, there are no strong indications that 
Chlamydomonas reinhardtii should be the most promis-
ing species if a wild type was to be used in such a process.

A total of about 70 species of green microalgae from 
more than 30 genera, which are reported to have the abil-
ity to produce hydrogen, are listed in Table 1. This study 
aims to explore the possibility of finding species of algae 
capable of producing hydrogen and other valuable prod-
ucts in the same process.

Analysis of current knowledge, potential 
products from algae

Table 1 presents, in addition to hydrogen producing spe-
cies, a selection of species of green microalgae with the 
ability to produce metabolites of industrial/pharmaceu-
tical interest. The major products from green microalgae 
with industrial use today include carotenoids and algal 
biomass for health food and aquaculture. These are at 
present obtained from a very limited number of spe-
cies, as described in the Section “Present commercial 
uses of green microalgae”. However, the table gives an 
indication of the high number of species that are already 
known to be able to perform useful processes. The useful 
properties included in the table are hydrogen produc-
tion during anaerobic induction, hydrogen production 
during sulfur deprivation, relatively high production of 
many different carotenoids, vitamins, other antioxidants, 
glycerol, PUFA, mycosporine-like amino acids (MAA), 
haemagglutinin, polysaccharides and other extracts with 
anticancer, antimicrobial and anti-inflammatory activity, 
in addition to several other medical activities. The spe-
cies listed in Table 1 have shown production of the given 
metabolites during either normal conditions or under 
environmental stress. However, there are no indications 
that the ability to produce high amounts of these metab-
olites is restricted to the species listed in this table. Also 
included in Table 1 are species in use today for health 
food and aquaculture/animal feed purposes.

Antioxidants in general
Microalgae are often exposed to high oxygen levels and 
irradiance stress and, as a result, these organisms have 
developed defense systems in the form of antioxidants to 
prevent damage to the cells. Antioxidants are produced 
by algae in large amounts under certain stressful condi-
tions in order to protect the photosynthetic cells from oxi-
dative stress. Oxidative stress refers to a situation where 
ROS, such as hydrogen peroxide and oxygen derived free 
radicals, are produced and can start a chain reaction and 
cause damage to the cellular systems. ROS are produced 
when the photosystems absorb more energy than can 
either be transferred by the electron transport chain to 
an electron acceptor, or dissipated as heat.

ROS can damage DNA, proteins and lipids in all liv-
ing organisms; oxidative stress leads to severe health 
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problems in humans and animals. Oxidative damage is 
linked to aging, atherogenesis, cancer, neurodegenera-
tive diseases, infant retinopathy, macular degeneration 
and renal failure, along with other problems (Granot and 
Kohen, 2004; Guerin et al., 2003; Pham-Huy et al., 2008). 
Dietary intake of antioxidants from algae has shown 
the ability to limit or prevent certain health problems, 
as described below. Studies in plants have showed that 
transgenic overproduction of antioxidants is in many 
cases a poor strategy for protection against stressful 
conditions (Logan et al., 2006), implying that additional 
mechanisms are required to handle the stress.

Many substances found in algae have antioxidant 
effects. The major group of antioxidants in algae is carot-
enoids, but there are also significant amounts of other 
antioxidants such as Vitamin C, Vitamin E, BHT and 
others. Antioxidants have been attributed many medi-
cal effects, as described in the Sections “Carotenoids” 
and “Other antioxidants”. Although there is a consider-
able number of studies concluding that antioxidants 
have positive health effects in humans and animals, 
some of these studies have been disputed, to the effect 
that dietary supplements of Vitamin A, Vitamin E and 
β-carotene in adults may in fact increase mortality when 
large doses are used (Bjelakovic et al., 2007; Pham-Huy 
et al., 2008).

Carotenoids
Carotenoids are lipophilic pigments with isoprenoid 
structure that occur widely in nature. Many carotenoids 
show a strong antioxidant effect that is used to protect the 
organisms against oxidative stress.

All carotenoids directly involved in photosynthesis 
are called primary carotenoids. Secondary carotenoids, 
however, are present in the cells as a response to different 
environmental factors, like exposure to high light inten-
sity, nutrient deprivation, temperature changes, high or 
low pH, high salinity and oxidative stress. Examples of 
primary carotenoids are α-carotene, β-carotene, lutein, 
violaxanthin, zeaxanthin and neoxanthin, while typical 
secondary carotenoids include astaxanthin, canthax-
anthin and echinenone (Leya et al., 2009). Primary 
carotenoids are typically localized in the thylakoid mem-
brane, while secondary carotenoids are also located in 
lipid vesicles in the cytosol or the chloroplast stroma. 
Secondary carotenoids, although produced in the chlo-
roplast, are often transported into the cytoplasm where 
they react with fatty acids to form carotenoid esters. 
These hydrophobic molecules accumulate, together with 
other secondary carotenoids, into extraplastidial lipid 
globules. For example, overproduction of astaxanthin in 
Haematococcus leads to accumulation of astaxanthin in 
oleic acid rich triacylglycerol (TAG) globules in the cyto-
plasm (Jin et al., 2003; Zhekisheva et al., 2002). However, 
when β-carotene is overproduced, like for example in 
Dunaliella bardawil during light stress or under nutrient 
limitation, this pigment also functions as a secondary 
carotenoid and is accumulated in TAG droplets inside 

the chloroplast (Rabbani et al., 1998). The production of 
β-carotene and TAG are interdependent, suggesting that 
TAG functions as a carotenoid sink under environmental 
stress conditions which helps to avoid end-product inhi-
bition of the carotenoid pathway.

Carotenoids can also be divided into carotenes, which 
are non-polar molecules, and xanthophylls which are 
more polar. Many of the xanthophylls are primary carot-
enoids and are bound with chlorophyll to the proteins 
in the light harvesting complex (LHC) where they func-
tion as light harvesting pigments that transfer excitation 
energy to the chlorophylls. Xanthophylls also have an 
important role in protection against oxidative damage 
(Bhosale and Bernstein, 2005).

As mentioned above, carotenoids protect against oxi-
dative stress, and are therefore induced under stressful 
conditions. Reactive oxygen species trigger up regulation 
of genes coding for production of carotenoids (Li et al., 
2009b). In Chlorella zofingiensis hydroxyl radicals, as 
ROS formed during stress conditions, lead to increased 
production of astaxanthin (Ip and Chen, 2005). It has 
been suggested that not only the astaxanthin molecules 
themselves, but also their synthesis pathway, can serve 
as protection mechanisms against oxidative stress in 
Haematococcus (Hu et al., 2008c).

Production of carotenoids is regulated by interplay 
of the different environmental factors listed above and 
described in the Section “Analysis of current knowledge, 
stress and adaptation mechanisms”. In many cases sev-
eral stress factors have to be present in order to induce an 
optimal production of these valuable metabolites. As an 
example, studies of β-carotene in Dunaliella have shown 
that nutrient limitation is essential for a high production, 
but when this condition is in place, the production can 
be increased by high light intensity and/or high salin-
ity (Coesel et al., 2008). Another example is Chlorella 
zofingiensis, where the increased production of astax-
anthin under nitrogen limitation is dependent on light 
stress, while the production of canthaxanthin can be 
increased by nitrogen limitation and salt stress, without 
high light exposure (Pelah et al., 2004).

As illustrated in Figure 4 and described above, carot-
enoid production in algae can be increased by stress fac-
tors such as high light intensity, nutrient limitation, high 
salt concentrations and temperature stress.

