
Full Terms & Conditions of access and use can be found at
https://informahealthcare.com/action/journalInformation?journalCode=iann20

Annals of Medicine

ISSN: 0785-3890 (Print) 1365-2060 (Online) Journal homepage: informahealthcare.com/journals/iann20

Caveolae, caveolin, and cavins: Potential targets
for the treatment of cardiac disease

Manika Das & Dipak K. Das

To cite this article: Manika Das & Dipak K. Das (2012) Caveolae, caveolin, and cavins:
Potential targets for the treatment of cardiac disease, Annals of Medicine, 44:6, 530-541, DOI:
10.3109/07853890.2011.577445

To link to this article:  https://doi.org/10.3109/07853890.2011.577445

Published online: 10 Sep 2012.

Submit your article to this journal 

Article views: 1520

View related articles 

Citing articles: 4 View citing articles 

https://informahealthcare.com/action/journalInformation?journalCode=iann20
https://informahealthcare.com/journals/iann20?src=pdf
https://informahealthcare.com/action/showCitFormats?doi=10.3109/07853890.2011.577445
https://doi.org/10.3109/07853890.2011.577445
https://informahealthcare.com/action/authorSubmission?journalCode=iann20&show=instructions&src=pdf
https://informahealthcare.com/action/authorSubmission?journalCode=iann20&show=instructions&src=pdf
https://informahealthcare.com/doi/mlt/10.3109/07853890.2011.577445?src=pdf
https://informahealthcare.com/doi/mlt/10.3109/07853890.2011.577445?src=pdf
https://informahealthcare.com/doi/citedby/10.3109/07853890.2011.577445?src=pdf
https://informahealthcare.com/doi/citedby/10.3109/07853890.2011.577445?src=pdf


                         REVIEW ARTICLE     

 Caveolae, caveolin, and cavins: Potential targets for the treatment 
of cardiac disease      

    MANIKA     DAS    &        DIPAK K.     DAS    

  Cardiovascular Research Center, University of Connecticut School of Medicine, Farmington, CT 06030-1110, USA                              

 Abstract 
 Caveolae are omega-shaped membrane invaginations present in essentially all cell types of the cardiovascular system, 
including endothelial cells, smooth muscle cells, macrophages, cardiac myocytes, and fi broblasts. Numerous functions have 
been ascribed to this omega-shaped structure. Caveolae are enriched with different signaling molecules and ion channel 
regulatory proteins and function both in protein traffi cking and signal transduction in these cell types. Caveolins are the 
structural proteins that are necessary for the formation of caveola membrane domains. Mechanistically, caveolins interact 
with a variety of downstream signaling molecules, as, for example, Src-family tyrosine kinase, p42/44 mitogen-activated 
protein (MAP) kinase, and endothelial nitric oxide synthase (eNOS) and hold the signal transducers in the inactive con-
dition until activated with proper stimulus. Caveolae are gradually acquiring increasing attention as cellular organelles 
contributing to the pathogenesis of several structural and functional processes including cardiac hypertrophy, atheroscle-
rosis, and heart failure. At present, very little is known about the role of caveolae in cardiac function and dysfunction, 
although recent studies with caveolin knock-out mouse have shown that caveolae and caveolins play a pivotal role in 
various human pathobiological conditions. This review will discuss the possible role and mechanism of action of caveolae 
and caveolins in different cardiac diseases.   
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  Introduction 

 The cell membrane is a heterogeneous mixture of 
proteins, cholesterol, and lipids including glycero-
lipid, phospholipid, and sphingolipids. The sphingo-
lipids and cholesterol are associated with one another 
within the plasma membrane and form lipid micro-
domains, commonly known as lipid rafts (1,2). Lipid 
rafts are sphingolipid- and cholesterol-rich domains 
of the plasma membrane, which contain a variety of 
signaling and transport proteins. Different subtypes 
of lipid rafts can be distinguished according to their 
protein and lipid composition. Caveolae, a subset of 
lipid rafts, are fl ask-like invaginations of plasma 
membrane that contain proteins of the caveolin fam-
ily (caveolin-1, caveolin-2, and caveolin-3). The 
organization and function of caveolae are mediated 
by coat proteins (caveolins) and support or adapter 

proteins (cavins). In addition, lipid rafts have been 
implicated in the modulation of multiple different 
types of ion channel proteins. Various types of lipid 
rafts have been proposed based on different protein 
markers, morphological features, and their relative 
cholesterol-to-sphingolipid content (3,4).   

