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The intestinal immune system is severely affected by HIV and circulating micro-
bial products from the intestinal tract that provide an ongoing source of systemic
inflammation and concomitant viral replication. In addition, HIV-infected indi-
viduals can have a deregulated immune response that may hamper the anti-viral
capacity of the host. Various probiotic organisms and prebiotic agents have been
shown to enhance intestinal epithelial barrier functions, reduce inflammation, and
support effective Th-1 responses. As these characteristics may benefit HIV patients,
this review aims to provide a theoretical framework for the development of probiotic
and prebiotic interventions specifically for this population.
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INTESTINAL DEFENSES AND HOMEOSTASIS

The gastrointestinal tract provides a range of habitats for microbes
that have either co-evolved with the human species as symbionts or as
potential pathogens. The different compartments of the tract host ap-
proximately 500 to 1000 bacterial species [1], totaling 1013–1014 cells.
Collectively, these organisms represent at least 100 times more genes
than the human genome. This complex microbial population influences
an estimated 10% of all metabolites in our body [2], and could be re-
garded as “the neglected organ.” In various eukaryotic species, includ-
ing humans, the relation between bacterial communities and their host
is mutualistic and symbiotic in nature [3]. The symbiotic benefits in
humans include energy supply, nutrient metabolism, and prevention of
colonization by opportunistic pathogens [4].

In order to benefit from this symbiotic relationship, the immune sys-
tem has to balance permissive, tolerogenic responses to food antigens
and commensal microbes with potentially damaging, inflammatory re-
sponses to ward off pathogens. This delicate balance is maintained by
the constant interplay between the microbiota, the intestinal barrier,
and the mucosal immune system and is a prerequisite for normal gut
homeostasis (Figure 1). Imbalance of this system may lead to autoim-
mune inflammation or infectious pathology.

The first barrier against pathogenic infection and damaging inflam-
matory responses against commensal bacteria is a degree of physical
separation between the intestinal bacteria and the host. Important
components of this barrier are intestinal epithelial cells (IEC) that
form a physical barrier on the body’s largest surface area for interac-
tion with microbes. The epithelium is also home to mucus-producing
goblet cells and antimicrobial-peptide-producing Paneth cells [1]. Col-
lectively, these cells produce a mucus layer that selectively limits the
contact between bacteria and host cells, a mechanism that is thought
to limit damaging inflammatory responses [5].

Despite this physical barrier, sampling and recognition of the intesti-
nal content is a crucial function of the intestinal immune system that
is necessary to mount appropriate immune responses. An important
mechanism for IEC and immune cells to interact with commensal and
pathogenic bacteria is the recognition of microbe-associated molecu-
lar patterns by germline-encoded pattern recognition receptors (PRR).
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FIGURE 1 Normal mucosal defenses and homeostasis: The commensal mi-
crobiota induces a state of non-responsiveness through interaction with den-
dritic cells (DC) and subsequent induction of the T-regulatory phenotype and
secretion of IL-10 and TGF-β. There is a limited uptake of bacterial antigens,
such as lipopolysaccharide (LPS), polysaccharide-A (PSA), and DNA, that in-
duce intestinal defense systems, such as the excretion of β-defensin and secre-
tory IgA.

The best described PRR are Toll-like receptors (TLR), which have been
found on a wide range of cell types. The TLR detect various conserved
microbial structures, such as lipoteichoic acid (TLR-2), lipopolysaccha-
ride (LPS) (TLR-4), flagellin (TLR-5), and CpG DNA (TLR-9) (reviewed
in [6]). Interaction of commensal microbes with TLRs appears to be es-
sential for IEC integrity [7]. Other important PRR groups include the
sugar-binding lectins and NOD protein families. NOD proteins are lo-
cated in the cytoplasm of IEC and are activated upon invasion. While
NOD-1 is located within all IEC, another variant, NOD-2, is only ex-
pressed in Paneth cells and plays a role in the synthesis of cryptidin
and defensin [8].

Specialized structures for sampling intestinal content are present
in the gut-associated lymphoid tissues (GALT). These include Peyer’s
patches (PP) in the small intestine and lymphoid follicles in the colon,
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which are covered by follicle-associated epithelium containing non-
mucus producing microfold (M-) cells. These cells are devoid of mi-
crovilli and are specialized in antigen transport into the PP, where the
antigens are taken up by antigen presenting cells (APC) [9]. Dendritic
cells (DC), the main APCs in PP, interact with T- and B-lymphocytes to
induce suitable adaptive immune responses, depending on the type of
stimulus. Therefore, PPs are major inductive sites of mucosal adaptive
immune responses (reviewed in [10]). After activation, lymphocytes
home to the lamina propria (LP) or intestinal epithelium to perform
effector functions. The heterogeneous population of intestinal intra-
epithelial lymphocytes (iIEL) is thought to regulate the intestinal ep-
ithelial barrier integrity and regeneration, and reduce damage due to
local immune responses [11]. Furthermore, the LP contains DCs that
can sample luminal content by extending dendrites through the intra-
cellular epithelial tight junctions, providing a mechanism to sample
intestinal content outside of PP as well [12]. DCs are central regula-
tors of adaptive immune responses, initiating either effector responses
or inducing tolerance. The many different DC subpopulations that are
present within the mucosal immune system each have different func-
tional characteristics (reviewed in [13]).