Applications
Humans and animals are incapable of synthesizing carot-
enoids, and therefore depend on obtaining them through 
their diet. Despite of this, carotenoids occur commonly 
in important roles of different animals, often giving red 
or orange color in for example salmon, flamingoes and 
shellfish. In humans, some carotenoids have Vitamin 
A activity, in addition to general antioxidant functions 
(Scott and Rodriquez-Amaya, 2000).

The carotenoids lutein and zeaxanthin are necessary 
for our vision to function normally, due to their roles 
in the yellow spot of the human retina. The amount of 
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macular pigment correlates with the incidence of age-
related macular degeneration, which is the major cause 
of blindness in the elderly (Krinsky et al., 2003). Lutein is 
responsible for pigmentation in fish and poultry, and is 
therefore sold as a feed additive. This pigment is also used 
as a colorant in cosmetics and food products (E161b) (Jin 
et al., 2003). High amounts of lutein can be produced by 
species like Muriellopsis sp. and Scenedesmus almeriensis; 
the production per cell has been observed to be induced 
by e.g. high temperature (Del Campo et al., 2000, 2007). 
However, the total production of lutein in the cultures 
was in these cases lower due to decreased growth rates. 
The same tendency has also been seen in respect to pH 
in Chlamydomonas zofingiensis and Dunaliella salina. 
The maximum level of lutein in the culture was observed 
when the measured pH was close to the optimum of 
growth, while the optimum content of lutein per cell was 
produced under low and high pH (Jin et al., 2003).

The secondary carotenoid canthaxanthin is used as a 
food dye (E161g), giving color to egg yolks and chicken 
skin; dietary supplements to poultry have been shown to 
be associated with increased vitamin E contents of the 
liver (Surai et al., 2003). Canthaxanthin is known to have 
antioxidative, anti-inflammatory and neuroprotective 
effects (Chan et al., 2009). It is produced in large amounts 
by algae such as Coelastrella striolata (Abe et al., 2007) 
and Chlorella zofingiensis (Pelah et al., 2004) under salt 
stress and N-deprivation.

Astaxanthin is a carotenoid that causes the red color in 
salmon and shellfish, and these organisms are dependent 
on obtaining this pigment through their diet. The most well-
known algal producer of astaxanthin is Haematococcus 

pluvialis, which is often used as a dietary supplement in 
aquaculture. High irradiance stimulates production of 
astaxanthin (Harker et al., 1996), while the production of 
lutein can decrease under high light intensity (Del Campo  
et al., 2000). This difference can be explained by the fact 
that lutein is a primary carotenoid that is used directly 
in light harvesting, while astaxanthin, being a secondary 
carotenoid, is produced to protect the organism from 
oxidative stress. Major factors determining production 
of astaxanthin are high light intensity and nutrient defi-
ciency (Del Campo et al., 2007; He et al., 2007).

The most important function of astaxanthin is its role as 
an antioxidant. Oxidative stress can cause many different 
health problems in humans and other organisms, but can 
be prevented by dietary intake of powerful antioxidants 
like astaxanthin (E161j). Intake of astaxanthin in humans 
or other mammals has been shown to reduce inflamma-
tion and help to fight ulcer caused by Helicobacter pylori 
(Kamath et al., 2008); affect cholesterol levels in the blood, 
which could benefit heart health (Olaizola, 2005); protect 
liver cells from oxidative damage (Kim et al., 2009b); 
improve immune response by enhancing the produc-
tion of immunoglobulin and antibodies (Jyonouchi et al., 
1995; Park et al., 2010). The effect of astaxanthin on cancer 
in mammals has been thoroughly studied, and examples 
of effects are protection against cancer in colon, urinary 
bladder, mouth, and direct reduction of tumor growth 
(Jyonouchi et al., 2000; Palozza et al., 2009). Astaxanthin 
has also been shown to prevent obesity (Ikeuchi et al., 
2007), and effect on age-related cognitive function in 
humans has been indicated (Satoh et al., 2009). Subjective 
evaluation by patients with back pain and muscle pain 

Figure 4.  Graphic summary of the most common stress reactions having influence on the synthesis of some important valuable metabolites 
in green algae. 



Combined process using microalgae  197

© 2013 Informa Healthcare USA, Inc.�  

concluded that astaxanthin relieved pain as good as, 
or better than over-the-counter drugs. Health benefits 
from oral intake of astaxanthin have been summarized 
in Guerin et al. (2003). Astaxanthin has no provitamin 
A activity after dietary intake, as opposed to β-carotene 
(Jyonouchi et al., 1995).

β-carotene is an important food coloring agent (E160), 
and is produced in large amounts by Dunaliella salina. 
It is used for human food, aquaculture feed and animal 
feed, and as addition to cosmetics. β-carotene is also a 
strong antioxidant, although not as powerful as astax-
anthin (Jyonouchi et al., 1995). β-carotene is converted 
to retinol (Vitamin A) in the body, a vitamin which is 
essential for humans. Dietary intake of β-carotene has a 
high number of health effects. Vitamin A is important for 
sustaining vision and preventing eye diseases, prevent-
ing different skin conditions and helping the immune 
system. Oral intake of β-carotene from Dunaliella can 
prevent UV-induced erythema in humans (Heinrich et 
al., 2003). β-carotene has antioxidant activities and has 
been shown to prevent cancer, heart disease, degenera-
tive disease and arthritis (Dufossé et al., 2005).

β-carotene and other carotenes are not absorbed by 
the body as efficiently as the oxygenated, more polar 
xanthophylls. However, β-carotene produced by algae 
is absorbed better by the body compared to artificial 
synthesized β-carotene. This is due to the fact that algae 
produce a combination of cis- and trans-isomers of 
β-carotene, while mainly the trans-forms are produced 
synthetically (Yeum and Russell, 2002). Like other anti-
oxidants, many carotenoids are claimed to have anti-
cancer activity (Cha et al., 2008; Mignone et al., 2009), as 
described in the Section “Other antioxidants”.

All wild types of green microalgae are likely to show an 
increase in secondary carotenoid content under certain 
stress conditions. Table 1 lists a selection of species that 
have been specifically studied in this respect and found 
to produce relatively high amounts of the given pigment.

Other antioxidants
Vitamin E
Many algae have high content of vitamins (Becker, 
2004b; Brown et al., 1999; Running et al., 2002). α-/β-
Tocopherol/α-Tocothrienol (Vitamin E) are fat soluble 
phenols with antioxidant activity. They are produced in 
high amounts by algae such as Dunaliella tertiolecta and 
Tetraselmis suecica (Carballo-Cárdenas et al., 2003), and 
the production of vitamin E can be increased by stressful 
conditions such as N-deprivation (Durmaz, 2007). These 
vitamin compounds are claimed to have activities against 
cancer, heart disease, eye disease, Alzheimer’s disease, 
Parkinson’s disease and other medical activity (Pham-
Huy et al., 2008). They also have applications in the food 
industry, as a preservative and health improving additive 
(E306), and as photoprotection in skin cream (Alberts 
et al., 1996). Total phenol content has been measured 
in Chlamydomonas nivalis and found to be induced by 
UV-C exposure (Duval et al., 2000).

Vitamin C
Ascorbic acid (Vitamin C) is a water soluble vitamin with 
antioxidant activity. It is produced in high amounts in 
algae such as Chlorella sp. and Dunaliella sp. (Barbosa 
et al., 2005; Running et al., 2002), and its production can 
be increased by high light exposure (Barbosa et al., 2005). 
Vitamin C is essential for collagen, carnitine and neu-
rotransmitters biosynthesis. It is used as a food additive 
(E300) and its health beneficiary effects include activity 
against cancer, atherosclerosis and as an immunomodu-
lator. This vitamin has antioxidant activity that works 
synergistically with Vitamin E. However, both of these 
vitamins have been disputed in regards to safety, for 
example is a high intake of dietary supplements claimed 
to increase mortality and risk of cancer (Pham-Huy et al., 
2008).