 Caveolae and caveolins 

 Caveolae were fi rst identifi ed in 1953 by Palade 
using electron microscopy to examine the endothe-
lial cells of rat capillaries (5). Caveolae were named 
based on their morphological appearance on elec-
tron microscopy as  ‘ little caves ’ . Typically, caveolae 
exhibit a fl ask-shaped invaginated structure of 50 –
 100 nm in diameter which is contiguous with the 
surface plasmalemma (6,7). Different cell types pos-
sess different densities of caveolae in their plasma 
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membrane. For example, approximately 50% of the 
surface plasmalemma of the adipocyte consists of 
caveolae (8), while only 5% of fi broblast plasma 
membrane is made up of caveolae (9). A major com-
ponent of caveolae is the presence of caveolin pro-
teins (10,11). Cav-1 (also called vesicular integral 
membrane protein (VIP-) 21) was the fi rst protein 
to be identifi ed as a prominent resident of caveolae 
(11,12). Cav-1 and -2 are co-expressed in most cell 
types, while expression of caveolin-3 is muscle-spe-
cifi c. Thus, endothelial cells and fi broblasts are rich 
in Cav-1 and -2, while cardiac myocytes and skeletal 
muscle fi bers express cav-1 and caveolin-3. Recent 
work of Chow et al. provided evidence that cav-1 
is found in cardiomyocytes (13,14) and that cav-1 
and membrane-bound matrix metalloproteinase-2 
(MMP-2) co-localize as another means to keep 
MMP-2 activity in check, and that caveolin-2 knock-
out (KO) mice have enhanced cardiac MMP-2 activ-
ity (15). The hearts from young cav-1 KO mice do 
not necessarily show defects in contractile function 
(16). In contrast, smooth muscle cells express all 
three caveolins (Cav-1, -2, and -3) (17). 

 Caveolins are multiple acylated 22 – 24 kDa pro-
teins embedded in the cytosolic leafl et of cell mem-
branes, with both N and C termini residing in the 
cytosol (18,19). Caveolins are fi rst inserted into the 
membrane of the endoplasmic reticulum; they 
then transit through the secretory pathway, form 

homo- and hetero-oligomeric complexes in the Golgi 
apparatus, and are thought to exit the Golgi for deliv-
ery to the plasma membrane as assemblies of around 
100 – 200 caveolin molecules (20,21). Cav-1 expres-
sion is necessary for Cav-2 to be exported from the 
Golgi, and for its stability (22,23). Importantly, no 
morphological caveolae are found in the Golgi (24). 

 The recent identifi cation of a family of proteins 
termed cavins has the potential to lead to signifi cant 
advances in our understanding of the biology of 
caveolae. Cavins are localized to caveolae and are 
important for caveolar biogenesis, caveolin expres-
sion, caveola morphology, and have differential tissue 
distributions.   

 Caveola regulatory proteins 

 Cavins act a regulator of caveolar function and orga-
nization, and each of them has been assigned differ-
ent roles based on caveola morphologies and cell 
type. Cavin proteins function primarily as scaffold-
ing proteins and also regulate availability of caveo-
lins. So far, four different cavin proteins have been 
identifi ed that include cavin-1 (polymerase transcript 
release factor (PTRF)), cavin-2 (serum deprivation 
protein response (SDPR)), cavin-3 (Sdr-related gene 
product that binds to c-kinase (SRBC)), and cavin-4 
(muscle-restricted coiled-coil protein (MURC)) 
(Figure 1).  

  

Figure 1. Different names of Cavin family protein.      
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 Cavin-1 (PTRF) 

 Cavin-1 was initially identifi ed in a yeast two-hybrid 
screen using transcription termination factor 
(TTF)-I as the bait (25). TTF-I is involved in the 
polymerase (Pol) I-mediated transcription of ribo-
somal RNAs (26,27). Cavin-1 was shown to inter-
act both with TTF-I and Pol I and to function as a 
trans factor for dissociation of TTF-I-paused Pol I 
transcription complexes (22,28). The original name 
for cavin-1 was, therefore, polymerase I and tran-
script release factor (PTRF) (25). Early studies 
showed that cavin-1 co-localizes with Cav-1 in adi-
pose tissue and co-distributes with Cav-1 in lipid 
rafts (29). Regulation of Cav-1 bioavailability by 
cavin-1 was demonstrated  in vitro , as cavin-1 over-
expression causes increased levels of Cav-1, and 
cavin-1 knock-down reduces Cav-1 levels (29). 
These data are similar to the well appreciated sta-
bilizing effect of Cav-2 with Cav-1 and vice versa 
(29). In 2008, Liu et al. (30) showed that genetic 
deletion of cavin-1 resulted in global loss of cave-
olae through decreased availability of all caveolin 
proteins, e.g. dyslipidemia, reduced adipose tissue, 
and glucose intolerance — similar phenotypes to 
Cav-1/Cav-3 KO mice. In 2008, Hill et al. (31) 
showed that cavin-1 associates with caveolae at the 
plasma membrane, where it is required for the for-
mation of caveolae via sequestration of caveolins 
into caveolae. These authors also demonstrated that 

the loss of cavin-1 enhances the lateral mobility of 
Cav-1 and its accelerated lysosomal degradation 
(27). The function of cavin complexes is shown in 
Figure 2.   