In the absence of inflammatory signals, commensal microorganisms
induce tolerogenic maturation of DCs, leading to the induction of var-
ious types of regulatory T-cells (Treg), including CD4+CD25+Foxp3+

lymphocytes [14], or hyporesponsive T-cells [15]. The maintenance of
the Treg population are dependent on IL-2, IL-10, and TGF-β levels,
which in turn are dependent on continuous background activation by
commensal micro-organisms [16]. In addition, intestinal DCs are potent
inducers of IgA synthesis in B cells, which has anti-pathogenic effects
but also prevents commensal bacteria from penetrating the host [17].
IgA accounts for >70% of our body’s total immunoglobulin production.
Several grams of secretory IgA (sIgA) are secreted in the intestinal
lumen daily, which exerts considerable immunological pressure on the
intestinal microbiota [18].

Reciprocally, the intestinal bacteria have a major influence on
the immune system as well. Studies comparing germ-free mice with
microbially-colonized mice have shown that the presence of microbes
is crucial for the normal development of GALT as well as other sec-
ondary immune organs. In the GALT, the absence of bacteria leads
to a multitude of effects, including limited development of Peyer’s
patches, reduced B-cell activation and IgA production, and reduced
numbers of iIEL. Moreover, epithelial function is also affected, as evi-
denced by reductions in IEC turnover and changes in mucus production
[19].
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The effects of commensal bacteria on the immune system are dualis-
tic in nature. On the one hand, mechanisms are induced that maintain
tolerance and/or prevent inflammation. This includes IgA production,
β-defensin production in the epithelium [20, 21], enhanced epithelial
barrier integrity through TLR signaling [7], Treg induction and even
immunosuppressive effects [22–24]. On the other hand, exposure to
commensal bacteria induces the expansion of inflammatory lympho-
cyte populations, including cytotoxic iIEL and IL-17-producing CD4+

T-helper (Th17) cells [25, 26]. Th17 and other IL-17 producing cells
have been implicated in many inflammatory and autoimmune condi-
tions [27–29], however, they have also been shown to play important
roles in protective mucosal responses against extra-cellular bacteria
and fungi (reviewed in [30]). It is interesting to note that the induction
of Treg and Th17 populations share a dependency on TGF-β signal-
ing. Furthermore, both populations are relatively abundant in the LP.
Therefore, it is thought that both types of T-cells are induced by signals
from the intestinal bacteria and the balance between these opposing
cell types is determined by the specific host-microbe interactions [31].

Commensal bacteria are able to influence the mucosal immune sys-
tem, not only through cell-cell interactions, but also through the se-
cretion of immune-modulatory molecules. These include: adenosine
triphosphate (ATP), which enhances the polarization of Th-17 T-
lymphocytes [32]; polysaccharide A (PSA), which induces maturation of
Th-17 cell populations [33]; and DNA, which induces IFN-α syntheses
and favors IEC integrity [34]. Furthermore, the intestinal epithelium
is also constantly exposed to inflammatory molecules, such as LPS
and peptidoglycans. Despite this continuous exposure, the intestinal
immune system is unique in its ability to maintain tolerance in the
presence of a multitude of immune triggers while minimizing the risk
of systemic infection.

In summary, the net effects of the interplay between the commensal
microbiota and the mucosal immune system are enhanced mucosal de-
fense mechanisms, balanced by an inhibition of potentially damaging,
inflammatory immune responses. In the absence of pathogenic stimuli,
virulence factors or chronic inflammation, the host-microbe interac-
tion leads to a predominance of tolerogenic mechanisms and intestinal
homeostasis.

THE RESULT OF HIV INFECTION ON THE HOST-MICROBE
INTERFACE

HIV infection has a disruptive impact on the physiological interplay
between the commensal microbiota and immune system: CD4+ cells
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associated with the mucosal immune system are rapidly depleted af-
ter HIV infection [35, 36], including reduced numbers of DCs [37], a
change in the composition of iIEL [38], and depletion and anergy of
gamma-delta T-lymphocytes [39]. These detrimental changes on the
mucosal immune system have severe consequences for the (immuno-
logical) function of the intestine and are associated with compromised
epithelial repair mechanisms and enhanced epithelial permeability [40,
41]. The net result is an increased risk of gastrointestinal infections at
all stages of HIV infection [42] and a high prevalence of gastrointestinal
disorders with unknown etiology [43].