Butylated hydroxytoluene
BHT is a lipophilic antioxidant which can be produced 
in high amounts in Botryococcus braunii (Babu and Wu, 
2008). BHT is used as a food additive (E321), or antioxi-
dant additive in other products, but it is usually obtained 
synthetically (Capitani et al., 2009).

Glutathione
Glutathione is a non-protein thiol compound with activ-
ity as antioxidant, immunity booster and detoxifier; 
it is one of the most potent anti-virus agents known. 
Deficiency of glutathione is related to a long range of 
human diseases (Wu et al., 2004). It is used as a pharma-
ceutical compound, but has also potential for use in food 
production and cosmetic industry. The main industrial 
production today comes from yeast, but Dunaliella sp. 
has also been seen to produce a high amount of gluta-
thione (Li et al., 2004; Sies, 1999). Although little has 
been done to determine which conditions one should 
apply to a culture in order to get an optimal production 
from algae, its function as an antioxidant indicates that 
glutathione can be induced by factors producing oxida-
tive stress as explained in the Section “Analysis of current 
knowledge, stress and adaptation mechanisms”.

Fatty acids and their derivatives
Fatty acids can, for example, occur in the cells as gly-
colipids and phospholipids forming the cellular mem-
branes, or as storage products in the form of TAG (Hu 
et al., 2008b). Chloroplast membranes are dominated 
by glycolipids, while phospholipids and other lipids 
dominate extra-chloroplast membranes (Sugimoto  
et al., 2005). Fatty acids are either saturated or unsatu-
rated, defined by the presence of double bonds. TAG 
serves no structural function and is mostly present in the 
cell as a storage product for energy and carbon storage. 
In some cases, TAG may also have a role in protection 
against oxidative stress (Hu et al., 2008b). For practi-
cal use of the biomass and extraction of the lipids, it is 
important to know how the fatty acids are bound in the 
cell; this will not be addressed in this review.
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Essential fatty acids (EFA) are PUFAs involved in bio-
logical processes, but not synthesized in animal cells. 
These fatty acids are a necessary part of the diet, and lack 
of this nutrient can cause severe damage to the organism. 
They are, however, produced by algae and, in some cases, 
in large amounts (Yongmanitchai and Ward, 1989).

The truly essential fatty acids are linoleic acid (LA) 
(18:2 omega-6) and α-linolenic acid (ALA) (18:3 omega-
3). Both humans and animals are dependent on obtain-
ing these from the diet, and they are used as starting 
points for building longer chains of fatty acids. Because 
they are used by many biological processes, the following 
fatty acids are often also referred to as essential: AA (20:4 
omega-6), EPA (20:5 omega-3), DHA (22:6 omega-3) and 
γ-linolenic acid (GLA) (18:3 omega-6) (Russo, 2009).

Food supplements of omega-3 fatty acids are known 
to have many beneficiary health effects. They have for 
example anti-inflammatory, anti-thrombotic, anti-
arrhythmic, hypolipidemic and vasodilatory properties. 
These beneficial effects of omega-3 fatty acids have been 
shown in the secondary prevention of coronary heart dis-
ease, hypertension, type 2 diabetes, and in some patients 
with renal disease, rheumatoid arthritis, ulcerative coli-
tis, Crohn’s disease, and chronic obstructive pulmonary 
disease (Simopoulos, 1999). Omega-3 fatty acids have 
also shown positive effects on infant development, can-
cer and mental illness such as depression, ADHD and 
dementia (Riediger et al., 2009).

Many green algae are able to produce a high amount 
of lipids; an average of 23% (dry cell weight) of lipids has 
been detected in a selection of green algae, without stress-
exposure. During nutrient deprivation, the lipid contents 
per cell increases in many species of green microalgae, 
while others react by producing starch (Griffiths and 
Harrison, 2009). Lipid production in algae is also affected 
by autotrophic versus mixotrophic growth, where autotro-
phic growth tends to give higher cellular content of lipids, 
but lower total production of lipids in the culture (Liang et 
al., 2009), and less relative amount of PUFA (Poerschmann 
et al., 2004). Many algae produce predominantly satu-
rated or mono-unsaturated fatty acids (Becker, 2004b), 
although many will also produce a significant proportion 
of unsaturated fatty acids that are preferred for nutritional 
use of the algal biomass. For example will N-deprivation 
of Parietochloris incisa lead to an increase, not only in the 
total lipid content, but to a relative increase in the content 
of AA (Solovchenko et al., 2008).

Lower temperatures tend to promote increasing 
unsaturation of fatty acids (Hu et al., 2008a; Sushchik et 
al., 2003), as a way of maintaining fluidity of membranes 
and thereby maintaining cellular processes. Temperature 
tends to affect the composition of fatty acids rather than 
the total amount of lipids in the cell (Hu, 2004). Higher 
level of saturated acids have been seen at low pH in acido-
tolerant strains of Chlamydomonas, possibly as an adap-
tation to avoid too high membrane fluidity (Tatsuzawa et 
al., 1996). High salt concentration leads to higher ratio 
of unsaturated fatty acids in microsomes of halotolerant 

Dunaliella, this is suggested to be linked with adaptation 
to high intracellular glycerol levels (Azachi et al., 2002). 
Studies from other algae have shown that high salt con-
centrations may decrease the proportions of unsaturated 
fatty acids, as well as a total decrease in TAG content 
(Ben-Amotz et al., 1985; Chen et al., 2008). Light intensity 
can also have effect on the proportion of fatty acids. High 
light intensity can cause production of more saturated 
and mono-unsaturated fat, while low light intensity may 
induce formation of PUFA. Algae in stationary phase 
often produce more TAG, and a lower relative amount 
of PUFA (Hu et al., 2008b). UV exposure has shown to 
suppress PUFA synthesis (Goes et al., 1994; Hessen et al., 
1997). Metabolism of important lipids has been reviewed 
by Guschina and Harwood (2006).

Certain PUFAs are of particular interest, and species of 
green algae known to produce high amounts of these are 
listed in Table 1. However, many species that are able to 
produce high amounts of lipids have not been analyzed 
in detail, and production of specific PUFAs have there-
fore not been identified in all algae that could turn out to 
be important producers (Hu et al., 2008b).

Arachidonic acid can, for example, be produced in 
large amounts by some green algae. The most efficient 
producer of this lipid is the green algae Parietochloris 
incisa, where the cell can contain AA up to 20% of the 
biomass under N-limiting conditions (Khozin-Goldberg 
et al., 2002). Parietochloris incisa is resistant to low tem-
peratures. AA resides in TAG storage globules in the cell, 
and can be transported with the TAGs to cell membranes 
when temperature decreases (Bigogno et al., 2002). 
Incorporating AA into the cell membrane when tem-
perature decreases is a mechanism for protection against 
cold stress, as described in the Section “Temperature”. 
AA-rich TAGs from the microalga Parietochloris incisa 
have shown medical effects on recovery from infection 
(Khozin-Goldberg et al., 2006). EPA is being produced 
in high amounts by for example the marine green alga 
Chlorella minutissima, and the production of this fatty 
acid can be increased by reduced temperature and 
increased salinity (Seto et al., 1984).