 Cavin-2 (SDPR) 

 Cavin-2 was fi rst purifi ed as a phosphatidylserine 
(PS)-binding protein from human platelets and 
was shown  in vitro  to be a substrate for protein 
kinase C (PKC) isoforms (32,33). Mineo et al. also 
identifi ed a stretch in the middle part of cavin-2 
that binds to the regulatory domain of PKC and 
showed that cavin-2 localizes to caveolae (33). 
Cavin-2 was also separately identifi ed as a protein 
with greater expression upon serum deprivation 
(hence the alternative name serum deprivation 
protein response (SDPR)) (34,35). In 2009, 
Hansen et al. (32) showed that cavin-2 directly 
binds cavin-1 and recruits it to the plasma mem-
brane and that cavin-2 is required for the stable 
expression levels of both Cav-1 and cavin-1 pro-
teins. Cavin-1/cavin-2 binding results in the forma-
tion of complexes containing Cav-1 contributing 
to stable caveola structures (36). Interestingly, the 
over-expression of cavin-2 in cultured cells results 
in the formation of elongated tubular caveolae, 
implying that it provides an organizational role to 
generate membrane curvature (36).   

  

Figure 2. The function of Cavin complexes.      
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 Cavin-3 (SRBC) 

 Cavin-3, or SRBC (Src-related gene product that 
binds to c-kinase), was initially identifi ed as a PKC δ -
binding protein (37,38). In 2009, it was discovered 
that cavin-3 is localized to caveolae, hence prompt-
ing determination of its role in caveolar function. 
Cavin-3 co-precipitates with Cav-1 and has a similar 
distribution to Cav-1; either Cav-1 or Cav-3 must be 
present for cavin-3 localization to the plasma mem-
brane (39). Furthermore, cavin-3 participates in the 
formation of caveolar vesicles based on two observa-
tions: cavin-3 remains associated with caveolae when 
budding occurs, and the absence of cavin-3 impairs 
intracellular vesicular/cavicle traffi cking (39).   

 Cavin-4 (MURC) 

 The most recent addition to the cavin family is cav-
in-4, MURC (muscle-restricted coiled-coil protein). 
This cavin was discovered as a cardiac and skeletal 
muscle-specifi c cytosolic protein (40 – 42). In 2009, 
cavin-4 was characterized as a predominantly mus-
cle-expressed protein component associated with 
sarcolemmal caveola complexes. On the basis of its 
expression in muscle and co-localization with Cav-3, 
it was suggested that cavin-4 plays a predominant 
role in caveolin-associated muscle disease and 
disturbs cavin-4 distribution in patients with 
caveolinopathies (42).    

 Caveolin knock-down 

 A vast scientifi c literature confi rmed the roles of 
caveolae and caveolin in the regulation of many cel-
lular processes in cultured cells, and many investiga-
tors considered them as an essential platform of 
signaling molecules and also as the new therapeutic 
target. However, in the past few years, development 
of animal models and usage of genetically altered 
mice have been instrumental in deciphering their 
physiological functions  in vivo . The most appropriate 
approach for the study of caveolin is the use of condi-
tional KO mice, tissue-specifi c KO mice, or a system 
biology approach. Caveolin KO mice (Cav-1, -2, -3) 
and Cav-1/3 double KO mice have already been 
developed. They are viable as well as fertile but dis-
play numerous phenotypes. Transgenic over-expres-
sion of Cav-1 or Cav-3 in mice or targeted disruption 
of each of the caveolin gene loci in mice (Cav-1, 
Cav-2, and Cav-3 genes) has provided signifi cant 
insight into the roles of caveolin and caveolae (43). 
The potential role of caveolin in cardiovascular phys-
iology has become apparent by the discovery of 
Cav-1 and Cav-3 KO mice and double KO mice 
which have a cardiomyopathic phenotype. Cav-1 KO 
mice show complete ablation of the presence of the 

