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 Genetic variants in MTNR1B affecting insulin secretion      
    KARSTEN     M Ü SSIG  ,       HARALD     STAIGER  ,       FAUSTO     MACHICAO  ,   
    HANS-ULRICH     H Ä RING    &        ANDREAS     FRITSCHE   

  Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, Department of Internal Medicine, 
Eberhard Karls University, Member of the German Centre for Diabetes Research (DZD), Otfried-M ü ller-Str. 10, 72076 
T ü bingen, Germany          
 Abstract 
 The incidence of type 2 diabetes mellitus has markedly increased worldwide over the past decades. Pancreatic  β -cell dys-
function as well as central and peripheral insulin resistance appears to be elementary features in the pathophysiology of 
type 2 diabetes mellitus. Major environmental conditions predisposing to the development of type 2 diabetes are excessive 
food intake and sedentary life-style on the background of a genetic predisposition. Recent genome-wide association stud-
ies identifi ed several novel type 2 diabetes risk genes, with impaired pancreatic  β -cell function as the underlying mechanism 
of increased diabetes risk in the majority of genes. Many of the novel type 2 diabetes risk genes, including  MTNR1B  which 
encodes one of the two known human melatonin receptors, were unexpected at fi rst glance. However, previous animal as 
well as human studies already pointed to a signifi cant impact of the melatonin system on the regulation of glucose home-
ostasis, in addition to its well known role in modulation of sleep and circadian rhythms.     
  This brief review aims to give an overview of how alterations in the melatonin system could contribute to an increased 
diabetes risk, paying special attention to the role of melatonin receptors in pancreatic  β -cell function.   

Key words: Diabetes mellitus type 2 ,   melatonin receptors  ,   pancreatic beta-cell  ,   single nucleotide polymorphism  ,  SNP        
Introduction 

 The incidence of type 2 diabetes mellitus has mark-
edly increased worldwide over the past decades, 
reaching epidemic proportions with major health 
consequences at an individual as well as a public 
health level (1). Although the underlying mechanisms 
of type 2 diabetes are not completely understood, 
pancreatic  β -cell dysfunction as well as central and 
peripheral insulin resistance appears to be elementary 
features in the pathophysiology of type 2 diabetes mel-
litus (2,3). Major environmental conditions that pre-
dispose to the development of type 2 diabetes are 
excessive food intake and sedentary life-style on the 
background of a genetic predisposition (4). 

 Recent genome-wide association (GWA) studies 
identifi ed a series of new risk loci for type 2 diabetes 
(5 – 19). Many of the novel type 2 diabetes risk genes, 
including  MTNR1B  which encodes one of the two 
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known human melatonin receptors, were unexpected 
at fi rst glance. However, previous animal as well as 
human studies already pointed to a signifi cant impact 
of the melatonin system on the regulation of glucose 
homeostasis, in addition to its well known role in 
modulation of sleep and circadian rhythms (20). In 
humans, insulin secretion rates and serum insulin 
concentrations underlie circadian changes, with 
increasing insulin secretion during the day and 
decreasing during the night (21). Plasma melatonin 
levels, a major regulator of the circadian rhythm, 
behave in the opposite manner, with lowest values 
when insulin secretion rates peak and vice versa (21). 
Disturbances of sleep and circadian rhythms, typically 
found in shift-work and jet lag, can lead to signifi cant 
changes in energy metabolism and represent, there-
fore, important mechanisms in the development of 
obesity and type 2 diabetes (22). In accordance, a 
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Key messages

    • MTNR1B  was recently added to the 
growing list of diabetes genes. 
 Similar to the majority of novel diabetes genes,   •
variants in  MTNR1B  confer pancreatic  β -cell 
dysfunction. 
 Melatonin receptors appear to be involved in   •
insulin secretion, though their role especially in 
human pancreatic  β -cells is only incompletely 
understood, and the literature regarding this 
is partly controversial. 

  Abbreviations  

 cAMP cyclic adenosine monophosphate 
 cGMP cyclic guanosine monophosphate 
 GLP-1 glucagon-like peptide-1 
 GWA genome-wide association 
 IP 3  inositol-1,4,5-trisphosphate 
 MTNR1A melatonin receptor 1A 
 MTNR1B melatonin receptor 1B 
MTNR1C melatonin receptor 1C
simulated phase shift signifi cantly alters pancreatic 
 β -cell responses, postprandial glucose levels, and 
lipid metabolism (23), and circadian misalignment 
results in postprandial glucose responses in the range 
characteristic of a prediabetic state (24). 

