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LABORATORY STUDY

Preclinical efficacy of Dexmedetomidine on spinal cord injury provoked
oxidative renal damage

Wang Shou-Shi1, Song Ting-Ting2, Ning Ji-Shun3, and Chu Hai-Chen1

1Department of Anesthesiology, The Affiliated Hospital of Qingdao University Medical College, Qingdao, P.R. China, 2Department of Oncology,
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Abstract

Purpose: Oxidative renal injury is the mainstay in patients with spinal cord injury (SCI) and it
may eventuate to chronic renal failure. In our study, we investigated the potential of
a2-adrenoreceptor agonist Dexmedetomidine (Dex) in ameliorating SCI provoked oxidative
renal assault. Methods: Complete SCI was generated by surgical transaction of the cord at the
T10–12 level. Dex administration (50 mcg/kg, b.wt, intraperitoneally) was initiated 12 h after
the surgery for 10 days. Then, blood was collected and kidneys were removed to evaluate the
efficacy of Dex on post-SCI renal complications. Results: Dex treatment significantly attenuated
elevated serum creatinine and blood urea nitrogen in SCI rats to normalcy. Further in SCI rats
elevated level of MDA, protein carbonyl and myeloperoxidase (MPO) were observed and Dex
treatment significantly attenuated these toxic manifestations to normalcy. Besides in SCI rats,
the antioxidants (SOD, CAT, Gpx and GST and GSH) levels were significantly diminished and Dex
treated rats significantly restored the antioxidants level in renal tissue to normalcy. Notably,
in our study the protein expression of inflammatory cytokines (TNF-a and IL-6) and cleaved
caspase-3 were upregulated in renal tissue of SCI rats. Fascinatingly, Dex treatment
downregulated the protein expression of TNF-a, IL-6 and cleaved caspase-3 by anti-
inflammatory, antiapoptotic mechanism. Furthermore, SCI rats displayed upregulated protein
expression of kidney of SCI rats. Dex treatment diminished the renal apoptosis by
downregulating the cleaved caspase-3 expression. Conclusion: Taken together, these results
accentuate that Dex may be a beneficial clinical agent to combat post-SCI renal complications.
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Introduction

Globally, spinal cord injury (SCI) is an austere traumatic

healthcare condition resulting from wide array of etiological

factors such as traffic collisions. Clinically, SCI is bifurcated

into a two staged process: one, the acute phase due to tissue

compression and hemorrhage to a specific region of the spinal

cord and the secondary injury phase encompassing a series of

noxious pathological events, which culminate to life threaten-

ing conditions.1 Assortment of research reports indicate that

apoptosis, elevated amino acids level and exaggerated accu-

mulation of free radicals with concurrent lipid peroxidation

(LPO) orchestrate a predominant role in SCI provoked

secondary damage/complications.2–5 Furthermore, spinal

cord collapse leads to the stimulation of inflammatory cells

within the circulation, this systemic response may also impair

the organs like liver, lung and kidney. In SCI patients, organ

failure proffers significant morbidity and mortality and the

lung, kidney are cardinal cellular structures vulnerable

to SCI-mediated inflammatory response.6–9 However, the

kidney is highly prone to free radical encounter due to high

oxygen utilization (10% of total oxygen consumption by the

body) than the other vital tissues. Hence, rampant production

of reactive oxygen species (ROS) occurs prominently in the

kidney.10 Renal failure in people with SCI eventually leads to

a stage where hemodialysis is needed and is a major cause of

death. When it comes to renal failure, the damage is

irreversible, however, the protection of the kidneys may

prevent or retard their deterioration.

Dexmedetomidine (Dex) is an effective lipophilic a-2

adrenoceptor agonist with an imidazole structure.11 It exerts

wide array of biological effects like sedative, analgesic,

hemodynamic stabilizing, anti-inflammatory and diuretic

effects.12 A wealth of work has shown that Dex has tissue

protective effects, mitigating cerebral, cardiac, intestinal and

renal injury which can be abolished by atipamezole, an

a2-adrenoreceptor antagonist.13–18 Multiple studies indicate

the protective of Dex in spinal cord-mediated injury and its

complications.19–21 In this backdrop, the present study was

designed to determine whether spinal cord trauma elicits

oxidative renal injury and Dex could attenuate these
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toxic manifestations. As far as we are aware, this is the first

study to report the efficacy of Dex in ameliorating SCI

provoked renal complications.