caveolae, cellular organelles, in the endothelium and 
fat. Similarly, Cav-1 and Cav-3 KO mice lack cave-
olae in cells that normally express this protein such 
as skeletal muscle, heart, and diaphragm. Heart tis-
sue is made up of different types of cells. In heart, 
differentiated cardiomyocytes are surrounded by a 
network of cardiac fi broblasts and endothelial cells 
and less abundant vascular smooth muscle cells. 
There is also a controversy regarding expression of 
caveolin isoforms in the heart muscle. It is well 
known that cardiac myocytes express Cav-3, and 
other cell types in the heart express Cav-1 and Cav-
2. But recent studies provided the evidence of the 
existence of Cav-1 in cardiomyocytes (44). Cav-1 
KO mice develop progressive cardiac hypertrophy as 
demonstrated by transthoracic echocardiography 
(TTE) and magnetic resonance imaging (MRI) (45). 
In contrast, Cav-3 KO mice develop cardiomyopathy 
characterized by hypertrophy, vasodilatation, and 
reduced contractility as well (46). Cav-1 and Cav-3 
double KO mice completely lacking caveolae are 
defi cient in all three caveolin proteins because Cav-2 
is degraded in the absence of Cav-1. The double KO 
mice developed a severe cardiomyopathic phenotype 
with cardiac hypertrophy and decreased contractility 
(47). Additionally, Cav-1 KO mice exhibited myo-
cardial hypertrophy, pulmonary hypertension, and 
alveolar cell hyperproliferation caused by constitu-
tive activation of p42/44 mitogen-activated protein 
kinase and Akt (48). Interestingly, in Cav-1-recon-
stituted mice, cardiac hypertrophy and pulmonary 
hypertension were completely rescued (48). Again, 
genetic ablation of Cav-1 leads to a striking biven-
tricular hypertrophy and to a sustained eNOS hyper-
activation yielding increased systemic NO levels 
(49). Furthermore, a diminished ATP content and 
reduced level of cyclic AMP in hearts of KO mice 
was also reported (49). Taken together, these results 
indicate that genetic disruption of Cav-1 is suffi cient 
to induce severe biventricular hypertrophy with signs 
of systolic and diastolic heart failure (49). 

 Interestingly, Cav-3 KO mice show a number of 
myopathic changes, consistent with a mild to moder-
ate muscular dystrophy phenotype. However, it 
remains unknown whether a loss of Cav-3 affects the 
phenotypic behavior of cardiac myocytes  in vivo . 
Cav-3 KO hearts display signifi cant hypertrophy, 
dilation, and reduced fractional shortening as 
revealed by gated cardiac MRI and transthoracic 
echocardiography. Histological analysis reveals 
marked cardiac myocyte hypertrophy, with accom-
panying cellular infi ltrates and progressive intersti-
tial/perivascular fi brosis. It has also demonstrated 
that p42/44 MAPK (ERK1/2) is hyperactivated in 
heart derived from Cav-3 KO mice, which can lead 
to cardiac hypertrophy (46) (Figure 3). 
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 In the endoplasmic reticulum, Cav-3 initiates the 
biogenesis of caveola organelles by forming homo-
oligomers and hetero-oligomers with Cav-1 (50). At 
the plasmalemma, Cav-3 interacts with dystrophin 
and its associated glycoproteins (51,52). Cav-3 and 
dystrophin competitively bind to the same site of 
 β -dystroglycan, suggesting that Cav-3 may regulate 
the membrane recruitment of dystrophin and the 
assembly of the dystrophin glycoprotein complex 
(DGC) (53). At the cell surface, Cav-3 co-localizes 
also with signaling molecules such as Gi2 α , G β  γ  ,  
c-Src, other Src kinases, as well as nitric oxide syn-
thases (neuronal and inducible NOS), indicating 
that muscle caveolae might be involved in the mod-
ulation of these signaling processes (54,55). In addi-
tion, Cav-3 localized a glycolytic enzyme in striated 
muscle and plays a role in the regulation of energy 
metabolism of muscle cells as it is required for the 
cell membrane targeting of phosphofructokinase, an 
enzyme that catalyzes a rate-limiting reaction in gly-
colysis (56). It is Cav-1 that targets various glycolytic 
enzymes including phosphofructokinase in smooth 
muscle, lymphocyte, and astrocyte (56). 

  In-vitro  studies have shown that Cav-3 plays a 
critical role in myoblast cell differentiation and sur-
vival and in myotube formation (57). The relevance 
of Cav-3 in muscle physiology was further con-
fi rmed by the fi ndings that mutations in the  CAV3  
gene result in distinct neuromuscular and cardiac 
disorders, such as limb girdle muscular dystrophy 

(LGMD) 1-C, idiopathic persistent elevation of 
serum creatine kinase (hyperCKemia), inherited 
rippling muscle disease (RMD), distal myopathy, 
and familial hypertrophic cardiomyopathy (HCM) 
(58 – 60). 