Chronic immune activation and inflammation have long been de-
scribed as characteristic features of progressive HIV disease, while
the source of inflammation has remained unidentified. Indeed, in-
creased B-cell activation, increased T-cell turnover, and increased
pro-inflammatory cytokines are observed with HIV infection. In this
pro-inflammatory state, the replication of HIV is markedly enhanced
[44] and activation of the nuclear factor (NF) κB transcription factor
plays a crucial role in this phenomenon [45]. Strikingly, the degree of
systemic immune activation, indicated by the expression of the immune
activation marker CD38 on CD8+ cells, is a better predictor of HIV pro-
gression than viral load or CD4+ count alone [46]. Recently, it has been
suggested that the gut might be a source of chronic inflammation. The
hypothesis is that dysfunction of the mucosal immune response due to
preferential depletion of intestinal mucosal immune cells, including ef-
fector CD4+ cells and DCs [36, 37, 47], may affect systemic immune ac-
tivation through the increased translocation of microbes and bacterial
products from the intestinal tract [48]. The resultant pro-inflammatory
environment [40] may then cause further damage to the gut barrier
function, augmenting bacterial translocation and subsequently fuel-
ing systemic inflammation. Indeed, evidence suggests that bacterial
translocation affects the activation state of the immune system, and in
turn HIV progression (Table 1).

Some HIV-infected individuals, termed “non-progressors” have a low
HIV viral load even without treatment and maintain a low degree
of systemic inflammation [49, 50]. A mechanism that appears to con-
tribute to the control of the virus is a capacity to maintain the integrity
of the gut barrier and to mount an attenuated response to bacterial
products and, thus, potentially reduce bacterial translocation [40, 51].
In non-progressors, serum LPS has been shown to be lower than those
with progressive HIV infection [48]. One week of treatment with a
“gut sterilizing” antibiotic regimen markedly reduced serum LPS lev-
els in macaques, concomitant with a reduction of fecal Gram-negative
bacteria and inflammatory markers. However, after two weeks of
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TABLE 1 Evidence Implicating the Intestinal Microbiota and
Epithelial Cell Barrier as a Factor in HIV Progression

• Aberrant intestinal microbiota among HIV patients with fewer lactobacilli and
bifidobacteria, and higher numbers of pathogenic P. aeruginosa, and C. albicans
present [62, 63]

• Antibiotics can temporarily reduce bacterial translocation in SIV infected
macaques [48]

• Increased bacterial translocation among HIV progressors and those not
effectively responding to ARV [48, 53]

• Enhanced epithelial inflammation and scarring of GALT among HIV
progressors [40]

• Increased epithelial permeability with HIV at all stages of infection [41]

antibiotics, plasma LPS had increased again, apparently due to the
growth of other bacterial species in the gut [48]. Although anti-
retroviral treatment (ART) has been shown to enhance epithelial bar-
rier functions [52], the efficiency of CD4+ recovery may still be compro-
mised by bacterial translocation [53]. Future studies will need to focus
on the role of the epithelial barrier and the microbiota composition
along with translocation in the progression of HIV.

The intestinal microbiota has been shown to play important roles
in other disease conditions. For example, bacterial translocation oc-
curs during surgery [54], and plays a role in alcohol-induced liver
cirrhosis [55], in exacerbation of graft versus host disease [56] and
in inflammatory bowel disease (IBD) [57, 58]. Furthermore, corre-
lations between the microbiota composition and disease have been
shown for IBD [59] and obesity [60]. Strikingly, the transplantation
of gut microbes from obese mice (ob-/ob-) to bacteria-free mice re-
sulted in obesity in the recipients [61], suggesting that the micro-
biota may be a mediator of specific conditions. Lessons from such
studies that focus on microbiota-disease interactions may help to pro-
vide more insight in the role of an aberrant microbiota in HIV-infected
subjects.

The intestinal microbiota of HIV patients appears to contain higher
levels of pathogens, such as Pseudomonas aeruginosa and Candida al-
bicans [62], and reduced or undetectable levels of Bifidobacterium and
Lactobacillus species [63]. In the macaque model, colitis is very com-
mon after simian immunodeficiency virus (SIV) infection, resulting in
a reduced microbial diversity and an increased proportion of Campy-
lobacteriaceae [64]. If the aberrant microbiota among HIV patients
more easily translocates and provides an inflammatory stimulus for
HIV replication, therapeutic modification of the gut microbiota might
have a beneficial impact on HIV progression.
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Several lines of evidence suggest that HIV modulates systemic im-
munity by skewing the Th1/Th2 balance towards Th2 responses. Re-
cently, it was suggested that the induction of T helper-2 (Th-2) cytokine
synthesis [65, 66] and the gradual increase of IL-4 and IgE [67, 68]
observed after HIV infection, might be due to a Th-2 response to vi-
ral proteins, such as gp-120, p24, and p17 [69]. It is well known that
HIV patients suffer from high rates of allergies [70] and the ability
of subgroups of HIV patients to maintain a vigorous Th-1 response
and higher levels of IFN-γ is associated with increased survival [71,
72]. An HIV-triggered Th-2-skewed state of the immune system could
compromise immunological control of HIV replication and lead to re-
duced protection to opportunistic infections. This immune imbalance
may also aggravate inflammation and barrier dysfunction in the gut,
as the increase in IL-4 production can compromise the antimicrobial
function of Th-17 cells [73] that line the intestine.

PROBIOTICS

Probiotics, defined as “live micro-organisms which, when administered
in adequate amounts, confer a health benefit on the host” [74], have
been studied in a myriad of conditions related to intestinal dysbiosis,
including IBD, infectious diarrhea, allergy, and surgery. Relevant re-
search from these fields and studies on probiotic interventions among
people living with HIV and safety considerations are now discussed.