Materials and methods

Chemicals

Dex and commercial diagnostic kits were obtained from

Sigma Chemical Co. (St. Louis, MO). All other chemicals

were of the highest available commercial grade.

Animals

Sprague-Dawley rats weighing 170–200 g were obtained from

our animal facility Qingdao University Medical College,

China. The animals were maintained under standard labora-

tory conditions of relative humidity (55 ± 5%), temperature

(25 ± 2 �C), and light (12 h light/12 h dark). They were fed

standard diet pellets and water was provided ad libitum.

Animal model of SCI

The rats were anesthetized by administration of

xylazine + ketamine (10 + 75 mg/kg, b.wt; i.p.). Then, the

dorsum of the animals was shaved and sterilized an incision

was performed from posterior to the lower thoracic region.

Laminectomy (thoracic T10–T12 vertebrae) was performed to

expose the spinal cord alone (sham group). After the lamin-

ectomy, lower thoracic cord was subsequently completely

transected with fine sterilized microscissors (SCI group) under

the magnifier. Both stumps of the spinal cord were gently lifted

away to create a 1–2 mm gap, which was filled with sponge gel.

The muscle fascia and skin were sutured, and the rats were

returned to their home cages. After completion of surgery, the

animals received a bolus of Lactate Ringers solution (5 mL,

i.p.) to compensate for blood loss, and antibiotic cover

(systemic, gentamicin 50 mg/kg b.wt; weight, i.m.; local

Neosporin ointment) was provided. Furthermore, the SCI rats

received daily assistance in bladder emptying until spontan-

eous miction recovered.

Evaluation of locomotor functions

The quality of locomotion was assessed by Basso, Beattie and

Bresnahan locomotor rating score.22

Study protocol

Sprague-Dawley rats were divided into four groups (n¼ 10)

as follows:

� Group I – sham-operated rats (Sham).

� Group II – SCI rats (SCI).

� Group III – sham-operated rats received Dex (50 mcg/kg,

b.wt) intraperitoneally for 10 days (Sham + Dex).

� Group IV – SCI rats received Dex (50 mcg/kg, b.wt)

intraperitoneally for 10 days (SCI + Dex).

At the end of the experimental period, rats were fasted

overnight and sacrificed by decapitation. Blood was collected

in heparinized BD Vacutainer and serum samples were

collected by centrifugation at 2000g for 20 min. Kidneys were

immediately excised out, rinsed in ice-cold saline to remove

the blood and stored at �80 �C until required.

The kidney homogenate, 10% (w/v), was prepared in ice-

cold 0.1 M Tris–HCl buffer, pH 7.5 using a Branson sonifier

(250, VWR Scientific, Radnor, PA) at 4 �C followed by

centrifugation at 10,000 rpm for 10 min. The supernatant was

kept at �20 �C till further analysis.

Biochemical estimation

Assessment of serum renal markers

The serum creatinine was measured colorimetrically using a

diagnostic kit that based on the reaction with picric acid in

alkaline media. The serum urea was measured colorimetri-

cally using a diagnostic kit that based on the reaction with

the diacetylmonoxime reagent. The units were expressed

as mg/dL.

Estimation of enzymic antioxidants

The kidney superoxide dismutase (SOD) was estimated by the

method of Misra and Fridovich.23 The ability of SOD to

inhibit the auto-oxidation of epinephrine to adrenochrome at

pH 10.2 has been used as the basis for the assay. One unit of

SOD corresponds to the 50% inhibition of epinephrine to

adrenochrome transition by the enzyme. The catalase (CAT)

activity in the kidney homogenate was analyzed by the

method of Sinha,24 wherein the breakdown of H2O2 is

measured at 240 nm. The CAT activity was expressed as nmol

H2O2 consumed/min/mg of protein. The renal glutathione

peroxidase (GPx) level was assayed by the method of Rotruck

et al.25 The assay system was based on the reaction between a

measured amount of enzyme preparation H2O2 and reduced

glutathione (GSH) for a specified time period. Then, the

unreacted GSH was measured by reaction with 5,50-dithio-

bis(2-nitrobenzoic acid (DTNB). The GPx activity was

expressed as nmol of GSH oxidized/min/mg of protein.