 The  CAV3  gene (OMIM no. 601253) spans 12 
kb of genomic DNA on chromosome 3p25 and con-
tains two exons. At present, 20 different point muta-
tions, 2 base-pair deletions, and 1 novel splice site 
mutation have been reported (57). More recently, 
four novel  CAV3  mutations have been identifi ed in 
patients affected by congenital long-QT syndrome 
(LQTS) in the absence of signs of primary cardio-
myopathy, suggesting a possible role for Cav-3 in the 
regulation of cardiac ion channels (61,62).   

 Caveolae and cardiac arrhythmia 

 Modulation of ion channel activity plays a critical 
role in regulating cardiovascular function. Recently, 
it has become apparent that the regulation of chan-
nel function is not the only means of controlling 
excitability; the traffi cking and localization of ion 
channels with signaling molecules also play a sig-
nifi cant role. The cardiac action potential is gener-
ated by the highly orchestrated activity of different 
of ion channel proteins as well as membrane trans-
porters and exchangers. These transmembrane pro-
teins govern the fl ux of ions across the sarcolemma 
of cardiomyocytes generating the ionic currents 

  

Figure 3. Caveolin and cardiovascular disease.      
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responsible for excitation. Abnormalities in the func-
tion or regulation of the ion channel proteins underlie 
many different forms of arrhythmias. 

 Most cells in the cardiovascular system express 
multiple channel types (e.g. voltage-gated Na  �  , K  �  , 
and Ca 2 �   channels) and even multiple isoforms of a 
particular channel, with each channel uniquely con-
tributing to excitability (63,64). Voltage-gated Na  �    
channels are responsible for the initial depolarization 
of the cardiac sarcolemma, to permit the opening of 
voltage-gated L-type Ca 2 �   channels, resulting in Ca 2 �   
infl ux and contraction. Membrane repolarization is 
controlled by K  �   channels. Therefore, altering the 
number of channels and/or their function can have 
signifi cant impact on both resting membrane potential 
and the cardiac action potential wave form. Defects 
in either of these processes can have life-threatening 
implications (63,64). 

 Along with the essential scaffolding protein Cav-3, 
a number of different ion channels and transporters 
have been localized to caveolae in the heart, including 
L-type Ca 2 �   channels (Cav1.2), Na  �   channels (Na v 1.5), 
pacemaker channels (HCN4), Na  �  /Ca 2 �   exchanger 
(NCX1), and others. Closely associated with these 
channels are specifi c macromolecular signaling com-
plexes that provide highly localized regulation of the 
channels. Mutations in the Cav-3 gene ( CAV3 ) have 
been linked with the congenital long QT syndrome 
(LQTS), and mutations in caveolar localized ion 
channels may contribute to other inherited arrhyth-
mias. Changes in the caveolar microdomain in 
acquired heart disease may also lead to dysregulation 
and dysfunction of ion channels, altering the risk of 
arrhythmias in conditions such as heart failure (65). 

 In several cell types, including smooth muscle 
and endothelial cells, mediators of calcium signaling, 
such as Ca 2 �  -ATPase, inositol-triphosphate receptor 
(IP3R), Ca 2 �   pumps and L-type Ca 2 �   channels, 
large conductance Ca 2 �  -activated K  �   channel, calm-
odulin and transient receptor potential (TRP) chan-
nels, localize in cholesterol-rich membrane domains. 
Such localization suggest that membrane rafts and/
or caveolae have a role in calcium handling and Ca 2 �   
entry that control excitation-contraction of heart 
muscle (66,67). TRP channels, in particular TRPC-
1, -3, and -4, are enriched in caveolae and Cav-1 and 
regulate the plasma membrane localization and func-
tion of TRP channels (68). Current evidence indi-
cates that caveolae regulate calcium entry, and 
depletion of cholesterol by methyl- β -cyclodextrin 
reduces co-localization of Cav-1 and TRPC1, and 
redistribution of TRPC1, thus preventing Ca 2 �   
infl ux (69). Moreover, the Na  �   pump, Na/K-AT-
Pase, contains two caveolin-binding motifs and 
resides in caveolae in a number of cells, including 
smooth muscle cells and cardiomyocytes, thereby 

helping to maintain the Na  �   gradient (70). Voltage-
gated K  �   channels are also localized in caveolae and 
play an important role in maintaining cellular excit-
ability. In fi broblast, the Kv 1.5 subunit co-localizes 
with Cav-1, Kv 2.5 localizes with membrane raft, 
and depletion of cholesterol with M β CD redistrib-
utes and alters the function of K  �   channels (71). 
These fi ndings imply that alteration of caveolae and/
or caveolin by any disease or drug treatments can 
shift the localization of the channels, thereby altering 
cellular excitability and functional activity.   