 This brief review aims to give an overview of how 
alterations in the melatonin system could contribute 
to an increased diabetes risk, paying special attention 
to the role of melatonin receptors in pancreatic  β -cell 
function.   

 Effects of   MTNR1B   type 2 diabetes risk 
variants on  β -cell function 

 Several variants within the  MTNR1B  gene locus, i.e. 
rs1387153, rs2166706, rs10830962, rs4753426 (all 
located in the 5 ’ -fl anking region), rs10830963, 
rs3781638 (both located in intron 1), and rs8192552 
(located in exon 1, resulting in the non-synonymous 
mutation G24E) — localization within the locus 
depicted in Figure 1 — were found to associate with 
impaired fasting glucose (16,25 – 35) and increased 
risk of type 2 diabetes (16,26 – 29,32,34) in both 
adult and child populations of different ethnicity. All 
studied single nucleotide polymorphisms (SNPs) 
confer impaired fasting glucose, whereas an increased 
risk of type 2 diabetes was described for rs1387153, 
rs2166706, and rs10830963 (Table I). Similar to 
other diabetes risk genes, the odds ratio for presence 
or later development of type 2 diabetes was moderate, 
ranging from 1.09 to 1.23 (16,26 – 29,32,34), support-
ing the multifactorial genesis of type 2 diabetes with 
complex interactions of a large quantity of suscepti-
bility genes. The  MTNR1B  variant rs10830963 that 
shows considerable consistency over these studies is 
located within the single 11.5 kb intron of the 
 MTNR1B  gene (Figure 1) without interfering with 
consensus transcription factor binding or alternative 
splicing (16). 

  MTNR1B  is one of the recently identifi ed 13 dia-
betes risk genes that confer an impaired pancreatic 
 β -cell function (16,25,26,29,30,33,36 – 38).  MTNR1B  
variants rs10830962, rs4753426, rs10830963, and 
rs3781638 associated with reduced insulin secretion, 
whereas one SNP, i.e. rs3781638, affected insulin 
sensitivity (25) and one SNP, i.e. rs8192552 (G24E), 
associated with changes in measures of obesity (35) 
(Table I). In the latter study, the minor allele of 
rs8192552 was associated with increased body mass 
despite decreased fasting plasma glucose levels. 
The authors hypothesized that these discrepant 
results may be due to differential regulation of the 
melatonin receptor in specifi c target tissues (35). 

 Given that the described polymorphisms in 
 MTNR1B  affect different aspects of prediabetes and 
that they are only in moderate linkage disequilibrium 
(LD), as depicted in Figure 1, these variants prob-
ably do not refl ect all the same association signal. 

 Though the underlying mechanisms by which 
common genetic variation within these loci affects 
 β -cell function are not completely understood, risk 
variants may alter glucose-stimulated insulin secre-
tion, proinsulin conversion, incretin sensitivity or 
incretin secretion. Impairments of the following 
measures of  β -cell function were found to be associ-
ated with  MTNR1B  variants: homeostasis model 
assessment of insulin secretion (16,33), insulin 
release after oral and intravenous glucose challenges 
(25,29,36), and, in particular, the early insulin 
response to both oral and intravenous glucose 
(26,30,37,38). In carriers of  MTNR1B  risk variants, 
faster deterioration of glucose-stimulated insulin 
secretion during a 7-year follow-up period was reported 
(26). Furthermore,  MTNR1B  was one of eight type 
2 diabetes genes, summation of which was associated 
with reduced fi rst-phase glucose-stimulated insulin 
secretion during hyperglycaemic clamps (39). In a 
very recent study, the risk allele of the  MTNR1B  
SNP rs10830963 associated with increased insulin 
responses towards glucagon-like peptide-1 (GLP-1) 
and arginine stimulation, despite reduced insulin 
secretion after an oral glucose challenge (36). This 
fi nding surprises in so far as incretins, including 
GLP-1, mediate, at least to some extent, the insulin 
secretion after oral glucose intake.   
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 Expression and function of melatonin 
receptors in pancreatic  β -cells 