Glutathione-S-transferase (GST) was estimated by the proto-

col of Misra et al.23 The increase in absorbance was measured

at 340 nm using 1-chloro-2,4-dinitrochlorobenzene (CDNB)

as substrate. The enzyme unit of GST was expressed nmol of

GSH–CDNB conjugate formed/min/mg of protein. Protein

content in the kidney homogenate was estimated26 using

bovine serum albumin as a standard.

Measurement of non-enzymic antioxidants

The renal reduced GSH27 levels were determined by the

method of Moron et al.27 The non-protein sulfhydryl content

of cells is in the form of reduced GSH. DTNB is a disulfide

compound that is readily reduced by sulfhydryl compounds

forming a highly colored yellow anion. The optical density of

this yellow substance is measured at 412 nm.

Measurement of LPO and protein carbonyl content

The malondialdehyde (MDA) an index of LPO level in the

kidney homogenate was measured28 according to the method

of Ohkawa et al.28 The final colored end product was assayed

spectrophotometrically at 532 nm. The MDA level was

expressed as the nmol/g of tissue.

The protein carbonyl content in the kidney homogenate

was determined as previously described, by the reaction with

DNPH and HCl and finally with guanidine hydrochloride.29
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Assay of MPO

Tissue MPO is employed to assess the neutrophil infiltration

in inflamed tissues. Briefly, 100 mg of left kidney tissue was

homogenized in ice-cold potassium phosphate buffer (50 mM

– K2HPO4, pH 6) containing hexadecyltrimethylammonium

bromide (0.5%, w/v) to get 10% homogenate. The homogen-

ate was allowed for three freeze and thaw cycles and then

centrifuged at 41,400 g for 10 min at 4 �C. MPO activity was

estimated by measuring the H2O2-dependent oxidation of

o-dianisidine at 460 nm. The enzyme activity was expressed

as U/g of tissue.

Assay of pro-inflammatory cytokines

Concentrations of IL-6, and TNF-a were determined in serum

using commercially available ELISA kits (USCN LIFE,

Wuhan EIAab Science Co., Ltd., Wuhan, China).

Western blot analyses

Frozen renal tissues from different treatment groups

were homogenized in ice-cold RIPA buffer (Pierce

Biotechnology, Rockford, IL) containing 1% protease inhibitor

cocktail (Sigma-Aldrich, St. Louis, MO) to get total protein

extracts. The contents were centrifuged at 12,000 g for 20 min

at 4 �C, the supernatant was collected and used for analysis of

cleaved caspase-3 expression. Similarly, nuclear extracts were

prepared by using NEPER nuclear and cytoplasmic extraction

kit (Pierce Biotechnology, Rockford, IL) containing 1%

protease inhibitor cocktail (Sigma-Aldrich) according to the

manufacturer’s protocol and used for TNF-a and IL-6 protein

expression. The protein contents were measured by using

biscinchonic acid kit (Pierce Biotechnology) against bovine

serum albumin (BSA) as standard.

Briefly, the samples (40 mg/lane) were loaded and

separated by 10% sodium dodecyl sulfate–polyacrylamide

gel electrophoresis (SDS–PAGE), and then transferred to

polyvinylidene difluoride membranes. The membranes were

blocked with 3% BSA for 1 h and incubated with primary

antibodies overnight at 4 �C against cleaved caspase-3 (rabbit

monoclonal 1:1000, Cell Signaling Technology, Danvers,

MA), TNF-a (mouse monoclonal 1:1000, Cell Signaling

Technology), IL-6 (rabbit monoclonal 1:1000, Cell Signaling

Technology), followed by horseradish peroxidase-conjugated

secondary antibodies (1:3000) for 1 h and visualization with

the enhanced chemiluminescence system (Pierce Biotechnol-

ogy). b-Actin was used as the loading control. Densitometric

analysis of immunoblots was performed with the Image J

software (NIH, Bethesda, MD).

Statistical analysis

The data were represented as the mean ± standard deviation

(SD). To test for statistically significant differences among

various groups for a given parameter, one way analysis of

variance with Tukey’s post hoc test comparison procedure.

All analyses were performed using the Statistical Package for

the Social Sciences (SPSS) software (Version 13.0; SPSS,

Inc., Chicago, IL). p-Value50.05 was considered statistically

significant.

