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                         REVIEW ARTICLE     

 Non-alcoholic fatty liver disease and metabolic syndrome in 
adolescents: Pathogenetic role of genetic background and 
intrauterine environment      
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 Abstract 
 In the last three decades the incidence of metabolic syndrome (MetS) has been growing worldwide along with an increase 
of obesity, type 2 diabetes mellitus, and non-alcoholic fatty liver disease (NAFLD). In children and adolescents such 
epidemics are particularly worrisome, since the metabolic consequences in adulthood will signifi cantly burden the health 
care system.   

 Although the defi nition of MetS in childhood is still controversial, there is agreement with respect to NAFLD being 
the hepatic manifestation of MetS. However, the molecular pathogenesis of MetS and its contribution to NAFLD is com-
plex and closely related to the pre- and postnatal environment as well as to genetic predisposing factors. The analysis of the 
possible relationships between NAFLD and MetS is particularly interesting, not only from an epidemiological point of view, 
but also to better understand the genetic and environmental factors contributing to the development of both diseases.   

 We here summarize the most recent epidemiological data on the incidence of both diseases in adolescents, and several 
aspects linking MetS with NAFLD, discussing the possible role played by genetics and intrauterine environment.   

 Key words: Adolescents  ,   life-style  ,   metabolic syndrome  ,   non-alcoholic fatty liver disease     

Introduction 

 The metabolic syndrome (MetS) is a cluster of 
metabolic and cardiovascular risk factors including 
insulin resistance and diabetes, central obesity, ele-
vated cholesterol levels, and high blood pressure 
(1,2). In particular, the latest worldwide defi nition 
of the MetS by the International Diabetes Federa-
tion (IDF) includes central obesity defi ned by 
increased waist circumference (with ethnicity and 
sex-specifi c values) and two or more of the follow-
ing features: raised triglyceride concentrations 
( � 150 mg/dL); reduced high-density lipoprotein 
(HDL) cholesterol ( � 40 mg/dL in males,  � 50 mg/

dL in females); elevated blood pressure (systolic 
blood pressure  � 130 and/or diastolic blood pres-
sure  � 85 mmHg); and raised fasting glucose ( � 100 
mg/dL) (3). Although this IDF defi nition was ini-
tially used also for children and adolescents, there 
is now a new defi nition of MetS that is more easily 
applicable in clinical practice. Waist circumference, 
considered as percentiles rather than absolute val-
ues, represents the main component of MetS in 
children and adolescents (4). As discussed below, 
MetS in children is defi ned differently with respect 
to three age-groups: 6 – 10 years, 10 – 16 years, 
and  � 16 years. 
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 In the last 20 years, incidence of MetS has 
increased dramatically in the adult population, and 
evidence is emerging of wide-spread MetS in children 
and adolescents (6,7). This escalation is partly due to 
genetic predisposition and intrauterine events, and 
partly to over-nutrition and sedentary life-style that 
characterize the adolescence of urban children (8,9). 
Unhealthy life-style and consequent obesity during 
childhood (2 – 11 years) strongly contribute to making 
adolescents (12 – 18 years) prone to develop MetS and 
related diseases during the teenage period (10). 

 In addition to the classical components of the 
MetS, there is increasing alarm regarding the emer-
gence of non-alcoholic fatty liver disease (NAFLD) 
(11,12), which comprises variable degrees of simple 
steatosis, non-alcoholic steatohepatitis (NASH), and 
fi brosis in obese children and adolescents (13). Epi-
demiological studies support a close association 
between MetS and NAFLD both in adults and chil-
dren (14,15). Furthermore, NAFLD, due to its fre-
quent association with obesity, insulin resistance, 
and alterations of glucose and lipid metabolism, is 
considered the hepatic  ‘ component ’  of MetS. Nev-
ertheless, the aetiology of MetS and its contribution 
to NAFLD is complex and closely related both to 
genetic predisposing factors and life-style (16 – 20). 

 We here review the most recent epidemiological 
data on the incidence of both diseases in adolescents, 
and, furthermore, we provide a general idea of sev-
eral aspects of the link between MetS and NAFLD, 
discussing the pathogenetic role of genetics and 
intrauterine environment.   