Effects on Gut Barrier Function

Supplementation of probiotic strains may enhance or restore the ben-
eficial interactions between the commensal enteric flora and the host
in both healthy and disease conditions, leading to an enhanced barrier
function and reduced bacterial translocation (Figure 2). Effects have
been described in animal and human studies that may have relevance
for HIV-infected subjects. For example, the Gram-negative probiotic
strain Escherichia coli Nissle 1917 was shown to enhance the intesti-
nal epithelial integrity via the induction of epithelial tight junctions
proteins (ZO-1 and ZO-2) [75, 76]. Prior administration of candidate
probiotic strains Lactobacillus acidophilus (ATCC19258) and Strep-
tococcus thermophilus (ATCC4356) to IEC has been shown to reduce
the epithelial permeability induced by TNF-α and IFN-γ, suggesting
that the impact of inflammation can be reduced [77]. It appears that
these various protective mechanisms occur through the production of
as yet uncharacterized proteins [78] or through direct interaction of
microbes with IEC through TLR-4, TLR-5, and TLR-9 [34]. That the
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FIGURE 2 Potential benefits of probiotics and prebiotics in HIV-induced
intestinal pathogenesis: HIV infection induces effects and positive feedback
mechanisms that induce a loss of intestinal homeostasis and promote replica-
tion of the virus (triangles). Pro- and prebiotics may ameliorate the HIV-induced
intestinal problems through effects on the microbiota and its metabolism, on
various cells of the immune system (as represented by the arrow pointing at
the sampling DC), and on intestinal epithelial cells.

enhancement of the epithelial barrier might also translate to a reduc-
tion in bacterial translocation was shown in a murine model of entero-
hemorrhagic shock. In this model, prior challenge with L. rhamnosus
LMG P-22799 reduced bacterial translocation and systemic inflamma-
tion [79], as did use of Bifidobacterium adolescentis in a murine model
of burn wounds [80]. Furthermore, allergy-associated intestinal hyper-
permeability [81] as well as alcohol-induced loss of gut barrier function
have been found to be reversed by application of L. rhamnosus GG,
resulting in less intestinal and liver inflammation in the latter [82].

In human clinical studies, probiotics have been applied to reduce
bacterial translocation among different patient populations with vary-
ing degrees of success. A randomized controlled trial (RCT) among 65
critically-ill patients showed reduced rates of infections, sepsis, and
mortality with a combination of probiotics and prebiotics (Synbiotic
2000 Forte) [83]. In consecutive trials, the same product was shown
to increase fecal IgA [84], reduce the incidence of bacteremia [85],
and lower the rate of post-operative infections [86]. Two other RCTs



494 R. Hummelen et al.

using different synbiotic preparations showed similar results. L. casei
Shirota and L. breve Yakult given with galacto-oligosaccharides (GOS)
supplementation (15 gr/day) before biliary cancer surgery, resulted in
reduced inflammatory markers and post-operative complications [87].
Another RCT with L. acidophilus La-5 and B. lactis Bb-12 combined
with oligofructose (15 gr/day) resulted in a reduced incidence of bacte-
rial translocation [88]. However, the evidence is not conclusive as three
other RCTs using L. acidophilus La-5 and B. lactis Bb-12 [89, 90] or L.
plantarum 299v [91] reported no reduction in bacterial translocation.
This suggests that there may be strain-specific effects or that prebiotics
are needed for efficacy.

Effects on Mucosal and Systemic Immunity

The loss of tolerance in the intestine due to a defect in GALT home-
ostasis can have a detrimental impact on the gut barrier function,
and specific probiotic strains have been shown to enhance the recovery
of GALT homeostasis. For example, administration of Escherichia coli
Nissle 1917 in wild type mice, but not in TLR-2 knock-out mice, amelio-
rated experimental colitis and reduced pro-inflammatory cytokine ex-
pression, suggesting a TLR-2-dependent pathway [92]. This response
can be mediated by specific components of probiotic organisms. DNA
from probiotic organisms modulates TLR-9 and elicits a different re-
sponse from immune and epithelial cells than DNA from pathogenic
organisms [93]. In HT-29 cells subjected to pro-inflammatory cytokines,
challenge with DNA from the VSL#3 probiotic mixture could reduce the
expression of the pro-inflammatory IL-8 cytokine and delayed NF-κB
activation [94]. In IL-10 deficient mice, the administration of the pro-
biotic mixture VSL#3 led to a reduction in mucosal TNF-α and IFN-γ
release and improved the histological disease in a TLR-9 dependent
manner [94].

