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ORIGINAL ARTICLE 

Combining genetic markers and clinical risk factors improves 
the risk assessment of impaired glucose metabolism 

STEPHANIE-MAY RUCHAT 1,2, MARIE-CLAUDE VOHL 2, S. JOHN WEISNAGEL 1,2,
TUOMO RANKINEN3, CLAUDE BOUCHARD3 &  LOUIS PÉRUSSE1,2

1Department of Preventive Medicine, Laval University, Quebec, Canada,  2Lipid Research Center, CHUL Research Center, 
Quebec, Canada, and  3Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA 

Abstract
Background. Although several candidate gene polymorphisms (SNPs) have been associated with increased risk of type 2 
diabetes mellitus (T2DM), relatively few studies have assessed the ability of T2DM candidate genes to assess the risk of 
impaired fasting glucose (IFG), impaired glucose tolerance (IGT), and T2DM beyond the information provided by 
clinical risk factors. 
Objective. To test whether the inclusion of genetic markers in a regression model provides a better assessment of the risk 
of IFG, IGT, and T2DM than a model based only on non-genetic risk factors commonly assessed in clinical settings. 
Methods. Subjects ( n � 485; 213 parents, 272 offspring) from the Quebec Family Study, not known to have T2DM, were 
measured for several risk factors and underwent an oral glucose tolerance test. Thirty-eight SNPs in 25 susceptibility/
candidate genes previously reported to be associated with T2DM were genotyped. In order to identify risk factors associ-
ated with IFG/IGT/T2DM, two logistic regression models were tested: a full model (FM) including age, sex, body mass 
index (BMI), systolic and diastolic blood pressure, smoking status, and the 38 SNPs; and a reduced model (RM), in which 
the SNPs were dropped, which allowed us to test the null-hypothesis that the markers are not associated with the risk of 
IFG/IGT/T2DM. Performances of the models were compared by using a likelihood ratio test and the receiver-operating 
characteristic curves (ROC). The area under the curve (AUC) was calculated from the ROC curve. 
Results. The analyses showed that age ( P � 0.0001), BMI ( P � 0.0001), and six variants ( IGF2BP2 rs4402960,  P � 0.002; 
ADIPOQ �276 G�T,  P � 0.004;  UCP2 Ala55Val,  P � 0.01;  CDKN2A/2B rs3731201,  P � 0.02; rs495490,  P � 0.02, 
and rs10811661,  P � 0.03) were signifi cantly associated with the risk of IFG/IGT/T2DM. Dropping genetic markers from 
the analysis signifi cantly reduced the fi t of the model to the data (chi-square � 38.98,  P � 0.00001 contrasting RM to 
FM), suggesting that the genetic markers are signifi cantly associated with the risk of IFG/IGT/T2DM. Furthermore, the 
AUC was higher for FM than for RM (0.85 (95% CI 0.81–0.89) versus 0.81 (95% CI 0.76–0.85),  P � 0.004). 
Conclusion. Our results suggest that combining genetic markers with traditional clinical risk factors has the potential to 
improve our ability to assess the risk of complex diseases such as T2DM. 

Key words: Clinical risk factors,  genetic markers , impaired glucose metabolism , risk assessment

Introduction

Current data indicate that there are worldwide more 
than 300 million individuals with impaired glucose tol-
erance (IGT) and 246 million with type 2 diabetes 
mellitus (T2DM) (1). These two conditions are fre-
quently asymptomatic (2) and associated with increased 
risk of cardiovascular disease and premature death (3). 
Efforts directed at preventing or delaying the develop-
ment of T2DM by intervening at the ‘pre-diabetes’ 

stage are therefore an important next step. Several 
studies have already demonstrated the potential of diet 
and exercise, with or without pharmacological therapy, 
to reduce progression from IGT to T2DM (4–6). 
However, before being able to prevent the disease, it is 
essential to develop strategies allowing early identifi ca-
tion of at-risk individuals who might benefi t from these 
interventions. The question still remains: How can 
these individuals be best identifi ed? 
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Several tools have been developed, notably ques-
tionnaires and risk scores, to allow health care pro-
fessionals to identify individuals at risk for T2DM 
(7). These screening tools are based on information 
that is ordinarily available in routine clinical settings, 
such as age, gender, ethnicity, body mass index, fam-
ily history of T2DM, lifestyle habits, medication use, 
and glucose or lipid plasma levels. All of these factors 
have been reported to be associated with T2DM risk. 
A genetic susceptibility to T2DM is known to be 
present in large segments of the population, and sev-
eral single nucleotide polymorphisms (SNPs) have 
been associated with increased risk of the disease (8). 
From a clinical point of view, it is of great impor-
tance to investigate whether the use of the identi-
fi ed risk variants, in addition to traditional clinical 
risk factors, may help in the determination of an 
individual’s risk of developing T2DM. 