 Defi nition and epidemiology  

 MetS 

 In recent years several studies have been performed 
to achieve a proper defi nition of MetS in children 

and adolescents, mainly based on the criteria 
approved for adults, adjusted for gender and age 
(18 – 20). However, some obstacles have been found 
in applying, to paediatric subjects, the parameters 
used in adults. For example, the lack of a paediatric 
central obesity score linked to MetS, the paucity of 
imbalanced metabolic indicators, the lack of a nor-
mal range for insulin levels during childhood, the 
physiological reduction of insulin sensitivity during 
puberty, and the ethnic differences in lipid profi les, 
body composition, and other metabolic features — all 
limit the application of adult criteria to childhood 
and adolescence. In a recent systematic review, Ford 
and Li found 40 different defi nitions of paediatric 
MetS in 27 publications (21). These defi nitions 
were mainly children-adapted variations of National 
Cholesterol Education Program (NCEP) / Adult 
Treatment Panel III (ATP III) criteria (22). A recent 
IDF consensus has achieved an agreement on the 
defi nition of MetS in children older than 6 years and 
adolescents (5). Two of the NCEP/ATP III-based 
descriptions of paediatric MetS criteria have been 
used in large paediatric population studies but, as 
shown in Table I, different cut-off values for some 
components of the MetS have been proposed 
(4,23,24). The use of different defi nitions to estimate 
MetS in children and adolescents has provided 
broadly variable data on the incidence of the disease. 
Cook et al. (23) in the Third National Health and 
Nutrition Examination Survey (NHANES III), con-
ducted from 1988 to 1994, estimated that 1 million 
12 – 19-year-old adolescents in the United States had 
the MetS. In particular, this study reported that the 
incidence of MetS was 6.8% among overweight 
adolescents and 28.7% among obese adolescents. 
However, these results differ from those by de Ferranti 

  Key messages  

 Metabolic syndrome and non-alcoholic   •
fatty liver disease (NAFLD) in children and 
adolescents continue to grow in parallel 
with the outbreak of obesity. 
 Metabolic syndrome and NAFLD present   •
common pathogenetic origins, and their 
understanding may facilitate the develop-
ment of long-term, successful preventive 
strategies and treatment regimens. 
 Early identifi cation of children and adoles-  •
cents at risk (with genetic and/or intrauter-
ine environment predisposition) of metabolic 
syndrome and NAFLD is required to pre-
vent severe complications in adulthood. 
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et al. (24), in which the incidence among adolescents 
was 31.2%. In the last 5 years, the general incidence 
of 4.2% reported by NHANES III has risen to 6.4% 
in NHANES 1999 – 2000, and up to 8.6% in the 
most recent survey (25,26). 

 These fi ndings highlight that the cluster of meta-
bolic disorders characterizing MetS in children and 
adolescents is still under debate, but there is wide 
consensus on the hypothesis that various compo-
nents of disease may predispose for an early onset of 
the cardiovascular diseases in adulthood. In this con-
text, a defi nition of MetS in the paediatric popula-
tion may be a useful tool to establish the incidence 
of disease and also to estimate its potential evolution 
in adulthood (6). Adolescents, due to their profound 
changes in body composition, are individuals par-
ticularly at risk of developing MetS, with many 
adverse consequences for health, including greater 
rates of mortality as young adults. At the same time, 
these changes may partly explain the diffi culty in 
identifying earlier characterizations of the metabolic 
syndrome, being still so unstable during and beyond 
the teenage years. 

 The incidence of MetS in adolescents increases 
in parallel to body mass index (BMI), and it appears 
to be greater in boys than in girls (15,26). Moreover, 

the ethnic differences in adolescents refl ected those 
observed in adults, with the greatest incidence in 
Hispanic-Americans, followed by non-Hispanic 
whites and then Afro-Americans (27). 

 In the absence of a consensus on the defi nition of 
MetS in children and adolescents, the IDF defi ni-
tions, within their limitations, operatively represent 
the best diagnostic tool for identifying the condition 
in young people. The IDF criteria are applicable to 
three age-groups: 6 – 9 years, 10 – 15 years, and 16 years 
and older (Table II). In all three age-groups central 
obesity is an essential condition for the diagnosis. In 
adolescents aged 16 years or more the IDF criteria 
take also into account the different ethnicities.   

 NAFLD 

 The term NAFLD refers to a spectrum of liver dis-
eases that are characterized by the accumulation of 
excess fat in the liver ( � 5% – 10% by weight) in the 
absence of signifi cant   alcohol consumption or other 
specifi c cause of liver disease. The most common 
form of NAFLD is the simple fatty liver, which is 
characterized by fat accumulation without liver dam-
age, while the most advanced form of NAFLD is 
NASH, in which fat accumulation is associated with 

  Table I. Diagnostic criteria for MetS in children and adolescents.  