Another way of restoring GALT homeostasis is through the induction
of regulatory mechanisms to down-regulate inflammation. Induction
of regulatory mechanisms by specific probiotics appears to be partly
dependent on modulation of DCs [95]. Some probiotic organisms in-
duce regulatory T-cells (CD4+FoxP3+), mediated by DCs [16, 96]. This
induces tolerance that is partly mediated through IL-10 and TGF-β
production. Recently, it was demonstrated that ingestion of a specific
probiotic mixture (IRT-5) could induce CD4+FoxP3+ cells in mesen-
teric lymph nodes. Interestingly, probiotics alone, without the presence
of DCs, could not induce this effect. Administration of the probiotic
mixture also induced both T-cell and B-cell hypo responsiveness, down-
regulated both Th-1 and Th-2 functions, and reduced the secretion of
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pro-inflammatory cytokines in GALT [97]. The biological relevance of
these changes was verified in an IBD model in which administration
of probiotics was shown to enhance GALT homeostasis and reduce the
severity of the disease. The therapeutic effects were associated with an
enrichment of CD4+Foxp3+ T-cells in inflamed regions [97]. O’Mahony
et al. demonstrated that challenge with Lactobacillus salivarius or Bi-
fidobacterium infantis of DCs from mesenteric lymph nodes induced
secretion of IL-10. This was in contrast to a challenge with Salmonella
strains, which induced the secretion of pro-inflammatory IL-12. Strik-
ingly, DCs from peripheral blood did not show a differential response
to lactobacilli or Salmonella strains [98], suggesting that the response
of DCs depends on their immunological compartment. In the intes-
tine, tolerogenic effects of T-regulatory cells and anti-inflammatory ef-
fects may improve barrier function and intestinal homeostasis. Fur-
thermore, a reduction in the chronic inflammatory state may reduce
immune activation and potentially affect disease progression [48].

Systemically, specific probiotics have also been shown to induce a
T-regulatory phenotype and counter-balance a Th-1 or Th-2 dominant
state in vivo and in vitro [95, 99, 100]. The induction of a T-regulatory
phenotype frequently occurred together with increased levels of anti-
inflammatory IL-10 [101, 102]. A prime example of the clinical effects
of IL-10 induction comes from an RCT of 77 adults with an abnormal
IL-10/IL-12 ratio and concurrent IBS. B. infantis 35624 was shown to
normalize the IL-10/IL-12 ratio in parallel with a reduction in clinical
symptoms [103]. In Crohn’s disease, a Th-1 mediated condition, a strain
of L. rhamnosus was able to decrease both the syntheses of the Th-1
parameter IFN-γ, and IL-2, which is an essential survival and prolifer-
ation factor for effector T-cells [104]. Remarkably, IL-4, a potent Th-2
cytokine, was also reduced with probiotic supplementation. Hence, the
effects of probiotic supplementation were unlikely due to mere Th-1/Th-
2 skewing and are best explained by the induction of a regulatory DC
phenotype with the ability to induce a general hypo-responsiveness.
In a study of children with atopic dermatitis, a Th-2-dominant condi-
tion, an up-regulation of IL-10 was noted after supplementation with
L. rhamnosus GG [105]. These findings might be valuable in relation
to HIV management, as both the induction of T-regulatory cells and
anti-inflammatory effects can potentially be of benefit to HIV patients.

In vitro evidence indicates that several probiotic candidate strains
can down-regulate the production of Th-2 cytokines and chemokines
[106, 107] and modulate DCs to skew T-cell polarization toward a Th1-
response [108]. The ability of probiotics to skew the immune system
away from a Th-2 dominant state has been studied to some extent in
humans, albeit in HIV uninfected subjects. An RCT of 230 children with
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a cow’s milk allergy showed that L. rhamnosus GG ingestion could re-
duce symptoms of atopic eczema and dermatitis [109] and up-regulate
IFN-γ, indicative of a more pronounced Th-1 response [110, 111]. More-
over, L. rhamnosus GG was shown to up-regulate IL-6, involved in the
mucosal response to stress [112] but also epithelial IgA production and
mucosal protein syntheses [113], suggesting a direct effect of L. rham-
nosus GG on IECs. Two other RCTs have shown similar results [114,
115] but one study in children did not confirm this outcome [116]. In
addition to the ability of probiotics to improve barrier function and as-
pects of intestinal homeostasis, specific probiotic strains may, therefore,
be able to skew away from an HIV-induced Th-2 predominance.

Effects on Intestinal Microbiota and Infections

Probiotics can interfere with the function and proliferation of pathogens
in the gastrointestinal tract in various ways. They can enhance the
secretion of pathogen-specific IgA [117], induce β-defensin secretion
[118] or secrete bactericidal proteins [119], and reduce the adhesion and
invasion of pathogens [120, 121]. Antibiotic-like compounds, such as
reuterin produced by L. reuteri, exhibit broad spectrum effects against
Gram-positive, Gram-negative bacteria as well as fungi, yeast, and
protozoa [119], while non-reuterin producing strains, such as L. reuteri
RC-14, produce signaling molecules that down-regulate Staphylococcus
aureus toxin production [122]. These characteristics could be beneficial
for acquired immune deficiency syndrome (AIDS) as L. reuteri was
shown to prevent cryptosporidiosis in a murine AIDS model [123].

Use of probiotics can lead to at least temporary modification of the
intestinal microbiota. For example, in an RCT of 69 preterm babies,
B. lactis Bb-12 significantly increased the levels of bifidobacteria and
lactobacilli while reducing the numbers of enterobacteria and clostridia
[124]. In 36 adults receiving triple therapy for Helicobacter pylori infec-
tion, the addition of L. acidophilus CUL60 and CUL21 and Bifidobac-
terium spp. decreased the intestinal load of C. albicans, facultative
anaerobes, and enterobacteria [125]. Moreover, genomic and metabolic
studies suggest that probiotic microbes change the behavior of the in-
testinal microbiota [126].