In some cases unsaturated fatty acids from algae 
can have an inhibitory effect on other aquatic micro-
organisms. For example, a mixture of the fatty acids 
α-linolenic, oleic and linoleic acid extracted from  
Botryococcus braunii showed a toxic effect on several 
aquatic organisms (Chiang et al., 2004). Extracts of the 
C18 fatty acids linolenic, linoleic and oleic acid from 
Chlamydomonas reinhardtii had a toxic effect on other 
organisms, including algae species, by reducing growth 
rate and increasing mortality (McCracken et al., 1980; 
Spruell, 1984). Linolenic acids from Chlorococcum and 
Dunaliella can act as antibiotics against microorganisms 
(Ohta et al., 1995). There are several mechanisms that may 
explain these inhibitory effects. Oxidation products from 
the breakdown of fatty acids like aldehydes, alcohols or 
others can be the inhibiting factor, or the fatty acids may  
have a direct regulatory role in the enzymatic activities 
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(Ikawa, 2004). Production of inhibiting substances in 
general makes it possible for the species to dominate in 
their environment.

Other lipids include sterols, which are a group of lip-
ids important as nutrition for aquaculture organisms 
(Gatenby et al., 2003). They are produced in significant 
amounts in green algae like for example Tetraselmis 
suecica (Cardozo et al., 2007), Pyramimonas sp. 
(Ponomarenko et al., 2004) and many other species. They 
are essential for cell membranes and act in signal trans-
duction. Alkadienes represent a group of lipids produced 
by for example Botryococcus braunii that can be used for 
wax in the cosmetics industry (Mendes et al., 2003). Some 
algae can produce acetylenic lipids that can have antitu-
mor, antibacterial, antimicrobial, antifouling, antifungal, 
pesticidal, phototoxic, HIV inhibitory, and immuno-sup-
pressive properties (Dembitsky, 2006). However, this 
group of lipids is not extensively explored in green algae.

As illustrated in Figure 4 and described above, the 
production of PUFA may be increased by applying stress 
factors like low temperature, salt stress and nutrient 
deprivation.

Metabolites with other properties or medical effects
Polysaccharides
Certain polysaccharides from algae have been shown to 
have activities with medical effects; most of these stud-
ies have been performed with Chlorella spp. Chlorella 
vulgaris and Scenedesmus quadricauda are able to pro-
duce polysaccharides that function as protection against 
oxidative stress and, in one case, exposure to microcystin 
(Mohamed, 2008). A mixture of polysaccharides extracted 
from Chlorella stigmatophora showed anti-inflammatory 
and immunosuppressant effects, however, the structure 
of the active polysaccharide was not identified (Guzman 
et al., 2003). A polysaccharide with high molecular 
weight identified from Chlorella pyrenoidosa showed a 
very high immunostimulatory and antitumor effect with 
potential for cancer therapy (Pugh et al., 2001; Yang et al., 
2006). Other attempts to identify the active constituents 
in extracts of polysaccharides in this species have been 
made, but the exact structure is still unknown (Sheng et 
al., 2007). The exact function of most of these polysaccha-
rides in the algal cells is not known. The polysaccharide 
β-1,3-glucan from Chlorella has been found to be an 
active immunostimulator, a free radical scavenger and a 
reducer of blood lipids. Other health-promoting effects 
can be efficacy on gastric ulcers, wounds, and constipa-
tion; preventive action against atherosclerosis and hyper-
cholesterolemia; and antitumor action (Iwamoto, 2004; 
Spolaore et al., 2006). In these studies no attempts were 
made to expose the algae to sub-optimal growth condi-
tions, i.e. to find out if stress conditions would induce a 
higher production of the mentioned active metabolites.

Glycerol
Glycerol is an organic osmolyte that is highly soluble 
and non-inhibitory of metabolic processes produced 

as a response to extracellular osmotic pressure. It can 
function as both osmoregulator and osmoprotector of 
enzymes. It can be accumulated in large amounts in halo-
tolerant species during salt stress; an increase in intracel-
lular glycerol content linear with salt concentration in 
the medium has been seen in Chlamydomonas pulsatilla 
(Ahmad and Hellebust, 1986). Halotolerant Dunaliella 
species can accumulate up to 17% w/w intracellular 
glycerol (Kaçka and Dönmez, 2008). Freshwater species 
like Chlamydomonas reinhardtii can also produce high 
amounts of glycerol as a response to osmotic stress, but 
in this case the glycerol is excreted into the medium 
rather than being accumulated (León and Galván, 
1994). The production of glycerol in algae is regulated 
by external water activity, but high light intensities may 
inhibit the production (León and Galván, 1999). In some 
cases, the algae can also excrete glycerol as a response 
to high CO

2
 rather than salt stress, as has been observed 

in a marine Chlamydomonas sp. strain (Miyasaka et al., 
1998). Glycerol is widely used in industries such as cos-
metics, pharmaceuticals, paint, automotive, food (E422), 
tobacco, pulp and paper, leather, and textile, or as a feed-
stock for the production of various chemicals (Wang et 
al., 2001). In addition to being produced in high amounts 
during osmotic stress, an increase in glycerol content has 
also been showed in Chlamydomonas reinhardtii during 
sulfur deprivation (Bölling and Fiehn, 2005), although 
this was only measured after 24 h of deprivation.

Lectins
Lectins are carbohydrate binding proteins located within 
protein bodies in the cells. Lectins from algae have high 
specificity for complex oligosaccharides, glycoprotein 
or glycolipids. They are useful in medical science for a 
variety of applications, like detection of disease-related 
alterations of glycan synthesis, blood group typing and 
definition of secretor status, quantification of aberrations 
of cell surface glycan presentation and cell markers for 
diagnostic purposes including infectious agents (viruses, 
bacteria, fungi, parasites). Moreover, lectins are useful 
as bioadhesives that bind to mucosal surfaces and to 
deliver vaccines across mucosal surfaces (Cardozo et al., 
2007). Studies of lectins in green microalgae often focus 
on haemagglutinating activity, and a high number of 
Chlamydomonas and Chlorella species have been iden-
tified with ability to agglutinate erythrocytes. Many spe-
cies of Chlorella produce metabolites with antimicrobial 
activity, and this activity has been hypothesized to be 
caused by lectins (Table 1) (Chu et al., 2004). Studies in 
other algae have indicated that the production of these 
metabolites can be induced by growth limiting condi-
tions like nutrient deprivation and light stress (Liao et al., 
2003).

Mycosporine-like amino acids
Mycosporine-like amino acids (MAA) are a group of 
molecules consisting of an amino acid bound to a chro-
mophore that absorbs low wavelength light. A database 
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listing different MAAs identified in various organisms is 
available (Sinha et al., 2007), out of which ten are green 
microalgae (Table 1). These amino acids are involved in 
protecting the organism against UV radiation and are pro-
duced in significant amounts by for example the highly 
UV-tolerant snow algae Chlamydomonas nivalis and 
other green algal species. Production of MAA is induced 
by exposure to UV-light and the resulting irradiance stress 
reactions, but there are indications that N-limitation leads 
to a decreased production (Karsten et al., 2007; Xiong et 
al., 1999). MAA from other algae phyla have been shown 
to protect skin of higher organisms against UV damage (de 
la Coba et al., 2009). MAAs from algae have been explored 
for commercial purposes, which have resulted in com-
mercial skin-care products for UV protection (Schmid  
et al., 2006).

Glycoprotein
A glycoprotein from Chlorella vulgaris shows anticancer 
activity through antimetastatic immunopotentiation 
(Hasegawa et al., 2002; Tanaka et al., 1998). Little has been 
done neither to identify similar compounds with activity 
from other algal species, nor to consider possibilities for 
optimization of the production of these glycoproteins by 
manipulating growth conditions.