Previous empirical studies on the predictive value 
of genetic variants in T2DM, either alone or in addi-
tion to clinical risk factors, have been conducted. 
Weedon et al. (9) reported that individuals with 
KCNJ11 Glu23Lys,  PPARG Pro12Ala, and  TCF7L2
rs790146 risk alleles had a 5.71-fold (95% CI 1.15–
28.3) increased risk of diabetes compared to those 
with no risk allele. They calculated the area under 
the receiver-operating characteristic (ROC) curves 
(AUC) for the three variants and obtained an AUC 
of 0.58. Lyssenko and al. (10) showed an impressive 
21.2-fold increased risk for T2DM in obese indi-
viduals with elevated fasting plasma glucose (FPG) 
and carrying the combined  PPARG Pro12Pro and 
CAP10 SNP43/44 GG/TT risk genotypes compared 
to individuals who had none of these risk factors. 
However, when the AUC was calculated for body 
mass index (BMI) and FPG alone and for BMI, 
FPG, and genetic markers, an AUC of 0.68 was 
found for both models (11), suggesting that adding 
genetic testing did not improve the prediction of 
T2DM beyond that provided by BMI and FPG. 
Similarly, Vaxillaire et al. (12) investigated three 
SNPs ( GCK -308 G�A,  IL6 -174 G�C,  TCF7L2
rs7903146) and found that the predictive value was 
quite similar with either clinical characteristics alone 
or with a combination of clinical characteristics and 
genetic information. Since 2007, genome-wide asso-
ciation studies (GWAS) have led to the discovery of 
novel variants predisposing to T2DM (13–19), and 

Key message

Combining genetic markers and traditional •
clinical risk factors has the potential to 
improve the risk assessment of pre- diabetes
and diabetes.

Abbreviations

ABCC8 sulfonylurea receptor 1
ADRB2 β2 adrenergic receptor
ADRB3 β3 adrenergic receptor
ADIPOQ  adiponectin 
AUC area under the curve
BMI body mass index
CDKAL1 CDK5 regulatory subunit-

associated protein 1-like 1
CDKN2A/2B cyclin-dependent kinase inhibitor 

2A/2B
CI confi dence interval
FABP2 fatty acid-binding protein 2
FM full model
FPG fasting plasma glucose
GWAS  genome-wide association studies 
GYS1  glycogen synthase 1
HHEX/IDE hematopoietically expressed homeo-

box/insulin-degrading enzyme
HNF1B hepatocyte nuclear factor 1 β
HNF4A hepatocyte nuclear factor 4 α
HWE Hardy-Weinberg equilibrium
IGF2BP2 insulin-like growth factors 2 mRNA-

binding protein 2
IFG impaired fasting glucose 
IGT impaired glucose tolerance
IL6 interleukin 6
IRS1 insulin receptor substrate 1
KCNJ11 potassium inwardly rectifying channel,

subfamily J, member 11
LD linkage disequilibrium
LIPC hepatic lipase
LRT likelihood ratio test
OGTT oral glucose tolerance test
OPRM1 opioid receptor mu 1
OR odds ratio
PPARGC1A PPARG co-activator 1
PPARA peroxisome proliferator-activated 

receptor α
PPARG peroxisome proliferator-activated 

receptor γ
QFS Quebec Family Study
RM reduced model
ROC  receiver-operating characteristic curve
SLC30A8 solute carrier family 30 

(zinc transporter), member 8
SNPs single nucleotide polymorphisms
T2DM type 2 diabetes mellitus
TCF7L2 transcription factor 7-like 2
TNFA tumor necrosis factor α
UCP2 uncoupling protein 2
WFS1 wolfram syndrome 1
WHO World Health Organization

several studies investigated whether adding these 
genetic variants to clinical characteristics may 
improve T2DM diagnostic accuracy (20–24). All 
studies to some extent have come to the conclusion 
that the addition of genetic factors to those mea-
sured in clinic, i.e. age, sex, BMI, family history of 
diabetes, FPG, etc., albeit signifi cant, is modest. 

In the present study, we aimed to compare the 
performance of two regression models in assessing 
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the risk of undiagnosed impaired fasting glucose/
impaired glucose tolerance/type 2 diabetes (IFG/
IGT/T2DM): a full model including genetic and 
clinical risk factors and a reduced model in which 
we dropped the genetic markers. Our goal was to 
evaluate whether the inclusion of genetic informa-
tion signifi cantly improves our ability to assess the 
risk of IFG/IGT/T2DM above and beyond the 
information provided by a model based only on risk 
factors routinely collected in clinical settings. 

Methods

Study design 

The Quebec Family Study (QFS) has been described 
in detail elsewhere (25). Briefl y, QFS is composed 
of French-Canadian families living in and around 
the Quebec City area. The QFS sample is composed 
of a mixture of randomly ascertained families (phase 
1) and families ascertained through an obese (BMI 
� 30 kg/m 2) proband. The total QFS sample includes 
951 individuals from 223 nuclear families. The 
present is based on 485 adults from 164 nuclear 
families (213 parents, 272 offspring, aged 18–78 
years) with a wide range of adiposity (BMI 17.0–
65.0 kg/m 2), not known to have T2DM at their entry 
in the study and who underwent a 75-g oral glucose 
tolerance test (OGTT). The Ethics Committee of 
Laval University approved the protocol and all par-
ticipants gave their written consent to participate in 
the study. 