Parameters Cook et al. 2003 de Ferranti et al. 2004

Waist circumference  � 90th percentile (age- and sex-specifi c)  � 75th percentile (age- and sex-specifi c)
Triglycerides  � 110 mg/dL  � 100 mg/dL
HDL cholesterol  � 40 mg/dL  � 50 mg/dL ( � 45 in boys aged 15 – 19 years)
Blood pressure  � 90th percentile (age-, sex-, and height-specifi c)  � 90th percentile (age-, sex-, and height-specifi c)
Fasting glucose  � 110 mg/dL  � 110 mg/dL

  Table II. IDF defi nition for paediatric MetS.  

Age MetS

 � 6 years No diagnosis
 � 6 to  � 10 years Obesity  a 

Additional measurements are suggested if there is a family history of MetS, type 2 diabetes, 
dyslipidaemia, cardiovascular disease, hypertension, or obesity

 � 10 to  � 16 years Obesity  a 
Adult criteria for:
Triglycerides  � 1.7 mmol/L
HDL cholesterol  � 1.03 mmol/L
Blood pressure  � 130 mmHg systolic or  � 85 mmHg diastolic
Fasting plasma glucose levels  � 5.6 mmol/L
Presence of type 2 diabetes

 � 16 years Central obesity  a  with ethnicity-specifi c values b 
Plus two of the following conditions:
Triglycerides  � 1.7 mmol/L
HDL cholesterol  � 1.03 mmol/L in males and  � 1.29 mmol/L in females
Blood pressure  �  130 mmHg systolic or  � 85 mmHg diastolic
Fasting plasma glucose levels  � 5.6 mmol/L

    a Defi ned as  � 90th percentile of waist circumference.   
  b If BMI is  � 30 kg/m ² , central obesity can be assumed and no measurement of waist circumference is required.   



32   A. Alisi et al.   

liver cell infl ammation and different degrees of scar-
ring. Simple fatty liver remains a benign process in 
most affected children, whereas the presence of 
necro-infl ammation, typical of NASH, may be the 
driving force for the development of severe fi brosis 
and cirrhosis. Currently, only the histology discrim-
inates among the different features of NAFLD, 
hence it appears to be critical for the diagnosis and 
management of paediatric NAFLD. The histological 
hall-mark in children with NAFLD is steatosis, but 
ballooning, infl ammation, and fi brosis may be pres-
ent (28,29). Therefore, liver biopsy is considered the 
 ‘ gold standard ’  in establishing the diagnosis of NASH 
as well as in assessing disease severity (i.e. fi brosis). 
However, liver biopsy has several limitations particu-
larly in children (i.e. invasiveness), and even though 
it represents the best methodology for estimating the 
real incidence of NAFLD in the paediatric popula-
tion, it is not feasible in population-based studies 
(30). To solve this problem and avoid liver biopsy, 
numerous non-invasive methods have been proposed 
as alternative screening/diagnostic tests (31). 

 Most studies use surrogate markers for NAFLD, 
such as BMI and serum aminotransferase levels. 
Alternatively, ultrasound scan can be used, although 
the diagnostic accuracy of this approach is limited 
(i.e. the sensitivity drops sharply when the degree 
of steatosis decreases below 30%, and, in addition, 
this approach cannot rule out fi brosis), and it is 
not able to distinguish between simple steatosis 
and NASH. 

 In contrast to ultrasound, magnetic resonance 
spectroscopy (MRS) and magnetic resonance imaging 
(MRI) are able to accurately quantify intrahepatic lipid 
content, demonstrating a large potential, especially in 
longitudinal and cross-sectional studies (32). 

 Even though MRS and MRI today represent the 
most viable alternative to liver biopsy for evaluating 
the presence of steatosis, they fail to detect fi brotic 
tissue. Recent reports indicate the ability of transient 
elastography to assess liver fi brosis in a large Italian 
paediatric series with NAFLD (33). Several on-
going studies aim to combine different non-invasive 
tests (i.e. serum markers and imaging) in order to 
achieve a diagnostic power very close to that obtained 
with histology. 