Antifreeze proteins
Cold adapted strains of green algae are often producers 
of antifreeze proteins that prevent damage occurring 
as a result of very low temperatures. These proteins are 
able to bind to ice crystals, prevent recrystallization and 
protect other proteins from damage. Antifreeze proteins 
extracted from algae or other microorganisms can be 
used for agricultural, biomedical and industrial applica-
tions (Christner, 2010; Fernandes et al., 2010; Kang and 
Raymond, 2004).

Antibiotics
Some strains of algae are able to produce metabolites 
with antibiotic activity by killing or inhibiting growth of 
bacteria. In some cases, this activity has only been iden-
tified in general extracts from the algal culture without 
determining the identity of the active substrate (Chu  
et al., 2004; Ördög et al., 2004). In other cases, the anti-
biotic agents have been identified, as described above. 
There are indications that antibiotics are more likely to 
occur in strains isolated from environments polluted by 
bacteria, than in strains isolated from cleaner environ-
ments (Lustigman, 1988).

General extracts containing unidentified metabolites 
with activity
A large number of studies have been performed screen-
ing for algal extracts with medical effects. The path from 
a certain effect is detected in an algal extract, to a phar-
maceutical product is sold commercially, is very long 
and expensive. Even if these screenings have resulted in 
a high number of extracts with potential pharmaceutical 

interest, many studies have not concluded with identifi-
cation of the specific metabolites leading to these effects.

Pharmacological activities measured in Dunaliella 
tertiolecta include antihypertensive, bronchodilator, 
antiseritonin, polysynaptic block, analgesic, muscle 
relaxant and antioedema (Borowitzka, 1995). Dunaliella 
tertiolecta showed activity as a central nervous sys-
tem depressant (Villar et al., 1992) and Chlorella stig-
matophora extracts showed anti-dopaminergic activity 
on the central nervous system (Laguna et al., 1993). Out of 
174 strains from 24 genera of green microalgae screened, 
10 strains from the species Desmococcus olivaeceus, 
Chlorella minutissima and other Chlorella species, and 
Scenedesmus sp. showed antimicrobial and anticancer 
activity (Ördög et al., 2004). Extracts from several species 
of Chlorella, Chlamydomonas and Scenedesmus showed 
haemagglutinating effects, and five Chlorella species 
had antimicrobial activity (Chu et al., 2004). The active 
metabolites were all produced without exposing the cells 
to suboptimal conditions, which in some cases may have 
increased their production.

Whole cells of Chlorella sorokiniana have activity as a 
sulfoxidation biocatalyst, and can therefore have signifi-
cance in industrial processes involving flavor and aroma 
precursors, antibiotics, enzyme inhibitors, metabolites 
and pharmaceuticals (Daligault et al., 2006). Extracts 
from a high number of algae have shown inhibitory 
effects on other algae, and this is often seen in connec-
tion with unsaturated fatty acids (Ikawa, 2004).

Present commercial uses of green microalgae

Commercial production of algae is often quite secre-
tive and the identities of the species used are not always 
revealed. In most cases, the identities of the algae are only 
known at the genus level. Table 2 shows a list of compa-
nies with commercial production of green microalgae 
for many purposes; health food and aquaculture feed 
constituting the major parts of the market. The number 
of species in use today is very limited, and the algae are 
usually selected for their ability to grow fast and produce 
high amounts of specific metabolites.

Production efficiency of biomass is the key-factor for 
financial success in most commercial systems today. 
Moreover, to be used in aquaculture, microalgal species 
must also be selected on the basis of their mass-culture 
potential, nutritive constituents, non-toxicity, sanitary 
state as a diet, size and shape of the cells and digestibil-
ity (Becker, 2004a; Brown et al., 1999; de la Noue and de 
Pauw, 1988; Tzovenis et al., 2003). It should be noted that 
production of high amounts of secondary metabolites 
under stress conditions, is associated with decreased 
growth rates and thereby decreased production of total 
biomass. Although the selected stress conditions may 
induce a high production of the targeted metabolite 
on a per cell basis, the success of a commercial process 
depends on the total productivity of the system. Growth 
rates will vary greatly between species, and are highly 
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dependent on cultivation methods, especially bioreac-
tor design, and physical and chemical parameters. The 
simplest way of growing microalgae commercially is 
considered to be cultivation in open ponds, and this sys-
tem is commonly applied in commercial algal produc-
tion. In such systems, species of algae that are tolerant 
to extreme conditions have been preferred, due to the 
decreased risk of contamination from competing organ-
isms. The application of closed bioreactors in microal-
gal cultivation leads to reduced risk of contamination, 
which has opened up for using a wider choice of species. 
Extensive research is ongoing within the field of biore-
actors, culturing systems and production efficiencies, 
and has previously been reviewed (Barbosa et al., 2003; 
Carvalho et al., 2006; Dasgupta et al., 2010; Eriksen, 2008; 
Posten, 2009; Pulz, 2001; Richmond, 2003; Tsygankov, 
2001; Xu et al., 2009). The commercial production of 
green microalgae today is mainly focused on species 
from four genera: Chlorella, Dunaliella, Haematococcus 
and Tetraselmis, which all are cultivated essentially for 
health food industry and aquaculture production.

Health food
Dunaliella spp., dominated by Dunaliella salina, are 
widely used for production of the antioxidant and color-
ing agent β-carotene. These algae are known to produce 
about 10% β-carotene of algal dry weight under stress con-
ditions (Lamers et al., 2008). A high number of companies 
produce Dunaliella for commercial products (Table 2). 
The most common products include extracted β-carotene, 
dried algal powder for human use and dried algal powder 
for animal feed. Dunaliella powder for human use can 
be sold directly as a health supplement due to its high 
content of proteins and antioxidants (Becker, 2007), and 
can also be sold as a protein source for food production 
(Finney et al., 1984). Most extracted β-carotene is sold 
in vegetable oil for coloring various food products and 
for cosmetics (Dufossé et al., 2005). β-carotene is added 
to cosmetics and food products like margarine, cheese, 
fruit juices, baked goods, dairy products, canned goods, 
confectionary and health condiments as a colorant and 
antioxidant, and as a precursor to Vitamin A (Dufossé 
et al., 2005). Extracts from Dunaliella salina is claimed 
to stimulate skin cell growth and proliferation (Kim et 
al., 2008). β-carotene extracted from Dunaliella is also 
added to pet food for the same reasons, and the addition 
of this pigment to animal fodder can improve the color 
of chicken skin, egg yolks, salmon flesh and shellfish. 
β-carotene produced from algae is considered to be more 
valuable than synthetic versions since the combination of 
cis- and trans-isomers leads to higher bioavailability and 
bioefficiency (Yeum and Russell, 2002).

As with Dunaliella, Haematococcus spp., dominated 
by Haematococcus pluvialis, are considered to be a rich 
source of proteins, vitamins and other nutrients, in addi-
tion to high amounts of the antioxidant and coloring 
agent astaxanthin (Dufossé et al., 2005). Haematococcus 
biomass can be more expensive to produce than 

Dunaliella because growth requirements cannot exclude 
contaminating organisms; closed bioreactor systems 
are therefore advantageous. However, the high value of 
Haematococcus biomass makes this production highly 
successful commercially (Table 2). These algae can grow 
and produce high contents of astaxanthin under both 
autotrophic and heterotrophic conditions. The astax-
anthin production is usually a two-stage process where 
biomass is firstly produced under optimal growth condi-
tions. In the second stage, the algae are exposed to sub-
optimal conditions that lead to a cell resting stage and 
formation of haematocysts where the cells produce high 
amounts of astaxanthin. These sub-optimal conditions 
include nitrate and phosphate deprivations, increased 
temperature and light intensity, or osmotic stress caused 
by addition of NaCl (Lorenz and Cysewski, 2000). A con-
centration of 7.7% astaxanthin has been reached at lab 
scale (Kang et al., 2005). Products from Haematococcus 
include extracted astaxanthin, dried algal powder for 
human use and dried algal powder for animal feed, these 
products have been available to consumers for about 10 
years (Guerin et al., 2003). Astaxanthin has many medi-
cal effects in both human and animals, as described in 
the Section “Carotenoids”, and its antioxidant activity is 
10 times higher than β-carotene and 500 times higher 
than α-tocopherol (Dufossé et al., 2005).