The application of probiotics for the prevention and treatment of
gastrointestinal infections has been well established and might be es-
pecially useful among people living with HIV. A Cochrane review con-
cluded that probiotics are a useful adjunct to lower the occurrence and
reduce the length of episodes of infectious diarrhea (reviewed in [127]).
Synbiotics (probiotics combined with prebiotics) have also been shown
to reduce diarrhea associated with ART use [128] but these findings
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could not be confirmed by a cross-over study [129]. Although the ap-
plication of probiotics to prevent gastrointestinal infections and the
concomitant inflammatory state among HIV patients bears promise,
no studies have so far been conducted to assess its potential.

Probiotic Interventions in HIV

A limited number of studies suggest that the probiotic benefits could be
translated to people living with HIV. One RCT of 77 children in Brazil
showed an increase of 118 CD4+ cells/µl among those receiving B. bi-
fidum and S. thermophilus for two months compared to a decrease of
42 CD4+ cells/µl among the placebo group (p = 0.05) [130]. An RCT of
24 HIV patients in Nigeria showed after four weeks of L. rhamnosus
GR-1 and L. reuteri RC-14 an increase of 6.7 CD4+ cells/µl compared
to a decrease of 2.2 CD4+ cells/µl among the placebo group (p < 0.05)
[131]. A large RCT in Malawi (n = 795) testing the effect of Synbiotic
2000 Forte on malnutrition also included a proportion of HIV-infected
children (n = 361) [132]. Although there was no improvement in nu-
tritional cure, there was an overall reduction in outpatient mortality,
including a trend towards a reduced mortality among the subgroup of
HIV-infected children.

Safety

Among HIV patients, several studies have been conducted to assess the
safety of probiotic interventions. When treated with L. reuteri SD2112,
no safety concerns arose among moderately immune-compromised HIV
patients (>350 CD4+ cells/µl) [63]. In another study of severe immune
compromised HIV patients (<200 CD4+ cells/µl), no safety concerns
were detected with use of L. rhamnosus [129]. To date, five case studies
of lactobacillemia have been reported in end-stage AIDS patients. Of
these, three patients were reported to have central venous catheters
and one patient to have pneumonia, all of whom had extremely low CD4
counts (<55 CD4+ cells/µl) [133–135]. Currently, no indication exists
to avoid oral probiotic use in HIV populations, but close monitoring of
safety parameters is recommended.

PREBIOTICS

Altered Microbe-Host Interaction

Prebiotics were defined most recently as “a non-viable food component
that confers a health benefit on the host associated with modulation
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of the microbiota” [136], although the term is often used less strictly
for components that modify the composition or metabolism of the in-
testinal microbiota. Prebiotics can modify host-microbe interactions via
the microbiota and its metabolism, host epithelial and other cells, as
well as by modifying receptor expression and bacterial adhesion. As
alluded to earlier, prebiotics are candidate agents to improve the in-
testinal homeostasis in HIV-infected individuals. Since prebiotics do
not contain bacteria but provide substrate for the intestinal micro-
biota, their fermentation depends on the organisms present in the
host. Prebiotic fructans and galacto-oligosaccharides (GOS) increase
the percentage of “beneficial bacteria” through selective fermentation
as shown in a variety of human target groups, including infants [137,
138], healthy volunteers [139], and seniors [140]. The fermentation of
fructans and GOS increases the production of short-chain fatty acids
(SCFA), lactate, and other bacterial metabolites [141, 142]. SCFA are
known to have a plethora of effects on the intestinal milieu, epithelial
cells as well as local immune cells. Various prebiotics induce differ-
ential effects on SCFA production and the ratios of butyrate, acetate,
and propionate [143]. The degree of specificity of prebiotic agents en-
ables the potential development of specific prebiotics optimized to tar-
get HIV-specific issues. Relevant potential benefits for HIV patients are
discussed in the next sections, focusing both on the effects of prebiotic
intervention and on the effects of purified bacterial metabolites, such as
SCFA.

Effects on Barrier Function

As described previously, decreased barrier function and increased bac-
terial translocation is observed in HIV-infected subjects. Prebiotics
have been shown to influence barrier function via various mechanisms.
A combination of fermentable fibers has been shown to significantly
reduce endotoxemia over a 30-day intervention period in an RCT of
55 cirrhosis patients [144]. Animal studies using alcohol-induced liver
damage showed similar beneficial results preventing intestinal dysbio-
sis with an oat-based prebiotic intervention [145].

There appear to be several mechanisms whereby prebiotics can en-
hance intestinal barrier function. Recently, Cani and coworkers [146]
have shown that a prebiotic-induced increase in glucagon-like peptide-
2 (GLP-2) played an important role in the beneficial effects of prebi-
otic intervention in ob/ob mice on a high-fat diet. Increased intestinal
barrier function and expression of tight-junction proteins were ob-
served, leading to reductions of hepatic markers of oxidative stress and
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inflammation, as well as reduced levels of systemic inflammatory me-
diators and endotoxemia [146]. The production of SCFA during fermen-
tation of prebiotic agents can also lead to an improved barrier function.
Butyrate, in particular, is an energy source for intestinal epithelial cells
and, through the modulation of intestinal prostaglandins, it stimulates
mucus production [147]. Recently, butyrate was shown to enhance in-
testinal barrier function in vitro by regulating the assembly of tight
junctions in Caco-2 cells [148].