 Caveolae and atherosclerosis 

 Experimental evidence indicates that caveolae and 
caveolins have the possibility to infl uence atherogen-
esis in many ways. Cav-1 is a cholesterol-binding 
protein that can transport cholesterol from the endo-
plasmic reticulum (ER) to the plasma membrane. 
The major receptors for high-density lipoprotein, 
SR-B1, and a scavenger receptor for modifi ed forms of 
LDL, CD36, can also reside in and signal in caveola-
type microdomains (72). In addition, oxidized LDL 
can extract caveola cholesterol, unlocalize eNOS, 
and impair NO release (73). Conversely, blockade of 
HMG CoA reductase with statin-based drugs reduces 
caveolin levels and promotes eNOS activation (74). 
This concept has been validated in apolipoprotein 
E-defi cient (ApoE -/- ) mice where statin treatment 
decreases Cav-1 expression and promotes NOS 
function  in vivo . However, to date, there are no data 
showing changes in Cav-1 levels in atherosclerotic 
lesions from humans (43). 

 Several lines of evidence now suggest that Cav-1 
might play a pro-atherogenic role. In endothelial 
cells, Cav-1 is up-regulated on LDL exposure (75). 
Moreover, down-regulation of Cav-1 is associated 
with reduced uptake of oxidized LDL by endothelial 
cells (76). This fi nding is especially important 
because caveolae are proposed to play a major role 
in the transcytosis of native and modifi ed LDL. 

 Cav-1 translocation to the plasma membrane is 
also enhanced on incubation of endothelial cells with 
LDL. This movement is accompanied by increased 
association of Ras with caveolae and results in the 
activation of Ras, an important upstream activator of 
the p42/44 MAP kinase pathway (75). Blair et al. (75) 
have also shown that oxidized LDL can modify the 
distribution of both Cav-1 and eNOS. This redistri-
bution is accompanied by a reduction in eNOS acti-
vation by acetylcholine. This observation might be the 
result of disruption of the signal transduction com-
plex containing eNOS, Cav-1, and other molecules 
required for eNOS activation. Recent work by Kincer 
et al. has shown that CD36, a class B scavenger 
receptor associated with caveolae, was probably 
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responsible for this effect (77). This observation is 
important in view of the fact that in hypercholester-
olemic patients or animal models impairment of 
endothelium-derived relaxation is observed (78,79). 
It is also known that in smooth muscle cells Cav-1 
and CD36 interacts and Cav-1 plays a role in the 
increase in apoptosis and lipotoxicity (80). In agree-
ment with this fi nding, Feron et al. have shown that 
exposure of endothelial cells to serum from hyperc-
holesterolemic patients promotes an increase in the 
Cav-1 – eNOS interaction (81). 

 To verify if Cav-1 infl uenced lesion progression 
in mice, Lisanti and his co-workers cross-bred Cav-
1 -/-  mice with ApoE -/-  mice that developed athero-
mas. Interestingly, the loss of Cav-1 in the ApoE -/-  mice 
resulted in a pro-atherogenic lipid profi le, similar to 
that seen in CD36 -/-  mice bred to an ApoE back-
ground (82,83). Surprisingly, despite a pro-athero-
genic lipid profi le, the loss of Cav-1 reduced the 
lesion burden by 80%, suggesting Cav-1 regulated 
LDL-mediated vascular dysfunction, infl ammation, 
and lesion progression. The authors suggested this 
may be caused by a decrease in stability of the scav-
enger receptor for oxidized or modifi ed LDL, CD36 
in macrophages, and an increase in endothelium-
derived NO production, which would reduce vascular 
infl ammation. These remarkable fi ndings unequivo-
cally support the importance of Cav-1/caveolae in 
the pathogenesis of atherosclerosis (43).   

 Caveolae and angiogenesis 

 Angiogenesis, a process of new blood vessel formation, 
occurs in three clearly distinct phases: initiation, pro-
liferation of vascular cells, and morphogenesis. It has 
been demonstrated that VEGF stimulates endothelial 
cell proliferation, induces the expression of proteases 
and receptors important in cellular invasion and tissue 
remodeling, modifi es endothelial cell permeability 
by stimulating NO and PGI2 production, and fi nally 
prevents endothelial cell apoptosis (84,85). The 
interaction of VEGF with VEGF receptor-2 (Flk-1/
KDR) is required to induce the full spectrum of bio-
logical responses involved in angiogenesis (86). It has 
been recently observed that VEGFR-2 and endothe-
lial NO synthase, activated by VEGF, co-localize 
with Cav-1 in plasma membrane caveolae of HUVE 
cells, suggesting the caveolar localization of VEGF 
signaling machinery in endothelium (87). 