Chlorella spp., dominated by Chlorella vulgaris, is 
widely used as human health food due to its high nutri-
tional value (Pulz and Gross, 2004), and the majority of 
Chlorella biomass for human consumption has been 
sold as tablets or capsules. Although whole cells of 
Chlorella and Haematococcus have been added to food 
as a coloring agent and antioxidant (Gouveia et al., 2006), 
the market for direct addition of microalgal biomass to 
food for human consumption has been limited due to its 
distinct flavor. In order to maximize the nutritional value 
of the product, the Chlorella cell wall is mechanically 
broken in the production process (Janczyk et al., 2007). 
In addition to having a very high protein content (Becker, 
2007), different Chlorella species are able to accumulate 
high concentrations of carotenoids like lutein, astaxan-
thin and canthaxanthin. They are also able to produce 
PUFA, polysaccharides and extracts with different medi-
cal activities (Table 1). Oral intake of Chlorella biomass 
as a food supplement can lead to medical effects such as 
reduction of maternal transfer of dioxins (Nakano et al., 
2005). Extracts from Chlorella have been used for com-
mercial cosmetic products, and skin cream containing 
Chlorella extracts have been claimed to stimulate col-
lagen synthesis and thus prevent wrinkles (Kim et al., 
2008). Regarding safety, some concerns have been raised 
regarding intake of nucleic acids, which are present in 
most food sources. A high intake of purine may in some 
cases lead to increased plasma uric acid, which again 
may lead to gout. Studies have shown that for endan-
gered hyper-uremic persons, a daily intake of 20 g algae 
is considered safe (Becker, 2004b). Despite of this, safety 
evaluations of green algal biomass as a food additive, 
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cultured under normal conditions without exposure to 
heavy metals, have concluded that this product is safe for 
oral intake (Day et al., 2009; Mokady et al., 1989).

Aquaculture
The main applications of microalgae in aquaculture are, 
directly or indirectly, related to nutrition of various spe-
cies of aquatic farmed animals. They are frequently used 
as food source for marine herbivores and in the first 
feeding process of some carnivorous larvae (Lavens and 
Sorgeloos, 1996; Reitan et al., 1997). Microalgae are used 
as food source for producing live preys such as rotifers, 
copepods and brine shrimp, which serve in turn as food 
for early stages of carnivorous cephalopods, crustaceans 
and fish (Dahl et al., 2009; Seixas et al., 2008; Souto et al., 
2008; Watanabe et al., 1983). Microalgae are consumed 
mostly as whole cells, as a basic diet component or as a 

food additive to supply basic nutrients (Albentosa et al., 
1997). They can be valuable fresh or dried in the green 
water technique or as color additive. “Green water” 
refers to the feeding technique whereby algae are added 
to the organisms’ environment as a suspension (Neori, 
2011). Use of algae in the first-feeding process of aquatic 
animals may enhance the rearing success, including 
survival, growth and larvae quality (Conceicão et al., 
2010; Lavens and Sorgeloos,, 1996; Reitan et al., 1997). 
The most important algal species used as nutrient source 
in aquaculture production worldwide belong to the 
following classes: Bacillariophyceae, Chlorophyceae, 
Cyanophyceae, Eustigmatphyceae, Prasinophyceae and 
Prymnesiophyceae. Out of the algal species that are 
most commonly used as feed in commercial aquaculture 
today, only Chlorella spp. and Tetraselmis spp. belong to 
the green algae group.

Table 2.  Companies producing green microalgae for health food/ aquaculture/ animal feed/ pharmaceutical and industrial purposes.
Algae Common products Company Country
Dunaliella Biomass for health food, cosmetics or 

aquaculture feed, produced in the form of 
powder, paste, capsules or tablets. 
Extracts of β-carotene as color and antioxidant 
in food and cosmetics,produced in the form of 
powder or oil extract.

Aqua Carotene Ltd Australia
Betatene Ltd. Australia
Cognis Nutrition and Health Australia
Western Biotechnology Ltd. Australia
Inner Mongolia Biological Eng. P.R.China
Tianjin Lantai Biotechnology P.R.China
Cyanotech Corp. Hawaii, USA
ABL Biotechnologies Ltd. India
Parry Nutraceuticals India
Proalgen Biotech India
Nature Beta Technologies Ltd. Israel
Seambiotic Israel
Nikken Sohonsha Corporation Japan
Dutch State Mines The Netherlands
Easy Algae Spain

Haematococcus Biomass for health food, cosmetics or 
aquaculture feed, produced in the form of  
powder, paste, capsules or tablets. 
Extracts of astaxanthin for color and antioxidants 
in food and cosmetics,produced in the form of 
powder  
or oil extract.

WefirstBiotechnologyCo.,Ltd P.R. China
Blue BioTech Int. Germany
Cyanotech Corp. Hawaii, USA
Mera Pharmaceuticals Hawaii, USA
Parry Nutraceuticals India
AlgaTechnologies Israel
Dutch State Mines The Netherlands
Bioreal Inc. Sweden, USA, Japan

Chlorella Biomass for health food, cosmetics or animal 
feed, produced in the form of powder, paste, 
capsules or tablets.

Ocean Nutrition Canada
Bioprodukte Prof. Steinberg Produktions- 
undVertriebsGmbH& Co KG

Germany

Blue BioTech Int. Germany
Nikken Sohonsha Corporation Japan
Sun Chlorella Corp. Japan
YaeyamaShokusanCO.Ltd. Japan
Taiwan Chlorella Manufacturing and Co. Taiwan

Tetraselmis Biomass for aquaculture feed, produced in the 
form of powder, paste or tablets.

Astaxa GmbH Germany
Seambiotic Israel
EasyAlgae Spain
Reed Mariculture USA

Nannochloris Biomass for aquaculture feed. Seambiotic Israel
Chlorococcum Biomass for aquaculture feed. Seambiotic Israel
See text for details regarding use of algae products.
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In fish, a lack of PUFAs at various stages affects nega-
tively the eye development, pigmentation, vertebrae 
development, fecundity, spawning, egg quality and larval 
hatching rates (Bell et al., 2003; Lall and Lewis-McCrea, 
2007; Rainuzzo et al., 1997). PUFAs, such as AA, EPA and 
DHA as described in the Section “Fatty acids and their 
derivatives”, are essential for the growth and survival of 
marine fish larvae (Sargent et al., 1999). Since they have a 
very limited ability to biosynthesize PUFA de novo, their 
PUFAs are derived from zooplankton that consume algae 
(Yongmanitchai and Ward, 1989). In rotifers production, 
Tetraselmis sp. increases the DHA and EPA contents of 
the rotifers even with a short term enrichment period. 
However, to observe positive effects on growth and sur-
vival of fish larvae using rotifers with short term enrich-
ment in microalgae, microalgae need to also be added as 
green water (Reitan et al., 1997).