Phenotypes

Variables included in the regression models were 
chosen because they are recognized as risk factors 
for T2DM and are ordinarily available in a routine 
clinical setting. Height and weight were measured 
to the nearest 0.1 cm and 0.1 kg, respectively, with 
a stadiometer and a balance-beam scale, and BMI 
was calculated (kg/m 2). Blood pressure was measured 
with a mercury sphygmomanometer as previously 
described (26). Information on smoking habits was 
obtained from a self-administered questionnaire. The 
participants underwent an OGTT after an overnight 
fast. Blood glucose levels were measured at –15, 0, 
15, 30, 45, 60, 120, 150, and 180 minutes after the 
glucose load and assayed as previously described (27). 
Impaired fasting glucose, impaired glucose tolerance, 
and T2DM diagnosis were based on fasting and 2-h 
glucose plasma levels according to the World Health 
Organization (WHO) criteria (28). Following the 
OGTT, 11 individuals had IFG (6.1 mmol/L �  fast-
ing glucose � 7.0 mmol/L, and 2-h glucose � 7.8 
mmol/L), 68 had IGT (fasting glucose � 7.0 mmol/L, 

and 7.8 mmoL � 2-h  glucose � 11.1 mmol/L), and 
20 were newly  diagnosed as diabetic (fasting glucose �
7.0 mmol/L, or 2-h glucose � 11.1 mmol/L). 

Genotyping

Table I presents the variants tested and their allelic 
frequencies. The candidate regions were selected on 
the basis of two criteria: they were associated with 
T2DM or related phenotypes in at least three studies 
or were signifi cantly associated with diabetes-related 
phenotypes in prior QFS reports (see Supple-
mentary Table I online for the list of studies that 
were used for SNPs selection—http://www.informa
healthcare.com[DOI]). Genomic DNA was obtained 
from cultured lymphoblastoid cell lines by protei-
nase K and phenol/chloroform extraction procedure. 
Variants in the following genes were genotyped using 
the polymerase chain reaction (PCR) (29): adi-
ponectin ( ADIPOQ), glycogen synthase 1 ( GYS1), 
insulin receptor substrate 1 ( IRS1), peroxisome 
proliferator-activated receptor γ ( PPARG), PPARG 
co-activator 1 ( PPARGC1A), peroxisome prolifera-
tor- activated receptor α ( PPARA), β2 adrenergic 
receptor ( ADRB2), β3 adrenergic receptor ( ADRB3), 
fatty acid-binding protein 2 ( FABP2), hepatic lipase 
(LIPC), interleukin 6 ( IL6), tumor necrosis factor α
(TNFA), hepatocyte nuclear factor 4 α ( HNF4A), 
opioid receptor mu 1 ( OPRM1), sulfonylurea recep-
tor 1 ( ABCC8), and uncoupling protein 2 ( UCP2). 
Variants in CDK5 regulatory subunit-associated 
protein 1-like 1 ( CDKAL1); cyclin-dependent 
kinase inhibitor 2A/2B ( CDKN2A/2B); hemato
poietically expressed homeobox/insulin-degrading 
enzyme ( HHEX/IDE); insulin-like growth factors 
2 mRNA binding protein 2 ( IGF2BP2); potassium 
inwardly rectifying channel, subfamily J, member 
11 ( KCNJ11); solute carrier family 30 (zinc trans-
porter), member 8 ( SLC30A8); hepatocyte nuclear 
factor 1 β ( HNF1B); transcription factor 7-like 2 
(TCF7L2); and Wolfram syndrome 1 ( WFS1) were 
genotyped using the Illumina Golden Gate assay 
on the Illumina Bead Station platform (Illumina 
Inc., San Diego, CA) or the TaqMan methodol-
ogy of Applied Biosystem Company (30). All the 
genotyping results were stored in a local dBase IV 
database, GENEMARK, and Mendelian inheritance 
incompatibilities were verifi ed using the Pedcheck 
software (31). Subjects with Mendelian incompat-
ibilities were excluded from the database automati-
cally by GENEMARK and retyped completely. 

Statistical analysis 

Deviation from Hardy-Weinberg equilibrium (HWE) 
and linkage disequilibrium (LD) among SNPs 
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Table I. Polymorphisms analyzed in the present study. 

Genes Description Polymorphisms

Allele frequencies

Genotype frequencies ( n)Major Minor

Insulin sensitivity
GYS1 Glycogen synthase 1 rs8103451 A�C

(A1�A2)
A: 0.94 C: 0.06 A/A: 427 A/C: 57 C/C: 1

IRS1 Insulin receptor substrate 1 rs1801278 A�C
(Gly972Arg)

A: 0.93 C: 0.07 A/A: 422 A/C: 60 C/C: 3

IGF2BP2 Insulin-like growth factors 2 
mRNA binding protein 2

rs4402960 C�A C: 0.72 A: 0.28 C/C: 259 C/A: 181 A/A: 45

PPARG Peroxisome proliferator-activated 
receptor γ

rs1801282 C�G
(Pro12Ala)

C: 0.89 G: 0.11 C/C: 390 C/G: 86 G/G: 9

PPARGC1A PPARG co-activator 1 rs8192678 G�A
(Gly482Ser)