 Nowadays, NAFLD is recognized as the main 
cause of liver disease worldwide both in adults and 
children. Greatly variable incidence rates of paediat-
ric NAFLD (from 2% to 10% in all individuals, up 
to 80% in obese subjects) have been reported in 
North and South America, Europe, Australia, and 
Asia (34). This wide variability depends on the type 
of diagnostic tools but is also infl uenced by the age, 
sex, and race of the study population, as well as by 
the differences in ethnic composition and metabolic 

risk factors. In particular, hypertriglyceridaemia and/
or hypercholesterolaemia, which are frequently asso-
ciated with both obesity and type 2 diabetes, have 
been reported in 20% – 80% of children with NAFLD. 
The prevalence of NAFLD rises in hyperglycaemic 
patients, and insulin resistance is more severe in 
individuals with NASH than in those with steatosis, 
thus explaining the signifi cant association of hyper-
glycaemia with NASH (34,35). The pathogenetic 
role of these metabolic factors has been demon-
strated by several observations, suggesting that 
NAFLD might be considered the hepatic manifesta-
tion of the MetS (36 – 38). However, recent studies 
suggest that insulin resistance and MetS might rep-
resent a consequence rather than the cause of 
NAFLD (39).    

 Risk factors and pathogenetic mechanisms  

 MetS 

 Despite a strong correlation between obesity, insulin 
resistance, and development of MetS, this relation-
ship is nevertheless complex and only partially under-
stood (40). Moreover, besides obesity and insulin 
resistance, other factors are actively involved in the 
pathogenesis, including genetic predisposition, adipo-
cytokines, infl ammatory molecules, oxidative stress, 
life-style, and intrauterine events (6,41 – 44). 

 Obesity represents the major risk factor for 
MetS in both children and adolescents. Between 
1999 and 2003, the percentage of obese American 
adolescents increased from 14.8% to 17.4%, imply-
ing a higher risk for MetS in young adulthood 
(6,19,41). Several studies support the importance 
of insulin resistance in the link between obesity and 
MetS (45). The pivotal role of insulin resistance in 
the metabolic syndrome was originally recognized 
in 1988 by Reaven, with subsequent studies further 
strengthening this concept (46,47). The relation 
between insulin resistance, obesity, and MetS is 
complex, but the presence of visceral obesity and 
reduced insulin sensitivity seem to be the main 
mechanisms implicated in the development of 
the syndrome both in adults and children. A rela-
tionship between obesity and insulin resistance, 
and the prevalence of the MetS has been reported 
in the paediatric population (6,47,48). The close 
association of MetS with insulin resistance led 
investigators to consider these conditions as com-
ponents of the same syndrome, with a common 
pathogenetic origin. Insulin resistance is caused by 
a complex interplay between excess of nutrients, 
systemic fatty acid, infl ammation, hypoadiponecti-
naemia, and oxidative and endoplasmic reticulum 
(ER) stress. 
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 The fact that the increasing incidence of MetS 
results from excess of nutrients secondary to 
increased food consumption and/or sedentary life-
style is widely accepted and demonstrated by diet-
induced MetS in several animal models (49). 
Moreover, Westernized diets and high intake of car-
bohydrate are associated with the increased risk of 
the MetS in children and adolescents (50 – 52). 

 Nevertheless, MetS has a multifactorial aetiology 
involving genetic background and hormonal balance. 

 Several lines of evidence have shown that com-
mon variants at candidate genes for glucose homeo-
stasis, lipid metabolism, infl ammation, and obesity 
are associated with altered plasma levels of MetS 
biomarkers (53). Children with at least one parent 
with MetS are at higher risk of becoming overweight/
obese and developing insulin resistance (54). Poly-
morphisms in the insulin promoter gene have been 
shown to correlate with the risk of MetS in Italian 
obese adolescents (55). 

 In the pathogenesis of MetS, adipose tissue plays 
a crucial role, particularly determining the excessive 
release of free fatty acids (FFAs), and pro-infl amma-
tory cytokines that contribute to insulin resistance in 
muscle and liver (56). Hepatic insulin resistance, in 
turn, favours the increase of glucose production, 
very-low-density lipoprotein (VLDL) secretion, and 
production of pro-infl ammatory factors such as 
C-reactive protein (CRP), and increased production 
of thrombotic factors such as fi brinogen. Tumour 

necrosis factor (TNF)-alpha is a well known factor 
linking obesity, diabetes, and chronic infl ammation; 
however, several other infl ammatory mediators and 
cytokines are over-expressed and involved in the 
pathogenesis of MetS in children and adolescents 
(56,57 – 59). 