Effects on Gastrointestinal Infections

A few human studies have shown that prebiotics can reduce gastroin-
testinal infections, a functional characteristic that may potentially be
used to counteract the HIV-increased prevalence of gastrointestinal in-
fections [42]. Fructan supplementation for 30 days reduced diarrhea
relapse rates in an RCT among 140 patients with Clostridium difficile-
associated diarrhea [149]. In addition, fructan supplementation showed
a tendency to reduce traveler’s diarrhea in an RCT of 244 healthy
volunteers [150]. In a 12-month open-label intervention trial among
342 infants, a formula containing a specific combination of GOS and a
long-chain fructan induced significant reductions in gastroenteritis and
acute diarrhea [151]. The same combination of oligosaccharides was
shown to reduce the number of fecal pathogens and increase intestinal
IgA production in infants—two mechanisms by which prebiotics could
reduce intestinal infections [152, 153].

SCFAs can contribute through acidification of the intestinal content
and growth inhibition of acid-sensitive pathogens [154]. Butyrate stim-
ulates the production of antimicrobial peptides, such as cathelicidins,
which are able to kill a variety of potential pathogenic bacteria [155].

Prebiotic oligosaccharides can have anti-pathogenic effects that are
independent of the intestinal microbiota and its metabolism. Human
milk oligosaccharides are known to exhibit receptor-decoy function-
ality based on the molecular structure and sugar moieties of the
oligosaccharides [156], leading to binding of oligosaccharides to poten-
tial pathogens and preventing their adherence to the intestinal lining.
Similarly, GOS and pectin-derived oligosaccharides can inhibit adher-
ence of specific pathogens to epithelial cells in vitro, demonstrating that
this mechanism is not limited to oligosaccharides of mammalian origin
[157, 158]. Studies on HIV-infected adults and infants are required to
better determine the efficacy of prebiotics against diarrhea, especially
in developing countries where such infections can be lethal.
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Local Anti-Inflammatory and Immunomodulatory Effects

IBD is characterized by intestinal inflammation in which the mi-
crobiota plays an important role, a situation not dissimilar to the
HIV-induced inflammation in the gut. Small-scale studies using
fructan-based pre- and synbiotic intervention in ulcerative colitis
patients have shown beneficial effects on histological inflammation
scores, and on mRNA expression of inflammatory mediators in biopsy
samples [159, 160]. Similarly, a small, open-label study showed anti-
inflammatory effects of fructan supplementation in moderate Crohn’s
disease patients. In that case, lamina propria biopsies showed that the
intervention modulated the phenotype of intestinal DCs, enhancing
IL-10 production and expression of TLR-2 and TLR-4 [161]. This
suggested that the anti-inflammatory effects are related to changes in
microbe-host interactions.

Many preclinical data using prebiotics in IBD models show corre-
sponding results (reviewed in [162]). In mechanistic studies using dif-
ferent chemically-induced inflammation models, it was shown that the
beneficial effects of prebiotic intervention could be reproduced in part
or completely by infusing lactic acid bacteria intragastrically and/or
SCFA into distal parts of the large intestine.

Recent animal studies confirm that the expression of PRRs in epithe-
lial and immune cells can be modified by prebiotics and by butyrate in
vitro [163, 164]. However, the molecular mechanisms remain to be elu-
cidated. Whereas butyrate was found to reduce LPS and TNF-α-induced
NF-κB activation in a colonic epithelial cell line [165, 166], these results
were partly contradicted in a different colonic cell line [163]. A recent
study indicated that NF-κB may be modulated directly by unfermented
oligosaccharides. Pectin-derived acidic oligosaccharides reduced NF-κB
in vitro and reduced HIV-1 viral production in vitro [167].

Another molecular target for SCFA-induced modulation of inflam-
mation are the G-protein-coupled receptor 41 and 43 (GPR-43), that
are most efficiently activated by acetate and propionate [168–170].
GPR-43 is expressed mainly in innate immune cells and is critically
important in the resolution or reduction of inflammation in a variety of
mouse models. These mechanisms highlight the potential of prebiotic
anti-inflammatory capacities, which could lead to an amelioration of
chronic inflammation and possibly immune activation in HIV-infected
subjects [48].

Modulation of Systemic Immunity

In addition to local effects of prebiotics in the gut, systemic im-
munomodulatory effects of prebiotics have been described that are
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relevant for HIV-infected individuals. A 10-week cross-over study with
GOS in 44 healthy, elderly subjects showed simultaneous bifidogenic
and systemic immunomodulatory effects. The phagocytosis capacity
and natural killer cell activity of circulating white blood cells was in-
creased, whereas the production of inflammatory cytokines was re-
duced [140]. Furthermore, specific prebiotic interventions have been
shown to modulate the immunological balance, consistent with a shift
away from a Th2-dominant state. For example, a specific combination
of GOS and short-chain fructans was shown to reduce the incidence of
atopic dermatitis and allergy-related symptoms in infants at risk for
allergy [171]. Correspondingly, changes in the antibody class and iso-
type ratios suggestive of a Th1 shift were detected [172]. The ability to
induce this shift is thought to be beneficial in HIV patients, as it might
result in more effective anti-viral control and a better immunological
defense against opportunistic pathogens [69, 173].