G: 0.64 A: 0.36 G/G: 186 G/A: 251 A/A: 48 

PPARA Peroxisome proliferator-activated 
receptor α

rs1800206 C�G
(Leu162Val)

C: 0.93 G: 0.07 C/C: 421 C/G: 57 G/G: 7

Lipolysis/lipid metabolism
ADRB2 β2 adrenergic receptor rs1042714 C�G

(Gln27Glu)
C: 0.59 G: 0.41 C/C: 174 C/G: 225 G/G: 86

rs1042713 G�A
(Gly16Arg)

G: 0.65 A: 0.35 G/G: 209 G/A: 216 A/A: 60

ADRB3 β3 adrenergic receptor rs4994 T�C
(Trp64Arg)

T: 0.91 C: 0.09 T/T: 402 T/C: 80 C/C: 3

FABP2 Fatty acid -binding protein 2 rs1799883 G�A
(Ala54Thr)

G: 0.72 A: 0.28 G/G: 246 G/A: 197 A/A: 42

LIPC Hepatic lipase rs1800588 
(–514 C�T)

C: 0.80 T: 0.20 C/C: 307 C/T: 158 T/T: 20

Adipokines
ADIPOQ Adiponectin rs2241766 

(�45 T�G)
T: 0.88 G: 0.12 T/T: 375 T/G: 99 G/G: 11

rs1501299 
(�276 G�T)

G: 0.71 T: 0.29 G/G: 252 G/T: 188 T/T: 45 

IL6 Interleukin 6 rs1800795 
(–174 G�C)

G: 0.57 C: 0.43 G/G: 159 G/C: 236 C/C: 90

TNFA Tumor necrosis factor α rs1800629 
(–308 G�A)

G: 0.85 A: 0.15 G/G: 352 G/A: 123 A/A: 10

Pancreatic function (β-cell)
ABCC8 Sulfonylurea receptor 1 rs1799854 

(exon 16–3C�T)
C: 0.57 T: 0.43 C/C: 161 C/T: 228 T/T: 96

rs1801261 C�T
(Thr759Thr)

C: 0.96 T: 0.04 C/C: 444 C/T: 40 T/T: 1

CDKAL1 CDK5 regulatory subunit 
associated protein 1-like 1

rs7756992 A�G A: 0.76 G: 0.24 A/A: 278 A/G: 177 G/G: 30

rs10946403 A�G A: 0.84 G: 0.16 A/A: 342 A/G: 131 G/G: 12
CDKN2A/2B Cyclin-dependent kinase inhibitor 

2A/2B
rs3731211 T�A T: 0.72 A: 0.28 T/T: 250 T/A: 198 A/A: 37

rs3731201 A�G A: 0.84 G: 0.16 A/A: 346 A/G: 122 G/G: 17
rs495490 A�G A: 0.93 G: 0.07 A/A: 420 A/G: 64 G/G: 1
rs564398 A�G A: 0.62 G: 0.38 A/A: 196 A/G: 211 G/G: 78
rs10811661 A�G A: 0.77 G: 0.23 A/A: 293 A/G: 162 G/G: 30

HHEX/IDE Hematopoietically expressed 
homeobox/nsulin-degrading 
enzyme

rs1111875 G�A G: 0.61 A: 0.39 G/G: 181 G/A: 227 A/A: 77

rs7923837 G�A G: 0.63 A: 0.37 G/G: 190 G/A: 231 A/A: 64
HNF1B Hepatocyte nuclear factor 1 β rs4430796 G�A G: 0.54 A: 0.46 G/G: 139 G/A: 246 A/A: 100 
HNF4A Hepatocyte nuclear factor 4 α rs1885088 G�A G: 0.77 A: 0.23 G/G: 288 G/A: 167 A/A: 30

rs745975 C�T C: 0.76 T: 0.24 C/C: 278 C/T: 179 T/T: 28
KCNJ11 Potassium inwardly rectifying 

channel, subfamily J, member 11
rs5215 A�G A: 0.58 G: 0.42 A/A: 164 A/G: 234 G/G: 87

rs2285676 A�G A: 0.65 G: 0.35 A/A: 207 A/G: 216 G/G: 62
rs11024273 C�A C: 0.72 A: 0.28 C/C: 251 C/A: 192 A/A: 42 

OPRM1 Opioid receptor mu 1 rs1799971 T�C T: 0.78 C: 0.22 T/T: 301 T/C: 159 C/C: 25

(Continued)
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located in a given gene were tested in unrelated indi-
viduals (i.e. in the parents,  n � 213) using the 
ALLELE procedure implemented in SAS (SAS 
Institute, Cary, NC, version 9.1.3). The pairwise LD 
among SNPs was assessed by  r2 and D’ (32). 