Results

The renal function markers parameters such as blood urea

nitrogen (BUN), creatinine and kidney to body weight ratios

were estimated in all the groups. SCI rats displayed signifi-

cant (p50.05) increase in level of creatinine and BUN in

serum as that of the sham-operated rats. Treatment with Dex

significantly (p50.05) diminished the altered level to

normalcy as that of the SCI rats (Figure 1A and B).

In the present study, MDA, a reliable indicator of LPO and

protein carbonyl content, as an index of protein oxidation

were significantly (p50.05) elevated in SCI rats. However,

animals treated with Dex significantly (p50.05) abolished

the elevated MDA and protein carbonyl content in renal

tissues as that of the SCI induced rats (Figure 2A and B).

The experiment revealed that renal MPO levels were

significantly (p50.05) higher in SCI group compared to

sham. However, Dex treatment significantly (p50.05) dimin-

ished the MPO level to normal and thus confers protection to

renal tissue (Figure 3).

In our study, SCI rats displayed significant (p50.05)

reduction in the level of non-enzymic antioxidant GSH in

renal tissue as a result of excessive LPO when compared to

the sham-operated rats, while treatment with Dex signifi-

cantly (p50.05) elevated the GSH content in renal tissue as

that of the SCI rats (Figure 4).

Figure 1. Effect of Dex on serum renal markers in SCI-induced renal injury. (A) BUN (mg/dL) and (B) creatinine (mg/dL). Values are mean ± SD for
10 rats in each group. Comparisons are made between: (a) sham and SCI; (b) SCI and SCI + Dex. *Statistically significant (p50.05).
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SCI insulted rats elicited significant (p50.05) decrease in

the level of enzymic antioxidants SOD, CAT, GPx and GST in

renal tissue when compared to the sham operated rats.

However, administration of Dex significantly (p50.05)

restored the diminished enzymic antioxidants level to nor-

malcy (Table 1).

In the present study, serum inflammatory cytokines (TNF-

a and IL-6) level were significantly (p50.05) elevated in SCI

rats compared to sham. Treatment with Dex significantly

(p50.05) diminished the elevated level of TNF-a and IL-6 to

normal (Figure 5A and B).

Furthermore, the expression levels of TNF-a and IL-6

were extensively studied in terms of their involvement in

acute and chronic inflammations. As shown in Figure 6, SCI

rats displayed significant increase in the expression level of

TNF-a and IL-6 in kidneys as compared with sham rats

(p50.05). However, treatment with Dex significantly

(p50.05) downregulated the TNF-a and IL-6 expression

level to normal.

To further investigate the effect of renal cell apoptosis in

SCI renal injury, western blot analysis was performed to

determine the expression of cleaved caspase-3. In our study,

SCI rats displayed significant (p50.05) upregulation of

cleaved caspase-3 expression as that of sham-operated rats.

However, Dex treatment significantly (p50.05) reduced the

cleaved caspase-3 expression when compared to the SCI rats

(Figure 7).

Discussion

SCI is an irreversible chronic pathological state bolsters

systemic inflammation and elicits multiorgan failure and

dysfunction apart from neurological insults. Mounting evi-

dences corroborate that SCI displays significant structural,

physiological and molecular alterations in the urinary blad-

der.30,31 In clinical utility, Dex has been portrayed as an

effective, safe adjunct in many clinical applications. Previous

studies documented the effect of Dex on renal system, which

may boost urine output by revamping of cardiac output,

blocking vasopressin release and augment the renal blood

flow and glomerular filtration.32–34 Furthermore, Dex proffers

renoprotective to the ischemic kidney as a result of oxidative

injury, which may overture to exaggerate acute kidney

damage.

In the present study, SCI animals displayed a significant

elevation of BUN and creatinine levels in serum which is an

indicative of deteriorated renal function. However, treatment

with Dex significantly diminished the elevated levels of BUN

and creatinine and restored the renal function markers to

normalcy. Post-SCI mediated ROS generation and free radical

Figure 2. Effect of DEX on SCI-induced changes in LPO and protein oxidation markers in kidney tissues of rats. (A) MDA (nmol/g tissue) and (B)
protein carbonyl content (nmol/mg protein). Values are mean ± SD for 10 rats in each group. Comparisons are made between: (a) sham and SCI; (b)
SCI and SCI + Dex. *Statistically significant (p50.05).