 In the last years there is some experimental and 
clinical evidence for a causal link between pathogen-
esis of MetS and oxidative and ER stress and mol-
ecules and pathways that regulates these processes 
(49,60 – 62). Experimental models have demon-
strated that increased oxidative stress is associated 
with the metabolic pattern of MetS, such as hyper-
triglyceridaemia, hyperglycaemia, hyperinsulinae-
mia, and hypertension (60,61). The presence of 
MetS components in overweight children associates 
with increased plasma levels of 8-isoprostane, a 
marker of systemic oxidative stress (62). 

 Urbanization, unhealthy diet, and sedentary life-
style increase the risk of MetS for the coming gen-
erations. Sedentary behaviour, such as television 
watching coupled with scarce physical activity, and 
increased hypercaloric diet regimens (high-fat and/
or high-carbohydrate diets) represent today the 
major risk factors for obesity, MetS, and its co-
morbidities in adolescents (6). Thus, an adequate 
nutritional programme and exercise represent not 
only the most effective preventive strategy for MetS 
but also the fi rst-line treatment in obese subjects 
with metabolic disorders (63).   

  

Figure 1.     Schematic representation of pathogenetic mechanisms leading to NAFLD. Genetic predisposition and environmental factors (i.e. 
diet) are determinant in the early events leading to fatty liver, including insulin resistance and fatty liver accumulation. Gut-derived endotoxaemia 
contributes to the early onset of steatosis as well as to the progression to NASH concomitantly to the oxidative stress and adipocytokines. Cell 
and tissue-specifi c alterations that characterize NASH are determined by all these events during NAFLD pathogenesis.  
Figure supplied by A. Alisi.
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 NAFLD 

 The pathogenesis of NAFLD is still unclear. In 1998, 
Day and James proposed a  ‘ two hit hypothesis ’ , sub-
sequently replaced by the  ‘ multiple hits ’  hypothesis 
(64). Accordingly, liver fat accumulation and insulin 
resistance represent the  ‘ fi rst hits ’  and lead to fatty 
liver that is vulnerable to  ‘ second hits ’  which trigger 
the progression to NASH (see Figure 1).  ‘ Second 
hits ’  include oxidative stress, mitochondrial dysfunc-
tion, and imbalance of production/release of hor-
mones derived from adipose tissue (adipocytokines) 
(65). More recently, the gut/liver hypothesis has been 
proposed. This suggests that gut bacterial endotoxins 
activate molecules of innate immune response, acting 
as possible triggers of the primary fat accumulation 
in the liver and necro-infl ammatory lesions in the 
progression of steatosis to NASH and severe fi brosis 
(see Figure 1) (65,66). 

 The development of fatty liver, occurring when 
the accumulation of lipids exceeds 5% of the liver 
tissue, is directly associated to disorders of lipid 
metabolism that may depend on several factors: 
excessive consumption of foods enriched in fat and 
fructose, increased release of free fatty acids (FFAs) 
from adipocytes (lipolysis), increased endogenous 
synthesis of lipids ( de novo  lipogenesis) or reduction 
of FFAs oxidation (mainly due to insulin resistance) 
(67 – 69). FFAs introduced by the diet, or released by 
fat cells, are stored in the liver and for the most part 
are rapidly incorporated into complex lipids (e.g. 
triglycerides, phospholipids, glycolipids) and par-
tially oxidized and converted into energy. When the 
FFAs intake exceeds the storage and oxidative capac-
ity of peripheral tissues, FFAs are diverted to meta-
bolic pathways that cause intracellular accumulation 
of toxic lipid-derived metabolites, which in turn 
might induce insulin resistance and activate oxida-
tive stress signalling and infl ammatory pathways 
(69). On the other hand, hepatic insulin resistance, 
due to systemic factors interfering with insulin sig-
nalling, might induce the  de novo  lipogenesis and/or 
increase the triglyceride export via very-low-density 
lipoprotein, leading to fatty liver (69 – 71). Insulin 
resistance is thought to be a critical factor in the 
pathogenesis of fatty liver and NASH in children and 
adolescents (72). Hyperinsulinaemia/insulin resis-
tance associates signifi cantly with elevated levels of 
ALT and biopsy-proven paediatric NAFLD (73). 