Two multiple logistic regression models were tested 
to identify predictors of IFG/IGT/T2DM. We fi rst 
tested a ‘full model’ (FM) which included age, sex, 
BMI, systolic and diastolic blood pressure, smoking 
status, and the 38 variants as independent variables. 
The non-genetic clinical variables were forced into the 
model, while the stepwise selection method was applied 
to the SNPs in order to retain only those contributing 
signifi cantly to the risk in the presence of the clinical 
variables chosen. A second ‘reduced model’ (RM), 
which included the same independent variables as in 
the full model, except the genetic variants, was then 
tested. Since the family structures and the potential 
intra-family correlations can infl uence risk estimation, 
we tested the familial resemblance for IFG/IGT/T2DM 
before performing the regression analyses. An analysis 
of variance on IFG/IGT/T2DM revealed that the vari-
ance accounted for by family lines was not signifi cant 
(R2 � 35%,  P � 0.29). In the absence of familial 
resemblance, the relatedness among family members 
was not taken into account in the logistic regression 
analyses (LOGISTIC procedure implemented in SAS, 
version 9.13; SAS Institute, Cary, NC). 

Comparison of the models  

Predictive ability. The goodness of fi t of the reduced 
model without the genetic markers was compared to 
the full model using a likelihood ratio test (LRT). 
Twice the difference in the log likelihood of the two 
models asymptotically yields a distribution of chi-
square with degrees of freedom (df) equal to the num-
ber of constrained parameters. A signifi cant chi-square 
statistic indicates that the reduced model is rejected, 
which suggest that the risk of IFG/IGT/T2DM 
accounted for by a model including genetic markers 
fi ts the data better than a model without such data. 

Discriminative ability. The ability of the two models
to discriminate between subjects with and without 
IFG/IGT/T2DM was also investigated by plotting 
ROC curves. The ROC curves characterize the rela-
tionship between sensitivity and 1-specifi city. The 
ROC curves can therefore be used to visualize how 
well the test correctly distinguishes subjects with 
IFG/IGT/T2DM from subjects without IFG/IGT/
T2DM. The closer the ROC curve is to the diagonal 
(see Figure 1), the less useful the model is at dis-
criminating between cases and controls. This close-
ness to the diagonal can be quantifi ed by calculating 
the AUC which can take values from 0.5 (no dis-
crimination) to 1 (perfect discrimination); the larger 
the AUC, the better is the discriminative ability. The 
AUC were calculated by using the LOGISTIC pro-
cedure implemented in SAS (version 9.13; SAS 
Institute, Cary, NC). The 95% CIs of the AUCs and 
the statistical signifi cance of difference in these areas 
were estimated by using the algorithm developed by 
DeLong and colleagues (33). 

Power calculations performed in the Quebec 
Family Study cohort indicate that under a sample 
size of 500 subjects, we have 99% power at α �
0.05 and 99% at α � 0.01 to detect an  association 
for a variant affecting 5% of the population and 
having a mean displacement between carriers and 
non-carriers of 2.0 standard deviation units .

Results

The genetic variants analyzed in our study are pre-
sented in Table I. They were all in HWE ( P � 0.05 
from a chi-square test), and those within a given 
gene were not in complete LD (i.e. D’ � 1.0, and  r2

� 1.0). The characteristics of the participants 
included in the study are presented in Table II. 
As expected, compared to normal glucose-tolerant 
subjects, the IFG/IGT/T2DM subjects were older, 
presented greater adiposity, had higher systolic and 
diastolic blood pressure, and higher fasting and 2-h 
glucose levels ( P � 0.0001 for all). 

Table I. (Continued)

Genes Description Polymorphisms

Allele frequencies

Genotype frequencies ( n)Major Minor

SLC30A8 Solute carrier family 30 
(zinc transporter), member 8

rs13266634 G�A G: 0.68 A: 0.32 G/G: 223 G/A: 217 A/A: 45

TCF7L2 Transcription factor 7-like 2 rs7903146 G�A G: 0.74 A: 0.26 G/G: 265 G/A: 184 A/A: 36

rs7901695 T�C T: 0.68 C: 0.32 T/T: 226 T/C: 216 C/C: 43 
UCP2 Uncoupling protein 2 rs660339 A�C

(Ala55Val)
A: 0.62 C: 0.38 A/A: 190 A/C: 225 C/C: 70

WFS1 Wolfram syndrome 1 rs10010131 G�A G: 0.62 A: 0.38 G/G: 174 G/A: 257 A/A: 54

Risk alleles are shown in bold.
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Results of logistic regression analyses (Table III) 
showed that age ( P � 0.0001), BMI ( P � 0.0001), 
and six variants ( IGF2BP2 rs4402960,  P � 0.002; 
ADIPOQ �276 G�T,  P � 0.004;  UCP2 Ala55Val,
P � 0.01;  CDKN2A/2B rs3731201,  P � 0.02; 
rs495490,  P � 0.02; and rs10811661,  P � 0.03) 
contributed signifi cantly to the risk of IFG/IGT/
T2DM in the full model, whereas age ( P � 0.0001) 
and BMI ( P � 0.0001) contributed signifi cantly 
to the risk in the reduced model. Results from the 
full model indicate that, for each genetic marker, 
independently of the other variables in the model, 
carrying one of the risk alleles was associated with 
a 2.0–5.8-fold increased risk for undiagnosed IFG/
IGT/T2DM. The highest risk was associated with 

the CDKN2A/2B rs10811661 polymorphism (OR 
� 5.8, 95% CI 1.47–39.79,  P � 0.03). As shown in 
Table III, the full model explains a greater amount 
of variance in the prediction of IFG/IGT/T2DM 
than the reduced model ( R2 � 38.6% for FM versus 
R2 � 28.7% for RM). In line with this observation, the 
likelihood ratio test reveals that dropping the genetic 
markers from the full model decreased signifi cantly 
the ability to predict undiagnosed IFG/IGT/T2DM 
(chi-square � 38.98,  P � 0.00001 contrasting RM 
to FM). Moreover, the areas under the ROC curves 
presented in Figure 1 show that the two models are 
relatively good at discriminating between subjects 
with and without IFG/IGT/T2DM, but suggest that 
the model with the genetic markers performs better

Table II. Characteristics of the participants. 