  MTNR1B  (melatonin receptor 1B; OMIM entry no. 
600804) encodes one of two known human mela-
tonin receptors, which are MTNR1A, also known as 
Mel 1A  or MT 1 , and MTNR1B, also known as Mel 1B  
or MT 2  (40). In amphibia and birds, with MTNR1C, 
also known as Mel 1C  or MT 3 , a third melatonin 
receptor subtype has been identifi ed (41).  MTNR1B  
is located on the long arm of chromosome 11, con-
tains two coding exons that span about 10 kb, and 
shares about 60% nucleotide sequence homology 
with  MTNR1A  (40). Both receptors belong to the G 
protein-coupled receptor family which is character-
ized by seven transmembrane domains, an extracel-
lular N-terminal domain, and an intracellular 
C-terminal domain. While the  MTNR1A  subtype is 
expressed in the pars tuberalis of the pituitary gland, 
the suprachiasmatic nuclei of the hypothalamus, and 
the paraventricular thalamus, the  MTNR1B  subtype 
is present in rodent suprachiasmatic nuclei and hip-
pocampus as well as in human retina and, to a lesser 
extent, brain (42). 

 Furthermore, melatonin receptors have been 
detected in neonatal rat pancreas (43), in the insulin-
secreting rodent insulinoma cell lines INS-1 and 
MIN-6 (44,45), as well as in rat and human islets 
and pancreatic  β -cells (46,47). Early studies showed 
a signifi cantly lower  MTNR1B  expression in com-
parison with  MTNR1A  expression in human and rat 
islets as well as in the murine MIN-6 cell line (46,47). 
Analysis of  MTNR1A  mRNA content at the single 
cell level showed its expression in human pancreatic 
 α -cells, but not in  β -cells (47). In a very recent study, 
the occurrence of MTNR1A and MTNR1B in human 
islets as well as in clonal  β -cells was confi rmed (26). 
However, in contrast to previous studies (46,47), 
both melatonin receptors were almost equally 
expressed in human islets (26). While MTNR1B was 
predominantly detected in  β -cells in both human 
and rodent islets, MTNR1A was present only in a 
population of peripherally located  β -cells in human, 
mouse, and rat islets (26). 

 In the vast majority of  in-vitro  studies, treatment 
of pancreatic  β -cells with melatonin attenuated insu-
lin secretion (43 – 45,48,49), though a limited num-
ber of studies in pancreatic islets did not reveal 
inhibitory (50) but even stimulatory effects (47) of 
melatonin on  β -cell function. A potential explanation 
for the discrepant results is that the stimulatory 
action of melatonin on insulin release that has 
been observed in one study most probably resulted 
 Figure 1.     Genomic region of human chromosome 11 harbouring the  MTNR1B  gene locus and linkage disequilibrium (LD) data of 
representative single nucleotide polymorphisms (SNPs) within this region (HapMap data). The  MTNR1B  gene consists of 2 exons and 
spans 13,160 bases from nucleotide 92,342,437 to nucleotide 92,355,596. The locations of the genotyped representative SNPs are 
indicated by arrows. The HapMap minor allele frequencies (MAF) are given below the SNP numbers. The Haploview LD colour scheme 
 ‘  r -squared ’  was chosen to visualize LD data. Within the diamonds, the  r   ²   values are given. SNP rs8192552 (G24E) is not covered by the 
HapMap data and was added, therefore, on the right side of the diamonds. No linkage data are available for this SNP.  



  Table I. Associations of single nucleotide polymorphisms within 
or in proximity to the  MTNR1B  gene locus with prediabetes 
phenotypes and risk of type 2 diabetes.  