 It is interesting to note that several important 
proteins involved in angiogenesis have been localized 
to caveolae. Some of these macromolecules include 
the VEGF receptor (VEGFR), the urokinase recep-
tor (uPAR), and eNOS. Recent studies by Labrecque 
et al. (88) have shown that Cav-1 tonically inhibits 
VEGFR-2 signaling, but interaction of VEGFR-2 

with Cav-1 appears to be required for the proper 
ligand-induced activation of the receptor within cav-
eolae membranes. Brouet et al. (89) found that 
eNOS-dependent atorvastatin stabilization of micro-
vascular endothelial cell tube formation was associ-
ated with decreased Cav-1 expression, as well as 
other modifi cations that enhance eNOS activity. On 
stimulation of cells with bradykinin, the G protein-
coupled bradykinin B2 receptor (B2R) and down-
stream effectors (Tyk2 and STAT3) are translocated 
outside the caveolae (90). This fi nding also has 
repercussions for eNOS regulation, because B2R 
can also interact with eNOS and inhibit its activity 
in a ligand- and calcium-dependent manner (91). 

 Morphogenesis implicates cell matrix adhesion 
events dependent on integrins (92) and cell-to-cell 
adhesion events dependent on interactions between 
cell surface ligands and receptors, belonging to the 
family of Eph tyrosine kinase receptors (93).  β  1 -
Integrin was found to be associated with Cav-1, and 
caveolin appears to be a general regulator of  β  1 -inte-
grin function involving Fyn kinase activation (94,95). 
Moreover, caveolae could function as assembling 
sites on the cell surface to allow the interaction 
between ephrin – Eph receptor system and integrins —
 an event preceding capillary morphogenesis. Data 
showing that knock-down of Cav-1 disrupts caveolae 
in endothelial cells and inhibits angiogenesis  in vitro  
and  in vivo  support a central role of caveolae in 
angiogenic events (96). 

 Finally, in support of a role for Cav-1 in the regu-
lation of angiogenesis  in vivo , scientists have recently 
shown, using Matrigel plugs supplemented with basic 
fi broblast growth factor, that angiogenesis in Cav-1-
null (-/-) mice is markedly reduced (97). Similar 
observations were made regarding tumor angiogenesis 
that was induced by injecting the B16 melanoma cell 
line into Cav-1-defi cient (-/-) and wild-type animals. 
In addition, ultrastructural analysis of newly formed 
capillaries within the exogenous tumors revealed 
disorganized and incomplete capillary formation in 
Cav-1-null mice.   

 Caveolae and hypertrophy 

 Cardiac hypertrophy is the consequence of an 
increase in cardiac myocyte size and/or mass. Since 
cardiac myocytes have no capacity for cellular pro-
liferation, their only means of growth is by cellular 
enlargement. Given that cardiac failure is the most 
common result of insuffi ciency of myocardium, it is 
not surprising that cardiomyocyte hypertrophy is the 
dominant cellular response to virtually all forms of 
hemodynamic overload (98). However, long-term 
adaptive/compensatory hypertrophy is associated 
with progressive ventricular dilation. As a consequence 
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of cardiac enlargement and wall thinning, stress on 
the wall also increases, despite constant intracavitary 
pressure. This mathematical increase in wall stress 
generates its own hemodynamic stress on the heart, 
further stimulating the overloaded hypertrophy sig-
naling pathway and thereby altering the balance 
from cell growth response to cell death. Once these 
processes have progressed to this stage (decompen-
sation, loss of cardiac myocytes), irreversible func-
tional deterioration develops, which leads to heart 
failure and, ultimately, death (99,100). 

 Over-expression of Cav-3 in neonatal cardiac 
myocytes decreases the ability of the adrenergic ago-
nist phenylephrine or endothelin-1 to increase cell 
size (101). A similar kind of effect is seen in cardiac 
myoblasts (H9C2) in which Cav-3 reduces angio-
tensin II-promoted hypertrophy (102). Other studies 
indicate that cardiac hypertrophy results in decreased 
expression of Cav-3 (103,104) and that right heart 
(103) and left heart (104) hypertrophy is enhanced 
in Cav-1 KO and Cav-1/3 double KO mice. Down-
regulation of growth signals is the most likely cause of 
expressed caveolin-induced inhibition of cardiomyo-
cyte growth. Cav-1 and -3 KO mice show hyperacti-
vation of p42/44 MAPK (50) and up-regulation of 
eNOS activity and nitrosative stress (44,104,50). In 
contrast, increased caveolin expression down-regulates 
activity of those entities (102,105). Chronic myocardial 
hypoxia increases eNOS expression while decreasing 
the expression of Cav-3, consistent with the idea that 
the expression and activity of eNOS is dependent on 
caveolin (106). Alterations in caveolin expression 
almost certainly change the ability of the hypertro-
phied heart to respond to a variety of physiologic and 
pharmacologic agonists/stimuli (44).   