Normal glucose tolerant IFG/IGT/T2DM  P-value

n � 485 386 99
Sex M � 215/F � 270 171/215 44/55 0.98 a

Age (years) 37.36 (17.6–68.1) 49.19 (17.9–78.1) �0.0001
Body mass index (kg/m 2) 26.09 (17.33–52.97) 31.76 (19.12–64.94) �0.0001
Smoking yes/no (%) 24%/76% 17%/83% 0.17 a

Systolic blood pressure (mmHg) 114.3 (84–180) 128.0 (96–200) �0.0001
Diastolic blood pressure (mmHg) 70.36 (48–112) 77.66 (51–103) �0.0001
Fasting glucose levels (mmol/L) 5.03 (3.6–6.0) 5.92 (4.35–13.0) �0.0001
2-h glucose levels (mmol/L) 5.58 (2.7–7.7) 9.37 (4.5–19.7) �0.0001

Data are means (min–max).  P-values are for differences between normal glucose tolerant and IFG/IGT/T2DM. 
IFG � impaired fasting glucose; IGT � impaired glucose tolerant; T2DM � diabetic. 
aFrom a chi-square test.

Figure 1.  Comparison of areas under the receiving-operating characteristic (ROC) curves. Area under the ROC curve for the full model 
(gray): 0.85 (95% CI 0.81–0.89). Area under the ROC curve for the reduced model (black): 0.81 (95% CI 0.76–0.85).  P-value for the 
difference between the areas under the ROC curves of the two models: 0.004. (From DeLong et al. (33).) 
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(farther form the diagonal). Indeed, the analysis 
revealed that the AUC was signifi cantly higher for 
the full model (with the genetic markers) than for 
the reduced model (0.85 (95% CI 0.81–0.89) versus 
0.81 (95% CI 0.76–0.85),  P � 0.004). 

Discussion

Clinical trials have demonstrated that high-risk indi-
viduals, defi ned as having IGT, can reduce their risk 
of T2DM by more than half by lifestyle modifi cation 
programs and to a lesser extent with preventive phar-
macological interventions (4–6). It would therefore 
be useful to develop effective methods to identify 
people at high risk for T2DM who might benefi t 
from such interventions. The objective of the present 
study was to evaluate whether the inclusion of genetic 
markers in a model has the ability to better assess 
the risk of undiagnosed IFG, IGT, and T2DM 
beyond the information provided by non-genetic 
measures commonly assessed in clinical settings. We 
developed two models for selecting subjects with an 
increased risk of having undiagnosed IFG, IGT, or 
T2DM. In the fi rst model we included non-genetic 
and genetic information, whereas in the second 
model we dropped information provided by markers 
and evaluated whether this signifi cantly reduced the 
fi t to the data. 

One of our principal fi ndings is that individuals 
carrying one of the risk alleles of  IGF2BP2 rs4402960, 
ADIPOQ �276 G�T,  UCP2 Ala55Val,  CDKN2A/2B

rs3731201, rs495490, or rs10811661 have a 2.0–
5.8-fold increased risk for undiagnosed IFG/IGT/
T2DM (Table III). The contribution of these six 
variants to the risk of impaired glucose metabolism 
is not surprising since they have been previously 
reported to be associated with the disease. 
CDKN2A/2B rs10811661, which was associated 
with the greatest risk (OR � 5.8, 95% CI 1.47–
39.79), has been identifi ed through GWAS (14,15,19) 
and further confi rmed as a strong diabetes variant 
(34–38). The comparison of the two models tested 
in the present study by using the likelihood ratio test 
clearly shows that dropping genetic information 
from the full model decreased signifi cantly its capac-
ity to predict deterioration in glucose tolerance 
(Table III). Indeed, the ‘-2 log likelihood’, which is 
a measure of the variance remaining unexplained 
when all the independent variables from the model 
are considered, was higher for the reduced model 
than for the full model. Moreover, the variance 
accounted for by the full model was higher than the 
one accounted for by the reduced model. Similarly, 
the comparison of the area under the ROC curve of 
the two models revealed a modest, albeit signifi cant, 
difference in discriminative ability of the model with 
the genetic markers compared to the model without 
these markers (Figure 1). Our results suggest that 
the combination of genetic and non-genetic informa-
tion in a model assessing the risk of IFG/IGT/T2DM 
performs better than a model based only on clinical 
risk factors, which demonstrates the clinical poten-

Table III. Results of logistic regression analyses predicting undiagnosed IFG/IGT/T2DM.