 Several experimental and clinical studies have 
highlighted the role played by oxidative stress in the 
development of NASH from fatty liver (74,75). 
Saturation of the oxidative processes, due to intra-
hepatic fat accumulation, induces the release of 
H 2 O 2  and other reactive oxygen species (ROS). When 
ROS exceed the defensive capacity of intracellular 

antioxidants, they may induce NASH and fi brosis 
through lipid peroxidation and induction of adipo-
cytokines (74,76). Lipid peroxidation leads to hepa-
tocyte apoptosis/necrosis and proliferation and 
activation of hepatic stellate cells triggering intracel-
lular signalling cascade and consequent gene expres-
sion of molecules involved in fi brogenesis. Oxidative 
stress infl uences the production and release of cytok-
ines and adipokines, such as TNF-alpha, transform-
ing growth factor (TGF)-beta, interleukin (IL)-6, 
leptin, adiponectin, and resistin, from hepatocytes, 
Kupffer cells, and adipocytes (77,78). Adipocytok-
ines, that are preferentially secreted by adipose tis-
sue, contribute to the infl ammation, apoptosis/
necrosis of hepatocytes, and onset of fi brosis, but 
some of them (TNF-alpha and adiponectin) also 
play important roles in the associations between obe-
sity, insulin resistance, and liver fat accumulation in 
the preliminary phases of fatty liver development 
(69,76). 

 Increased serum levels of leptin and decreased 
adiponectin, strongly associated with insulin resis-
tance regulation, have been found in children and 
adolescents with NAFLD (79,80). 

 A role of the gut/liver axis has recently been pro-
posed as a critical factor in the pathogenesis of 
NAFLD. In particular, gut-derived endotoxins may 
increase in the blood of patients with NAFLD and 
activate lipopolysaccharide (LPS)-related sensors, 
such as Toll-like receptor 4, thus contributing to 
necro-infl ammation and oxidative stress (65,66). A 
key role of systemic endotoxaemia in the pathogen-
esis of NAFLD has been suggested, and recently an 
association between endotoxin plasma levels and 
severity of disease has been demonstrated in 
paediatric NAFLD (81). 

 In adolescents, NAFLD appears closely related 
to several risk factors of the MetS, especially obesity 
and insulin resistance (12,13). Mechanisms linking 
NAFLD to insulin resistance and MetS are still 
largely unknown; however, two main hypotheses 
have been proposed. Insulin resistance development 
is extremely complex because it involves both genetic 
polymorphisms, which infl uence the synthesis and 
action of insulin, and the action of environmental 
factors that promote obesity and NASH. On the 
other hand, in subjects with a genetic predisposition, 
environment and life-style interact with thrifty genes, 
favouring the development of insulin resistance and 
the inappropriate accumulation of fat in liver and 
muscle (53,69).    

 Genetic origins of NAFLD 

 Genetic predisposition to NAFLD is suggested by 
documented familial clustering of NAFLD and 
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NASH and by the racial and ethnic differences in 
the prevalence of these disorders (82). It has been 
reported that children from certain ethnicities, 
including Hispanics, Asians, and indigenous Ameri-
cans, are more predisposed than others to develop 
NAFLD/NASH (83). Ethnic/racial disparities might 
be a predictable effect of the heritability of NAFLD ’ s 
risk factors (i.e. obesity and insulin resistance), but 
also a direct consequence of the susceptibility to 
NAFLD rather than to its risk factors. In this case, 
family members of children with NAFLD should be 
considered at high risk for the disease (82). 

 The search for potential candidate genes associ-
ated with NAFLD has been based on data from ani-
mal models suggesting the involvement of specifi c 
genes, microRNAs, and proteins, and on the selection 
of  de novo  candidate genes found by genome-wide 
association (GWA), microarray, and proteomic studies 
in tissues from patients and animals (82,84,85). 

 Interestingly, specifi c gene polymorphisms have 
been associated with NAFLD. Several polymor-
phisms have been described in genes that encode for 
products involved in molecular pathogenesis of 
NAFLD. In fact, susceptibility to NAFLD/NASH 
has been associated with genes infl uencing insulin 
sensitivity or regulating fatty acid metabolism (i.e. 
hepatic lipid synthesis, storage, and export), oxidative 
stress, immune regulation, and fi brosis development 
(see (82,84,85) for references). 

 These candidate genes include: TNF-alpha, 
microsomal triglyceride transfer protein, methylenete-
trahydrofolate reductase, adiponectin, peroxisome 
proliferator-activated receptor gamma coactivator 
1alpha, peroxisome proliferator-activated receptor 
alpha, leptin receptor, and hepatic lipase. Several 

polymorphisms associated with NAFLD have been 
related also with MetS, indicating common genetic 
origins of these diseases (Table III) (86 – 98). 