Single nucleotide 
polymorphism

Risk allele 
(frequency)

Metabolic phenotype 
of risk allele carriers References

rs1387153 T (0.30) Impaired fasting 
plasma glucose, 
increased type 
2 diabetes risk 
(odds ratio � 1.15)

(27)

rs2166706 C (0.45) Impaired fasting 
plasma glucose, 
increased type 
2 diabetes risk 
(odds ratio � 1.21)

(32)

rs10830962 G (0.40) Impaired fasting 
plasma glucose, 
reduced  β -cell 
function

(25)

rs4753426 C (0.50) Impaired fasting 
plasma glucose, 
reduced  β -cell 
function

(25)

rs10830963 G (0.30) Impaired fasting 
glucose, reduced 
 β -cell function, 
increased type 
2 diabetes risk 
(mean odds 
ratio � 1.15; 
range 1.09 – 1.23)

(16,25,26,
28 – 31,33,

36 – 39)

rs3781638 A (0.55) Impaired fasting 
glucose, reduced 
 β -cell function, 
diminished 
insulin 
sensitivity

(25)

rs8192552 G (0.90) Impaired fasting 
glucose, 
decreased body 
mass

(35)
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indirectly from melatonin-induced glucagon secre-
tion (47). In agreement with the negative actions of 
melatonin on  β -cell function  in vitro , in animal stud-
ies, pinealectomy caused severe hyperinsulinaemia 
(51) and a signifi cant insulin hypersecretion in iso-
lated pancreatic islets (49,52), whereas exogenous 
application of melatonin decreased insulin plasma 
levels (53). Besides, very recently insulin secretion 
from isolated islets of  MTNR1A ,  MTNR1B , or 
 MTNR1A  and  MTNR1B  double-knockout animals 
was found to be enhanced compared to wild-type islets 
(54). In line with these fi ndings, over-expression of 
melatonin receptors has been found in islets from 
patients with type 2 diabetes in comparison with 
non-diabetic subjects (55). 

 The two melatonin receptors, MTNR1A and 
MTNR1B, on pancreatic  β -cells are linked to three 
highly divergent signalling pathways, each with dif-
ferent impact on insulin secretion. The adenylyl 
cyclase/cyclic adenosine monophosphate (cAMP) 
pathway predominates regarding insulin liberation 
from pancreatic  β -cells (56). MTNR1A as well as 
MTNR1B are coupled to the pertussis toxin-sensitive 
inhibitory G i α   protein that can inhibit cAMP-
dependent signalling and subsequently insulin 
secretion (40,49). The importance of pertussis toxin-
sensitive inhibitory G proteins as regulators of 
insulin secretion has been underscored by a recent 
mouse study showing that pancreatic  β -cell-specifi c 
inactivation of the inhibitory G proteins (Gi/o) 
resulted in constitutive hyperinsulinaemia, increased 
insulin secretion in response to glucose, and resis-
tance to diet-induced hyperglycaemia (57). This 
study identifi ed several highly expressed Gi/o-coupled 
receptors, such as  α 2A-adrenoceptor, glucagon-like 
peptide-1 (GLP-1) receptor, and glucose-dependent 
insulinotropic peptide (GIP) receptor, in pancreatic 
 β -cells, though MTNR1B was not among those. 
While acute treatment with melatonin reduced the 
forskolin- and GLP-1-stimulated cAMP formation 
and insulin secretion in pancreatic  β -cells (44,45), 
after prolonged exposure to melatonin treatment 
cAMP-mediated responses to forskolin and GLP-1 
were enhanced (45) due to the well known G protein-
coupled receptor desensitization mechanisms in 
which G protein-coupled receptor kinases are 
involved (58). Inhibition of the guanylate cyclase/
cyclic guanosine monophosphate (cGMP) pathway 
following activation of the MTNR1A (but not 
MTNR1B) is a further mechanism for inhibitory 
effects of melatonin on insulin secretion (59). Though 
less relevant than the aforementioned pathways, 
melatonin exerts its biological effects on the pancre-
atic  β -cell also via MTNR1A-dependent, but G i α  -
independent activation of phospholipase C and 
release of its second messenger inositol-1,4,5-
trisphosphate (IP 3 ). Binding of IP 3  to its cognate 
receptor results in opening of calcium channels and 
an increase in intracellular calcium, thereby facilitat-
ing insulin secretion from pancreatic  β -cells (60). 
Thus, the actions of melatonin on pancreatic  β -cells 
and on insulin release result from a complex inter-
play of intracellular signal transduction cascades, 
which comprise the cAMP-, cGMP-, and IP 3 -signal-
ling pathways. Furthermore, effects of melatonin on 
pancreatic  β -cells appear to be species-specifi cally 
regulated, given that in one study melatonin did not 
alter the cAMP content in human islets, whereas 
melatonin treatment reduced cAMP formation and, 
subsequently, insulin secretion in murine MIN-6 
cells (47). 