Several species of green microalgae have been 
reported to accumulate canthaxanthin, asthaxanthin, 
lutein, β-carotene and other carotenoids (Table 1). The 
aquaculture fodder industry (especially pigmentation of 
salmonids) is the largest market for use of extracts from 
Dunaliella and Haematococcus. Other species of green 
algae can also be potential sources of carotenoids, such 
as lutein from Muriellopsis (Del Campo et al., 2000). 
Carotenoid pigments fulfill very important roles in the 
growth of fish larvae. An astaxanthin- canthaxanthin- and 
β-carotene supplemented diet enhances pigmentation of 
organisms such as domesticated shrimp, red sea bream, 
salmon, trout, sea urchin, lobster and ornamental fish 
(Baker et al., 2002; Barclay et al., 2006; Choubert, 2010; 
Gouveia et al., 2002; Gouveia and Empis, 2003; Shpigel 
et al., 2006; Tejera et al., 2007). Astaxanthin has also been 
shown to be essential for growth and survival during the 
initial feeding period of shrimp, salmon and trout (Lakeh 
et al., 2010; Lorenz and Cysewski, 2000; Niu et al., 2009).

In aquaculture, vaccines are often delivered orally and 
the algae have an important potential for producing high 
quality recombined proteins (León-Bañares et al., 2004; 
Maliga, 2003). Chlamydomonas reinhardtii is known to 
have chloroplast features that are suited for developing 
an oral vaccine delivery system (Surzycki et al., 2009), 
which can lead to further development of the potential 
for a microalgal vaccine strategy for immunization of 
aquatic animals.

Algal biomass produced in large scale represents a 
potential for high quality substitute for fish-based ingre-
dients in aquaculture feeds. Specifically, algal prepara-
tions could be superior alternative sources for EPA, DHA 
and AA enrichment products in a variety of aquaculture 
feeds, and there may also be the additional benefit that 
microalgae may act as immuno-stimulants (Spolaore  
et al., 2006).

Summary and perspectives

The multidisciplinary process for use of algal technology 
described in Skjånes et al. (2007), can either be used as 

a complete process, or parts of the process can be used 
independently. Based on the current efficiency rates 
which are obtained with hydrogen production from 
green algae (Kruse et al., 2005; Timmins et al., 2009b), 
and recent economic feasibility studies (Stephens et al., 
2010), it is likely that hydrogen production from green 
algae must be combined with subsequent use of the bio-
mass, to achieve a viable, sustainable system.

There are many studies available which report for 
example efficiencies of algal biomass production, the 
nutrient composition of algae, algal production of chemi-
cals, and algal tolerance to separate stress factors, as 
discussed above. What most of these studies have in com-
mon is that they either report comparisons of a species 
under different conditions, or compare several species 
under fixed conditions. The values reported by these stud-
ies are the result of physical conditions used in the lab for 
those specific experiments, like for example size and form 
of culture vessel, bubble size of CO

2
 mixture, and stirring 

speed. Because of this, comparing any type of efficiency 
numbers between different studies is very difficult, in 
many cases impossible, even if basic measurable condi-
tions such as light, temperature and pH are identical. In 
this review, the only references to efficiencies have been 
“high” or “low”, referring to comparisons within each 
paper, or a general overall picture from several papers. 
Because of this fact, this review does no attempt to suggest 
which algae are most efficient for the different uses. The 
purpose here is to discuss which species are likely to be 
able to perform at several stages in a combined process, 
based on the currently available information.

A substantial amount of research is currently ongoing 
within genomic and metabolic engineering of algae for 
efficient production of different potential algal products, 
including hydrogen (Beer et al., 2009; Griesbeck et al., 
2005; Li and Tsai, 2009a). Considerable progress has been 
achieved in this field during the last decade, and there is 
a clear potential for increased exploitation of modified 
algae, compared to wild types. However, in many coun-
tries there is, and may continue to be, a severe resistance 
against gene modified organisms. In some cases there 
will be regulations preventing the use of these organisms 
either in general, or for specific uses, and in other cases 
there will simply be disapprovement and fear among the 
potential customers. This will severely limit the market 
potential, as might be the case in examples like health 
food for human consumption. It is our opinion that there 
is, and will continue to be, a need for “natural” products 
from organisms isolated directly from nature. It is there-
fore important to find out more about which naturally 
occurring species are able to perform useful processes, 
something this study has attempted to clarify.

In many cases, screening for specific metabo-
lites or general extracts having activities with medi-
cal application is performed with algae grown under 
optimal-, or close to optimal conditions. Examples 
are studies where species of algae are screened for 
metabolites with antimicrobial, anticancer and 
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haemagglutinating activity (Chou et al., 2008; Chu  
et al., 2004; Hasegawa et al., 2002; Kim et al., 2009a; 
Ördög et al., 2004). As described in the Section “Analysis 
of current knowledge, potential products from algae”, 
many of these substances may be secondary metabolites 
that are induced under stress or sub-optimal conditions. 
There is reason to believe that many species may have the 
ability to produce a high amount of valuable molecules 
given the right conditions, and that there still is a great 
undetected potential in that respect. Many secondary 
metabolites are produced by applying several stress fac-
tors to the algal culture. The synergistic effect of several 
stress factors can be necessary to get an optimal produc-
tion of these chemicals, indicating that this could also be 
the case for other algal products.

Hydrogen production represents a reaction to stress 
factors like for example light and nutrient deprivation, 
where the cell needs to dispose of excess energy absorbed 
by the photosystems. A practical system for producing 
significant amounts of metabolites from algae usually 
consists of a two stage process, where the algae firstly 
are grown under optimal conditions to produce a dense 
culture. In the second stage, stress conditions are applied 
that induce production of the interesting metabolites 
(Hu, 2004). As pointed out above a practical hydrogen 
production process from green algae is often described 
as a two stage process as well (Melis and Happe, 2001). 
However, it should be noted that hydrogen production by 
algae during sulfur deprivation is at present a very sensi-
tive process where small changes in physical factors such 
as light intensity, pH and nutrient composition can cause 
major effects on the hydrogen production efficiency (Kim 
et al., 2006a; Kosourov et al., 2003). Careful studies must 
be performed in order to obtain a production of valuable 
metabolites that does not compromise hydrogen pro-
duction rates. The current knowledge of hydrogen pro-
duction from green algae by sulfur deprivation suggests 
that the hydrogen production is strongly dependent on 
the algae’s ability to accumulate starch (Kruse et al., 2005; 
Posewitz et al., 2004). The studies of a combined process 
may therefore explore a potential combination of biosyn-
thesis of starch and valuable metabolites during the ini-
tial step of sulfur deprivation. Alternatively, the targeted 
algae may produce the metabolites simultaneously with 
hydrogen or after the hydrogen production has stopped 
as a protection mechanism. These options are illustrated 
in Figure 1. All these three possibilities must be explored 
experimentally.

Figure 4 presents a selection of secondary metabolites 
produced by green algae, and the main stress factors 
known to induce their production. See Table 1 for infor-
mation on which species have been shown to produce 
large amounts of the different products, and text above 
for more details.

Nevertheless, the most important secondary metabo-
lites currently available commercially are carotenoids, 
mainly astaxanthin from Haematococcus sp. and 
β-carotene from Dunaliella sp. These pigments are 

induced by several stress factors like high light intensity, 
nutrient deprivation and high salt concentration. Their 
main purpose is to protect the cell from oxidative stress, 
which is also the main purpose of hydrogen production 
during sulfur starvation. Carotenoids dissipate energy, 
but have been shown to be co-produced with TAG con-
taining lipid bodies (Rabbani et al., 1998).