Figure 3. Effect of SCI and Dex on MPO level in kidney homogenate.
The MPO was expressed as U/g of tissue. Values are mean ± SD for
10 rats in each group. Comparisons are made between (a) sham and SCI
and (b) SCI and SCI + Dex. *Statistically significant (p50.05).

Figure 4. Effect of SCI and Dex on non-enzymic antioxidant level in
kidney tissue. The GSH level was expressed mg/mg of tissue. Values are
mean ± SD for 10 rats in each group. Comparisons are made between (a)
sham and SCI and (b) SCI and SCI + Dex. *Statistically significant
(p50.05).
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Figure 5. Levels of inflammatory cytokines in serum. (A) TNF-a (pg/mL) and (B) IL-6 (pg/mL). Values are mean ± SD for 10 rats in each group.
Comparisons are made between: (a) Sham and SCI and (b) SCI and SCI + Dex. *Statistically significant (p50.05).

Figure 6. Western blot analysis of inflammatory cytokines in renal
tissues. (A) TNF- a and IL-6 protein expression; (B) relative fold change
of TNF-a and IL-6. b-Actin served as an internal control. Values are
mean ± SD for five rats in each group. Comparisons are made between:
(a) Sham and SCI and (b) SCI and SCI + Dex. *Statistically significant
(p50.05).

Figure 7. Western blot analysis of apoptotic marker in renal tissues. (A)
Cleaved caspase 3 protein and (B) relative fold change of cleaved
caspase 3. b-Actin served as an internal control. Values are mean ± SD
for five rats in each group. Comparisons are made between: (a) Sham
and SCI and (b) SCI and SCI + Dex. *Statistically significant (p50.05).

Table 1. Effect of SCI and Dex on renal enzymic antioxidant levels.

Groups SOD (U/mg of protein) CAT (U/mg of protein) GPx (nmol/min/mg protein) GST (nmol/min/mg protein)

Sham 19.56 ± 0.72 12.63 ± 1.21 3.51 ± 0.19 18.25 ± 1.01
SCI 7.66 ± 0.31a* 7.12 ± 0.82a* 2.05 ± 0.11a* 10.25 ± 0.58a*
Dex (50 mcg/kg) 15.91 ± 0.78 12.14 ± 0.96 2.78 ± 0.09 18.32 ± 1.05
SCI + Dex (50 mcg/kg) 12.27 ± 0.66b* 10.67 ± 0.65b* 2.62 ± 0.09b* 15.65 ± 0.94b*

Values are expressed as mean ± SD for 10 rats in each group. Comparisons are made between: (a) Sham and SCI and (b) SCI and SCI + Dex.
*Statistically significant (p50.05). Units – SOD: U/mg protein, one unit is equal to the amount of enzyme that inhibits auto-oxidation of epinephrine.
CAT: U mg/protein, nmol H2O2 consumed min�1 mg�1 protein. GPx: nmol of GSH oxidized/min/mg of protein. GST: nmol of GSH–CDNB
conjugate formed/min/mg of protein.
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provoked oxidative organ insult is one of the vital injury