Full model Reduced model

Independent variable OR  P-value 95% CI OR  P-value 95% CI

Sex (women vs men) 1.16 0.60 0.68–2.00 1.12 0.67 0.67–1.86
Age (years) 1.31 �0.0001 1.18–1.47 1.28 �0.001 1.15–1.42
Body mass index (kg/m 2) 1.19 �0.0001 1.11–1.28 1.19 �0.0001 1.12–1.28
Smoking status (smokers vs nonsmokers) 1.46 0.28 0.73–2.89 1.30 0.43 0.66–2.47
Systolic blood pressure (mmHg) 1.02 0.38 0.98–1.07 1.02 0.38 0.98–1.07
Diastolic blood pressure (mmHg) 1.07 0.08 0.99–1.16 1.05 0.18 0.98–1.13
UCP2 Ala55Val (Ala/Ala versus Val/Val) 1.17 0.35 0.48–3.00
UCP2 Ala55Val (Ala/Val versus Val/Val) 2.48 0.005 1.08–6.16
ADIPOQ �276 G�T (T/� versus G/G) 2.29 0.004 0.25–0.76
IGF2BP2 rs4402960 C�A (A/� versus C/C) 2.49 0.002 1.43–4.43
CDKN2A/2B rs10811661 G�A (A/� versus G/G) 5.83 0.03 1.47–39.79
CDKN2A/2B rs3731201 A�G (G/� versus A/A) 1.96 0.02 0.29–0.91
CDKN2A/2B rs49540 A�G (G/� versus A/A) 2.53 0.02 0.18–0.87

Model R2 0.386 0.287
Likelihood ratio test (LRT)

-2 Log L Full model 354.253
-2 Log L Reduced model 393.234
LRT chi-square  (7 df) 38.98
P-value �0.00001

The OR for age was calculated for a 5-year increment in age, while for body mass index it was calculated for a 2 kg/m 2 increment. 
OR = odds ratio; CI = confi dence interval; IFG/IGT/T2DM = impaired fasting glucose/impaired glucose tolerance/type 2 diabetes. 
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tial to use genetic information in the assessment of 
the disease risk. 

Previous studies have investigated the impact 
of genetic variants and/or clinical characteristics on 
risk of T2DM. An overview of these studies is pre-
sented in Table IV, which presents the area under 
the ROC curves for the various predictive models 
reported in these studies. Among those, the study by 
Cauchi et al. (39) looked at the combined effect of 
15 novel loci identifi ed by GWAS and showed that 
individuals carrying 18–30 risk alleles (9.8% of the 
population) had an increased risk of T2DM (OR �
8.68, 95% CI 6.37–11.83) compared to the refer-
ence group (0–10 risk alleles, 7.5%). The estimated 
area under the ROC curve for clinical characteristics 
(age, sex, and BMI) and the 15 variants was 0.86. 
However, as suggested by Janssens et al. (40), the 
usefulness of genetic markers for predicting T2DM 
should be evaluated by comparing the discriminatory 
accuracy of predictions based on models that do and 
do not include genetic markers in order to evaluate 
whether genetic testing will improve the prediction 
of T2DM in the presence of information on non-
genetic factors. 

In recent months, fi ve studies that investigated 
whether adding genetic information to clinical char-

acteristics may improve T2DM diagnostic accu-
racy have been published (20–24) (Table IV). The 
Genetics of Diabetes Audit and Reseach Tayside 
Study (GoDARTS) (20) and the Rotterdam Study 
(23) examined 18 SNPs (14 were identical in both 
studies). Carriers of more than 24 risk alleles had a 
prevalence ratio of 4.2 (95% CI 2.11–8.56) in the 
GoDARTS and 2.10 (95% CI 1.04–4.22) in the 
Rotterdam Study as compared with carriers of less 
than 12 risk alleles. In the GoDARTS, the AUCs were 
0.60, 0.78, and 0.80 for models containing the genetic 
variants, the clinical characteristics (age, sex and BMI), 
and the combination of genetic and clinical infor-
mation, whereas in the Rotterdam Study, the AUCs 
were 0.60, 0.66, and 0.68, respectively. Although 
marginal, the increase in the AUC when genetic vari-
ants were combined with clinical characteristic was 
statistically signifi cant in both studies (GoDARTS: 
P � 2.88 × 10 –12,and Rotterdam Study:  P � 0.0001). 
Lyssenko et al. (21) and van Meigs et al. (22) have 
tested several T2DM-predictive models that include 
or do not include genetic information. The former 
reported that the addition of genetic information 
(16 variants) to clinical factors slightly improved the 
prediction of future T2DM, with the AUC increas-
ing from 0.74 to 0.75 ( P � 0.0001), whereas the 

Table IV. Overview of type 2 diabetes predictive models including genetic and/or clinical risk factors. a (P-values are for comparison between 
AUC for clinical characteristics and for genetic variants plus clinical characteristics.) 