 Romeo et al. have recently described the adipo-
nutrin/patatin-like phospholipase domain-contain-
ing-3 (PNPLA3), which could be considered the 
fi rst NAFLD gene. The variation in PNPLA3 con-
tributes to racial differences in hepatic fat content 
and infl uences the susceptibility to NAFLD (99). 
The hepatic protein expression of adiponutrin is 
increased by carbohydrate feeding and Western-type 
diet (100). Moreover, it is may be involved in energy 
mobilization and storage of lipid droplets (101). The 
rs738409 PNPLA3 SNP is strongly associated with 
severe steatosis, NASH, and the progression of liver 
fi brosis in a large series of Italian and UK patients 
with NAFLD (102). More recently, the rs738409 
PNPLA3 variant has been found to be associated 
with the severity of steatosis, hepatocellular balloon-
ing, lobular infl ammation, and perivenular fi brosis in 
paediatric NAFLD (103).   

 Intrauterine environment, early nutrition, 
MetS, and NAFLD 

 Epidemiological studies in humans have shown that 
impaired intrauterine growth is associated with an 
increased incidence of insulin resistance, type 2 dia-
betes, and MetS in adulthood (104 – 106). To explain 
this association the concept of programming was 
introduced. Foetal exposure to suboptimal intrauter-
ine conditions, particularly malnutrition, during 
critical stages of development would lead to adaptive 
responses that the foetus makes to environmental 
cues, permanently programming tissue structure and 

  Table III. Gene polymorphisms found in NAFLD and their correlation with MetS.  

Gene Polymorphism MetS Ref.

TNF-alpha –238 and –308, –1031, –863, 
–857, –308 and –238

–308 is associated with obesity, 
hypertension and insulin resistance

(86,87)

microsomal triglyceride transfer 
protein

-493G/T polymorphism association with components of MetS (88)

methylenetetrahydrofolate reductase C677T and A1298C no relevant association  – 
adiponectin 45G/T and 276G/T these and other polymorphisms 

correlate with traits of MetS
(89,90)

peroxisome proliferator-activated 
receptor gamma coactivator 1alpha,

rs2290602 the association is controversial (91,92)

peroxisome proliferator-activated 
receptor alpha

PPARalpha-L162V association with components of MetS (93)

leptin receptor G3057A other leptin receptor polymorphisms 
associate with high risk of insulin 
resistance and MetS

(94)

hepatic lipase –514C/T associated to MetS (95,96)
haemochromatosis (HFE) C282Y/H63D no relevant association  – 
apolipoprotein A5 APOA5, c.553G/T association with components of MetS (97)
adiponutrin/patatin-like phospholipase 

domain-containing-3
rs738409 adiponutrin polymorphisms associated 

with obesity but data on MetS are 
still not available

(98)
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functions (107,108). Once the organism is pro-
grammed in response to an adverse uterine envi-
ronment, the exposure to different postnatal 
environmental conditions, such as over-nutrition, will 
determine a mismatch between intra- and extrauter-
ine environments, eventually leading to the increased 
risk of metabolic disease (109). 

 According to the  ‘ thrifty phenotype hypothesis ’ , 
when intrauterine foetal under-nutrition occurs dur-
ing  ‘ critical periods ’  of embryo – foetal development 
it permanently modifi es the endocrine and meta-
bolic pathways in an attempt to divert the limited 
nutrient supply to vital organs, such as the brain, at 
the expense of growth and the development of other 
organs such as the pancreas and liver. However, this 
adaptation to an adverse intrauterine environment, 
orchestrated to improve the chances of survival, may 
become detrimental if the organism is subsequently 
exposed to an extrauterine environment character-
ized by over-nutrition. This  in utero  programming 
may predispose to insulin resistance and metabolic 
syndrome, which, combined with the effects of 
obesity, aging, and physical inactivity, may result in 
cardiovascular and metabolic diseases (110 – 112) .  

  Another possible mechanism linking foetal envi-
ronment with the risk of developing metabolic alter-
ations in childhood and adulthood was proposed by  
Hattersley and Tooke (113) who introduced the con-
cept of the  ‘ foetal insulin hypothesis ’ , suggesting a 
strong contribution of genetic factors to the altera-
tions of both insulin secretion and sensitivity. Poly-
morphisms or mutations in genes associated with 
insulin sensitivity result in impaired foetal growth, 
low birth-weight, and subsequent susceptibility to 
type 2 diabetes and cardiovascular disease in adult 
life. Mutations in the glucokinase gene determine 
beta-cell dysfunction, low birth-weight, and type 2 
diabetes susceptibility (114). 