Effects of the specific combination of GOS and long-chain fructans
in multiple mouse models are also consistent with a shift from Th2 to
Th1 responses, as allergic responses were reduced and Th1-dependent
vaccine-specific DTH responses were enhanced [174–176]. In addi-
tion to modifying the microbiota, prebiotics may also mediate effects
via the carbohydrate structures on immune cells. Very low-level sys-
temic bioavailability of short-chain fructans have been described in the
urine of healthy volunteers [177], suggesting the potential for direct
systemic effects through interactions with lectins, galectins, or other
sugar-binding molecules.

Prebiotic Intervention in HIV-Infected Individuals

A limited number of studies that have used prebiotics in HIV-infected
individuals indicate that the benefits described above may be rele-
vant for this population. Recently, a prebiotic intervention study was
performed to investigate potential microbiological and immunological
benefits among 57 HIV patients. A 12-week intervention with a specific
mixture of GOS, long-chain fructans and pectin-derived oligosaccha-
rides in ART-naı̈ve HIV-1 infected individuals resulted in increased
bifidobacterial levels and reduced numbers of the pathogenic Clostrid-
ium histolyticum cluster. In addition, reduced levels in the pathogenic
E. rectale and C. coccoides cluster were found [178]. The prebiotic inter-
vention was associated with reduced CD4+ T-cell activation, measured
as a percentage of CD4+/CD25+ T-cells. In addition, improved NK-cell
cytotoxicity was observed [179]. The beneficial effects of this pilot study
were confirmed in a multi-center RCT, in which a one-year interven-
tion was tested in HIV-infected individuals not on ART. A total of 340
participants were included in the trial and received the intervention
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product or an isocaloric, isonitrogenous control product. The interven-
tion product consisted of the same mixture of prebiotic oligosaccha-
rides in combination with bovine colostrum, omega-3 polyunsaturated
fatty acids, and N-acetyl cysteine. The intervention significantly slowed
down the decline of the CD4 count as the decrease in the intervention
group (-28 cells/µl) was lower than the decrease in the control group
(-68 cells/µl) [180]. These findings are very promising and show the
potential for nutrition-based strategies to become an integral part of
disease management.

CONCLUSION AND FUTURE PROSPECTS

The interaction between the gastrointestinal microbiota and the hu-
man host plays a crucial role in intestinal homeostasis and the health
status of the host. The gut-associated immune system tightly regulates
this interaction and, under normal conditions, prevents damaging in-
flammatory reactions by maintaining a tolerogenic state. HIV infection
has a disruptive impact on the intestinal homeostasis as it directly af-
fects the host and indirectly affects the intestinal microbiota. The loss
of intestinal CD4+ T-cells, epithelial function, and immune regulation,
in combination with a pathogen-enriched microbiota composition, leads
to an increase in intestinal permeability, bacterial translocation, and
an inflammatory state.

Pro- and prebiotics are modulators of both microbiota and host fac-
tors, making them potential agents to ameliorate the intestinal prob-
lems induced by HIV. Various beneficial effects of pro- and prebiotic
interventions have been demonstrated that may translate to appli-
cations in HIV. These effects include improved barrier function, reduc-
tions in the translocation of bacterial products, reductions in pathogenic
load, local and systemic anti-inflammatory effects, and immunomodu-
latory effects to restore a proper Th1/Th2 balance.

Various therapeutic applications of pro- and prebiotics are conceiv-
able, such as before initiation of ART, where they could potentially help
reduce HIV-induced intestinal inflammation, intestinal infection, or di-
arrhea. In addition, by reducing systemic inflammation and associated
immune activation, disease progression may be slowed down. Obvi-
ously, pro- and prebiotics should not be used as alternatives to ART but
might have a role as conjoint therapy especially among immunological
non-responders to ART.

An additional benefit of the pro- and prebiotic is the possible ap-
plication in low-cost interventions of limited complexity, which might
be especially useful in resource-limited countries [181]. Depending on
the target group, the oral application of pro- and prebiotics makes it
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possible to combine the intervention with specific (micro-) nutrients
to prevent specific deficiencies or to aim at multiple targets simulta-
neously. Applied as interventions to improve intestinal homeostasis
in HIV-infected individuals, pro- and prebiotics have potential to con-
tribute beneficially to integrated disease management.

In recent years, promising initial studies encompassing pro- and pre-
biotic interventions have been performed in HIV-infected individuals,
showing the potential for improvement of intestinal homeostasis and
potentially a reduction in the decline in CD4 count. However, a clear
need remains for additional well-designed double-blind, randomized
studies to provide evidence for the efficacy of specific pro- and prebiotic
interventions. Figures 1 and 2, Table 1
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