Studies
Number of 

subjects
Genetic

variants ( n)
AUC for genetic 

variants
AUC for clinical 

characteristics

AUC for genetic 
variants and 

clinical
characteristics  P-value

Weedon et al. (9)  6,077  3 0.58 NR NR NR
Lyssenko et al. (10)  2,293  2 NR 0.68 c 0.68 NR
Vaxillaire et al. (12)  3,877  3 0.56 0.82 d 0.84 NR
Lu & Elston (43) Simulation 

based on (9) 
  3 b 0.58 NR NR NR

Simulation 
based on (9)

 7 NR NR e 0.66 NR

Simulation 
based on (9)

12 NR NR e 0.67 NR

Cauchi et al. (39)  6,890 15 NR NR d 0.86 NR
van Hoek et al. (23)  6,544 18 0.60 0.66 d 0.68 �0.0001
Lango et al. (20)  4,907 18 0.60 0.78 d 0.80 2.88 � 10 –12

Lyssenko et al. (MPP) (21) 18,831 16 0.63 0.70 f 0.72 �0.0001
18,831 16 0.63 0.74 g 0.75 0.0001

Meigs et al. (22)  2,377 18 NR 0.53 h 0.58 0.01
 2,377 18 NR 0.60 i 0.62 NS
 2,377 18 NR 0.90 j 0.90 NS

Miyake et al. (24)  4,686 11 0.63 0.68 d 0.72 NR
Ruchat et al.    485  6 NR 0.81 k 0.85 0.004

aValues are the areas under the ROC curves, which represent the capacity of the model to discriminate between cases and controls. A 
value of 0.5 indicates no discrimination, while a value of 1 indicates perfect discrimination.  bSame predictive genetic model as Weedon 
et al. (9).  Clinical characteristics: cFasting glucose and BMI;  dAge, sex, BMI;  eDiet, physical activity, cigarette smoking and alcohol 
consumption;  fAge, sex, family history, BMI;  gAge, sex, family history, BMI, blood pressure, triglycerides, fasting glucose;  hSex;  iSex, 
family history;  jAge, sex, family history, BMI, blood pressure, HDL cholesterol, triglyceride, fasting glucose;  kAge, sex, BMI, smoking 
status, blood pressure. NR = not reported; MPP = Malmö Preventive Project. 
P-values are for comparison between AUC for clinical characteristics and for genetic variants plus clinical characterstics.
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latter demonstrated that when clinical risk factors 
were considered, the genetic information (18 genetic 
markers, of which 14 were studied by Lyssenko et al.) 
did not improve risk discrimination. Finally, Miyake 
et al. (24) tested on a Japanese population a predic-
tive model for T2DM containing risk alleles for 11 
genes, as well as age, sex, and BMI. The discrimina-
tive capacity (AUC) of the model including either 
genetic factors, clinical factors, or the combination 
of both, was respectively 0.63, 0.68, and 0.72. 

Our study raised several points that should be dis-
cussed. First, we should emphasize that established 
models to predict T2DM, such as the Framingham 
risk score, include fasting glucose, whereas the pre-
dictive model of the current paper does not. Our 
study therefore demonstrates that T2DM-predictive 
models may have good predictive and discrimina-
tive capacities without including fasting glucose lev-
els. Furthermore, our predictive models were based 
on the assessment of the risk of impaired glucose 
metabolism while those of the other studies predicted 
the risk of T2DM. This difference in the outcome 
prediction could explain the stronger odds ratio asso-
ciated with the variants and the higher AUC values 
that we have found. Variants may indeed have stron-
ger effects on pre-diabetic phenotypes than on the 
fi nal disease phenotype. In this respect, Lyssenko 
et al. (21) demonstrated that genetic information may 
have the greatest yield before other risk factors have 
appeared, suggesting that assessment of genetic risk 
factors is clinically more meaningful the earlier in 
life they are measured, i.e. before the development 
of T2DM and its complications. Our study has some 
limitations, the main being its cross-sectional design 
that did not allow us to truly determine the pre-
dictive power of the variants. Moreover, the small 
number of participants could have resulted in false 
positive associations. However, the variants that 
contributed signifi cantly to the model were previ-
ously reported to be strong susceptibility genes for 
T2DM. Of note, a large number of candidate regions 
selected in the current study were different from 
those investigated in the other studies. Importantly, 
we did not assess the effects of the most recently 
identifi ed T2DM variants (18). The discriminative 
accuracy of predictive genetic testing in complex dis-
eases depending on the number of genes involved, 
the risk allele frequencies, and the size of the associ-
ated risks (41), and the impact of several missing 
genes that are strongly associated with T2DM could 
have led to a decrease in the predictive power of our 
full model. 

The present study and those of others illustrate 
that combining genetic information and non-genetic 
factors has the potential to improve prediction of pre-
diabetes and diabetes. However, the discriminative 

ability conferred by the addition of genetic markers, 
albeit signifi cant, is modest. Therefore, the use of 
genetic information as a screening tool is not clinically 
effi cient at this time. It has been estimated that only 
about 20–25 common risk variants (allele frequencies 
� 10%) with small effect sizes (OR 1.2–1.5) would 
be needed to explain 50% of the inherited risk of 
T2DM (42). With the rapid progress made in identi-
fying T2DM susceptibility genes, we can expect that 
in the near future an array of markers will be defi ned 
with suffi cient clinical relevance for the prediction of 
T2DM risk. 
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