 Furthermore, the structural and functional 
changes induced by programming may arise from 
epigenetic alterations of gene expression (115). Ani-
mal models of intrauterine growth restriction have 
confi rmed the role of epigenetic mechanisms in the 
development of long-term consequences for metab-
olism and blood pressure (115,116). In humans, 
periconceptional exposure to famine has been 
associated with persistent epigenetic changes of the 
insulin-like growth factor- 2 ( IGF2 ) gene (117). 

 A substantial body of evidence indicates that low 
birth-weight is associated with the components of 
MetS such as hyperinsulinaemia that may or may 
not be associated with impaired glucose tolerance 
and type 2 diabetes, dyslipidaemia, and hypertension 
(118 – 123). These alterations may appear as early as 
in young adulthood, especially in subjects who expe-
rienced postnatal catch-up growth in weight (124). 

Foetal exposure to the Dutch famine was associated 
with increased risk of obesity, glucose intolerance, 
and hypertension in adulthood (125 – 128). 

 The effects of  in utero  conditions on adult health 
and disease also comprise the risk of developing post-
natal obesity in foetuses exposed to hyper-nutrition. 
The excessive weight gain in pregnancy may predis-
pose offspring to altered energy balance and increased 
adiposity in adulthood (129). Studies in animal mod-
els have shown that the hypothalamic systems impli-
cated in the control of appetite may be permanently 
affected by intrauterine exposure to maternal over-
nutrition, eventually leading to a hyperphagic and 
obese phenotype in adult offspring (130). The meta-
bolic susceptibility to hyper-nutrition extends further 
into early extrauterine life as rapid weight gain during 
infancy, often induced by formula feeding, is associ-
ated with increased risk of obesity in adulthood (131). 
Interestingly, it has recently been reported that intra-
uterine growth restriction (IUGR) is an important 
risk factor for paediatric NAFLD, whereas breast-
feeding is protective for development of NASH and 
its clinical expression in children (132,133). Within 
this context, the preventive role of human milk and 
breast-feeding along with the delayed introduction of 
solids in the fi rst year of life in preventing childhood 
obesity (134,135) should always be stressed. Whether 
the possible causes are related to some environmen-
tal conditions or specifi c human milk biofactors and 
nutrients (such as protein and fatty acid composi-
tion) is still a matter of debate (136). Accordingly, 
birth-weight (as the main clinical indicator of intra-
uterine conditions) together with the type of infant 
feeding should be included in clustering estimation 
of the metabolic risk in children (137).   

 Concluding remarks and clinical implications 

 The defi nition of MetS in childhood is still contro-
versial. This lack of a consensus on the diagnostic 
criteria inevitably affects the knowledge of the inci-
dence and the identifi cation of causative factors. In 
this review we have described the close association 
between MetS and NAFLD. Increasing evidence 
suggests that they represent the clinical expression 
of a common metabolic rearrangement rather than 
being causally related to each other. In severely obese 
children with features suggesting MetS, the concom-
itant presence of NAFLD should be suspected. 
Unfortunately, there is no reliable clinical, biochem-
ical, or radiological tool to establish the diagnosis of 
NAFLD which is still based on histological hall-
marks, thus limiting the feasibility of early diagnosis. 
Therefore, the search for non-invasive reliable tests 
for identifying NAFLD in childhood represents a 
priority in paediatric research. 
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 In both MetS and NAFLD the interaction 
between environment and genetic predisposition 
plays a pivotal role from the early phases of embryo –
 foetal development. Intrauterine programming, fol-
lowed by a mismatch between intra- and extrauterine 
environments, permanently affects tissue structure 
and function, eventually leading, in genetically pre-
disposed subjects, to the metabolic alterations under-
lying both MetS and NAFLD. In this context, late 
interventions such as the promotion of breast-feed-
ing in infancy and a healthy diet and life-style in 
adolescence and young adulthood may be ineffective 
in preventing or reversing the metabolic abnormali-
ties. The early identifi cation of  ‘ at-risk ’  children may 
lead to nutritional and/or pharmacological interven-
tions aimed at de-programming the organism, taking 
advantage of the biological plasticity which charac-
terizes the early phases of extrauterine life. Finally, 
there is increasing evidence indicating that the pre- 
and periconceptional period represents another crit-
ical time window for the metabolic outcome of the 
offspring, thus suggesting that the optimization of 
maternal metabolism could represent another target 
for an effective preventive strategy.   
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