 In this context it is important to note that the use 
of nocturnal animals as model organisms is limited, 
in so far that in these animals melatonin levels are high 
during their active period, in contrast to humans where 
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they are highest during the non-active period. These 
differences could explain some of the controversial 
data on melatonin and glucose metabolism found in 
humans and in murine animal models. 

 Although  in-vitro  studies have clearly shown 
direct effects of melatonin on pancreatic  β -cell function, 
it cannot be excluded that there are also other effects 
of melatonin that indirectly infl uence  β -cell function 
and glucose homeostasis. This assumption is sup-
ported by the expression of the melatonin receptors 
in tissues with crucial functions in carbohydrate 
metabolism, such as adipose tissue, skeletal muscle, 
liver, and hypothalamus (61,62). Previous studies in 
human brown adipocytes pointed to an important 
role of melatonin in adipocyte physiology, including 
glucose transporter 4 expression and glucose uptake, 
through MTNR1B activation (63). The impact of 
melatonin through melatonin receptor activation on 
early events of the insulin-dependent cascade, such 
as the insulin receptor substrate-1 (IRS-1)/phos-
phatidylinositol 3-kinase (PI3K) pathway, as well as 
on end-points of insulin action, including glucose 
transport, have been also described in murine skeletal 
muscle cells (64). In line with this, in a very recent 
mouse study, functional knock-out of  MTNR1A  sig-
nifi cantly impaired glucose metabolization, probably 
due to increased insulin resistance (65). Melatonin-
induced activation of insulin signalling pathways, 
such as the IRS-1/PI3K or the IRS-1/mitogen-
activated protein kinase (MAPK) pathways, most 
likely via MTNR1B, were also found in rat hypotha-
lamic suprachiasmatic nucleus which directly controls 
the circadian rhythm of plasma glucose concentra-
tion (66). As shown in hepatic HepG2 cells, mela-
tonin modulates central mechanisms of insulin action 
in the liver, such as glycogen synthesis, via a protein 
kinase C (PKC)- ζ /Akt/glycogen synthase kinase 3 β  
(GSK3- β ) pathway (67). In agreement with these 
preclinical data, two recent genetic studies showed 
associations of  MTNR1B  variants with measures of 
insulin sensitivity (25) and body mass (35).   

 Future outlook 

 In light of the inhibiting actions of melatonin on 
insulin secretion in pancreatic  β -cells (68), the 
increased expression of the melatonin receptor 
MTNR1B in islets of subjects with type 2 diabetes 
(26,69), and the association between common 
variants in  MTNR1B  and type 2 diabetes risk (26 –
 29,31,32), MTNR1B appears to be a potential tar-
get for the development of anti-diabetic therapies. 
Treatment with melatonin receptor antagonists, 
such as the non-selective melatonin receptor antag-
onist luzindole (N-acetyl-2-benzyltryptamine) as 
well as the MTNR1B-specifi c antagonist 4P-PDOT 
(4-phenyl-2-propionamidotetraline), reversed the 
inhibiting effect of melatonin on insulin secretion in 
pancreatic  β -cells (68). Both melatonin receptor 
antagonists proved effectively to ameliorate mela-
tonin actions also in animal models (66). However, 
while melatonin agonists, such as agomelatine (Val-
doxan ™ ), have become mainstays in the current 
treatment of depression (70), preclinical studies on 
melatonin receptor antagonists are not yet at the 
point where clinical trials can be recommended.   

 Conclusions 

  MTNR1B  was recently added to the growing list of 
diabetes genes. Variants within the  MTNR1B  gene 
locus were found to associate with impaired fasting 
glucose and increased risk of type 2 diabetes in both 
adult and child populations of different ethnicity. 
Similar to the majority of novel diabetes genes, vari-
ants in  MTNR1B  confer pancreatic  β -cell dysfunc-
tion. These associations appear highly plausible, in 
light of substantial evidence in human and animal 
studies linking disturbances of circadian rhythms 
and sleep to metabolic disorders, such as diabetes 
and obesity, the signifi cant involvement of the mela-
tonin system in the regulation of glucose homeosta-
sis, and the, though not completely understood, 
role of the melatonin receptors in pancreatic  β -cell 
function and, in particular, insulin secretion.  
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