 Caveolae and ischemic cardiomyopathy 

 As coronary artery disease is the leading cause of 
mortality, cardiologists have been attempting for 
years to identify techniques to minimize the deleteri-
ous effects of myocardial ischemia and to diminish 
the extent of myocardial infarction after coronary 
occlusion. When the heart is subjected to a transient 
non-lethal period of ischemia, it quickly adapts itself 
to become resistant to infarction from a subsequent 
ischemic insult. This adaptation is called precondi-
tioning (PC). Thus ischemic PC is a protective and 
adaptive mechanism produced by short periods of 
ischemic stress, rendering the heart more protective 
against another similar or greater stress. Although 
initially it was believed that  ‘ ischemic PC ’  could be 
induced by short cyclic episodes of ischemia and 
reperfusion, it soon became apparent that a similar 
phenotype could be elicited by a splendid array of 
stimuli. For example, a number of pharmacological 

agents, agonist of adenosine, bradykinin, adrenergic, 
muscarinic receptor, nitric oxide (NO) donors, phos-
phodiesterase inhibitors, and various noxious stimuli 
(endotoxin, cytokine, reactive oxygen species (ROS), 
etc.) have all been found to generate a PC-like phe-
notype (107,108), also known as pharmacological 
preconditioning. 

 After the discovery of  ‘ ischemic PC ’  in 1986, the 
next discovery came in 1993, when it was found that 
PC has a biphasic pattern: an early phase, which 
develops very quickly (within few minutes from the 
exposure to the stimuli) and lasts only 1 – 2 h, and a late 
phase, which develops more slowly (needs 6 – 12 h) 
but lasts 3 – 4 days. The early phase develops by rapid 
post-translational modifi cation of pre-existing pro-
teins through a series of signaling cascades. Protein 
kinase C (PKC) plays a central role in this signaling 
cascade, although mitogen-activated protein (MAP) 
kinase (extracellular kinase, p38 MAP kinase, and 
c-Jun NH(2)-terminal kinase) is equally involved in 
PC. The late PC is mediated by cardioprotective 
gene expression and by the synthesis of new cardio-
protective proteins. This mechanism involves redox-
sensitive activation of transcription factors through 
PKC and tyrosine kinase signaling pathways that are 
in common with the early phase of PC. 

 Ischemia/reperfusion injury activates p42/44 and 
p38 MAPK, redistributes Cav-3, and down-regulates 
expression of Cav-1 (109). Disruption of caveolae 
using M β CD eliminates the ability of ischemia and 
pharmacological preconditioning to protect the car-
diac myocyte from injury (110). This is supported 
by the decreased ability of Cav-1 KO mice to undergo 
pharmacological preconditioning (111). Recent 
investigations also showed that pro-survival signaling 
components (e.g. ERK1/2, HO-1, eNOS and p38 
MAPK β ) translocate and/or interact with caveolin in 
the ischemia/reperfusion heart, rendering the heart 
less susceptible to a pro-survival signal, and induces 
myocardial injury. Similarly, death signaling compo-
nents (e.g. p38 MAPK α , JNK, and Src) translocate 
and/or interact with caveolin in the preconditioned 
heart, rendering the heart less exposed to death signal-
ing components and more susceptible to pro-survival 
signaling components (112). Although the detailed 
mechanism of action of caveolin is not very clear, 
evidence indicates that proteasomes play a very 
important role in the interaction between caveolin 
and signaling components. However, overall obser-
vation indicates that caveolin plays a pivotal role in 
cardioprotection against ischemic injury.   

 Summary and conclusion 

 Caveolae and caveolins undoubtedly regulate various 
aspects of the cardiovascular system. The potential 
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role of caveolin in cardiovascular physiology has 
become apparent by the discovery of Cav-1 and 
Cav-3 KO mice and double KO mice which have a 
cardiomyopathic phenotype. Clearly, loss of Cav-1 
has a profound effect on the eNOS pathway, indicat-
ing the importance of this interaction, whereas the 
loss of Cav-3 impacts NOS as well as MAPK activa-
tion. Although the detailed mechanisms of actions 
are not very clear, experimental evidence demon-
strates the predominant role of caveolin in cardiac 
hypertrophy, atherosclerosis, ischemic injury, and 
different myocardial functions. The most recently 
discovered proteins, cavins 1 – 4, are involved in regu-
lation of caveolae and modulate the function of 
caveolins by promoting membrane remodeling and 
traffi cking. The pathogenic role of caveolins is an 
emerging area; however, the role of cavins in cardiac 
disease is just beginning to be explored. Recent 
investigations are disentangling the complex pro-
cesses of caveolin and cavin-regulated signaling sys-
tems in the myocardium and developing novel 
approaches, aimed at counteracting heart failure 
and/or cardiovascular diseases. 
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