Another important product from algae is PUFA. Algae 
will accumulate increased amounts of unsaturated fat 
during stress conditions like low temperature, nutrient 
deprivation and high salt concentration. These unsatu-
rated fatty acids can accumulate in the membranes in 
order to maintain their biological functions or, in some 
cases, in storage globules in the cytoplasm functioning as 
energy reserves.

Glycerol production in green algae is induced by 
osmotic stress and, in some cases, also by exposure to 
high CO

2
 concentrations or nutrient deprivation. Under 

osmotic stress, glycerol functions as an osmolyte to main-
tain a normal salt balance inside the cell. In some cases, 
there can be a correlation between glycerol production 
and degradation of starch, indicating that starch is used 
as an energy source and possibly also carbon source for 
glycerol synthesis. Assuming this is the case and, con-
sidering the fact that hydrogen production during sulfur 
deprivation also partly uses starch as an energy source, a 
combination of these two processes may not be optimal. 
Moreover, the market value of glycerol has dropped sig-
nificantly the most recent years, due to the fact that this 
compound is a by-product from biodiesel production 
(Johnson and Taconi, 2007). Products from breakdown 
of starch in species of green algae have been previously 
presented, and the degradation pathways leading to 
hydrogen and other products were shown to vary greatly 
between species (Meuser et al., 2009).

As for hydrogen production, nutrient deprivation and 
high light intensities are stress reactions that have been 
shown to induce lectins. Production of lectins is highly 
dependent on their functions in the cells and, as they are 
a highly diverse group of proteins, it is therefore difficult 
to make general assumptions for a combined production 
with hydrogen. Vitamins, other antioxidants and MAA 
are induced by high light intensity or UV-light as part of 
a photoprotective response. Several compounds with 
medical effects have been identified, like for example 
glycoproteins, glutathione, different polysaccharides and 
unidentified antibiotics, but in these cases little informa-
tion is available regarding the conditions leading to their 
induction.

In cases where certain secondary metabolites are 
produced in large amounts as a response to oxidative 
stress, the metabolites may function as energy sinks. 
In a combined process where the goal is to produce an 
optimal proportion of hydrogen and valuable products, 
a very large content of a metabolite (%w/w) may lead 
to decreased hydrogen production efficiency. Examples 
of metabolites produced as a reaction to oxidative 
stress that reach a high concentration in the cells are 
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β-carotene and astaxanthin (7–10%), as described in the 
Section “Carotenoids”. This may indicate that in a practi-
cal process where hydrogen and a valuable metabolite 
are to be produced simultaneously, the best option may 
be to target production of a metabolite that is produced 
in smaller amounts, but which have a correspondingly 
higher market value. The identification and selection of 
the most suitable metabolite for this process is a topic 
for further studies. An alternative can be, as described 
above and illustrated in Figure 1C, a second step after 
the hydrogen production where other conditions are 
applied, to induce production of large amounts of a valu-
able metabolite.

From this study, it is clear that with the current status 
in the field it is difficult to conclude on which combina-
tion of stress reactions and which species are preferable 
to explore for potential combined production of optimal 
amounts of hydrogen and valuable side products, either 
simultaneously or in sequence. The majority of research 
on a practical use of algae is focusing on the study of each 
process separately, and often on just one species at the 
time. Algae’s reactions to different stress factors represent 
a complicated interaction by many metabolic processes, 
and the production of metabolites and hydrogen will 
depend on more than just single stress factors applied 
to different species. A significant amount of research is 
still necessary, and some is currently ongoing to identify 
optimal conditions for a combined system that would 
provide a practically sustainable process.

The model organism, Chlamydomonas reinhardtii, 
has been thoroughly studied in many respects, including 
hydrogen production. However, regarding production 
of metabolites with industrial/ pharmaceutical interest 
from wild types, the research has focused more on the 
species mentioned in the Section “Present commercial 
uses of green microalgae”, which have already shown a 
clear commercial potential. Although Chlamydomonas 
spp. are also able to produce interesting metabolites, lit-
tle research has focused on how to promote and optimize 
their production, except in the case of gene modification. 
This could be due to well-known superior growth rates 
by other species, making a practical production process 
of the metabolites more likely to succeed. As reported 
in Table 1, a higher number of Chlamydomonas species 
have been found to produce hydrogen, than other gen-
era. This can be explained by the fact that many more 
Chlamydomonas species have been identified and can 
be found in culture collections and databases. As one 
example, there are currently 1163 Chlamydomonas spe-
cies names in the Algaebase database (Guiry and Guiry, 
2012), out of which 417 have been flagged as currently 
accepted taxonomically. For comparison, the same data-
base has registered 76 Chlorella species, 28 species of 
Dunaliella, 15 species of Haematococcus, and 15 species 
of Botryococcus.

Although some species have a better productivity than 
others, it is possible that some main characteristics to 

some extent can be transferred among species of the same 
genus. Algal genera used commercially today that are 
also known to produce hydrogenases, include Chlorella, 
Chlorococcum, Haematococcus and Tetraselmis.

The halotolerant/ halophilic Dunaliella spp. are green 
algae able to produce large amounts of β-carotene and glyc-
erol under high light intensity and salt stress (Ben-Amotz, 
2004). Even if Dunaliella species are already produced 
commercially, hydrogenase has never been observed in 
any species of this genus, and Dunaliella is therefore less 
likely to be a candidate for our proposed combined process.

One example of an algal species that has several 
qualities sought after in a potentially commercial con-
text is Chlorella sorokiniana. Like many other Chlorella 
species, it is considered easy to culture with high growth 
rates (Morita et al., 2000; Qiao and Wang, 2009; Ugwu 
and Aoyagi, 2008), is able to produce high amounts of 
carotenoids and other antioxidants (Matsukawa et al., 
2000), fatty acids with activities of medical application 
(Chou et al., 2008), and significant amounts of hydrogen 
(Chader et al., 2009). It is highly tolerant to heat stress 
and irradiant stress (Cuaresma et al., 2009; de-Bashan et 
al., 2008). It also shows high lipid productivity, although 
the lipid content of the cells does not necessarily increase 
during N-limitation, as is the case with many other spe-
cies (Griffiths and Harrison, 2009).

In many cases, algae’s reaction to stress will vary 
within each genus, and in some cases even within each 
species. In order to obtain strains with a good ability for 
stress adaptation reactions it could be useful to isolate 
algae from stress exposed environments. When choosing 
algae for a practical process of hydrogen production, we 
suggest that the algae fulfill the following conditions:

•	 Presence of hydrogenase and ability for hydrogen 
production,

•	 fast growth during optimal environmental conditions,
•	 adaptation mechanisms for nutrient deprivation and 

other environmental stress factors,
•	 ability to produce metabolites of pharmaceutical/ 

industrial interest,
•	 high production of these metabolites before or after 

hydrogen production.

In conclusion, this review is an initial attempt to cre-
ate a conceptual overview of possibilities for innovative 
use of different species of green microalgae. One of the 
intentions has been to create a basis for selecting algae to 
screen for the above mentioned characteristics, with the 
goal to perform an innovative combined process where 
hydrogen and other valuable products can be produced 
either simultaneously or in sequence. The review also 
presents an overview of stress mechanisms and how 
these can be applied in order to induce production of 
valuable chemicals. The results show that green algae 
from at least 12 genera have shown ability to produce 
both hydrogen and several interesting metabolites, and 
these representatives could form a starting point for a 
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systematic screening for candidates suited for a com-
bined energy and high value compound production.
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