secondary injury mechanisms in acute SCI.35–37 Free radical-

mediated LPO is the prime sequel in the destruction cellular

membranes which are composed of polyunsaturated fatty

acids (PUFA). During this process the PUFA are vulnerable to

the attack of LPO which lead to structural changes in

membrane fluidity, integrity and permeability. These toxic

events prelude to enhanced protein degradation and finally

cell destruction. Furthermore, research reports advocate that

LPO is one of the cardinal event in post-SCI-mediated tissue

destruction.38 During oxidative assault, carbonylated protein

serves as a reliable marker to assess irreversible oxidative

damage disease-derived protein dysfunction.39,40 Post-SCI

elevated levels of NO react with superoxide anion (O�2 ) to

form highly potent oxidant peroxynitrite.41,42 Research

reports indicate that peroxynitrite orchestrate wide array of

noxious chemical reaction including protein carbonyla-

tion.39,40,43 In our study, SCI rats elicited elevated MDA

and protein carbonyl content in renal tissue and treatment

with Dex significantly attenuated the extent of LPO and

protein carbonylation. Previous studies explore the antilipid

peroxidative effect of Dex and it may be mediated through

free radical quenching mechanism.44,45 Furthermore, the

inhibition of protein carbonylation in our study may be due

to the NO scavenging activity of Dex which is in line with

previous report.46

Reduced GSH guards the cells against ROS and mounting

evidences suggest that oxidative tissue injury provoked by

noxious stimuli is coupled with GSH depletion.47–49 Thus,

GSH orchestrates a pivotal role in cell metabolism, differen-

tiation, proliferation and apoptosis.50 In this scenario,

strategies targeting augmentation of GSH level may be

implicated in the maintenance of cellular integrity. The

present findings demonstrated that SCI rats displayed dimin-

ished GSH content in renal tissue and treatment with Dex

boosted the level of GSH and this effect may be due to the

indirect antioxidant activity by blocking the activity of

inflammatory enzymes or by upholding the synthesis of

GSH. Furthermore, GSH modulation effects of DEX may be

due to the inhibition of NO production and downregulation of

mRNA and protein inducible nitric oxide synthase (iNOS)

expression.51

Cells are integrated with exclusive assortment of antioxi-

dant defense system to encounter the free radicals. The

present communication shows that the SCI-mediated elevated

LPO is accompanied by concomitant decline in the activities

of cellular enzymic antioxidants SOD, CAT, GPX and GST.

The diminished levels of antioxidant enzymes are mainly

attributed due to the interaction of ROS produced during the

spinal cord trauma with sulfhydryl group of enzymes. In our

study, SCI rats displayed significant reduction of antioxidant

enzymes in renal tissue and Dex administration elicited

effective protection against SCI induced changes in antioxi-

dant enzyme levels by restoring them to normal. Preclinical

studies indicate that Dex ameliorates oxidative injury in wide

array of tissue encompassing brain, kidney and heart.13,17,18

MPO orchestrates a central role in neutrophil-mediated

free radical production and serves as a reliable marker for

neutrophil infiltration in organs in the event oxidative injury.

In the current study, elevated level of MPO in SCI animals

clearly exemplifies that SCI provoked renal injury may be

neutrophil-dependent. ROS stimulated neutrophils release

MPO, which in turn releases noxious HOCl and oxidizes

proteins, lipids, carbohydrates and nucleic acids. A growing

body of research studies indicates that neutrophils release

chemotactic molecules and aid the process of neutrophil

migration to organs where it activates the neutrophil and

further enhances oxidative damage.52 In our study, treatment

with Dex significantly attenuated the elevated MPO level via

anti-inflammatory mechanism which is line with previous

report.53

Cytokines play a crucial role in SCI-mediated renal injury

and estimation of its level is of highly significant to assess the

severity of oxidative stress. Elevated levels of TNF-a and IL-6

have been proven to orchestrate cellular imbalance caused by

oxidative, nitrosative and apoptotic mediator.54 Furthermore,

SCI trauma triggers local inflammatory response which is

attributed due to infiltration of inflammatory cells, release of

inflammatory mediators and stimulation of endothelial cells

leading to vascular permeability, edema, necrosis and tissue

destruction at the site of trauma.55 Interleukins, a key

cytokine molecule, play a vital role in inflammatory network

to elicit necrosis, apoptosis and leukocyte infiltration.

Downregulation of cytokines has been reported to accelerate

renoprotective effects. In the present investigation, SCI rats

displayed elevated level of TNF-a and IL-6 in serum and

further upregulated the expression of TNF-a and IL-6 in renal

tissue. Treatment with Dex significantly reduced the serum

level of TNF-a and IL-6 and downregulated protein expres-

sion of TNF-a and IL-6. In our present study, the anticytokine

potential of Dex remains unclear; however, mounting evi-

dences displayed the role of Dex and a2 adrenergic receptor

agonists on cytokines.56–59

Apoptosis in renal tissues have been endorsed as one of the

major mechanisms SCI induced renal damage. Among the

apoptotic mediators, activated caspase-3 acts as a final

executor, as it regulates the extrinsic and intrinsic pathways

of apoptosis. Furthermore, caspase-3-mediated cell apoptosis

has been demonstrated to be essential in SCI-induced organ

damage.60–62 The present finding displayed that administra-

tion of Dex notably inhibited the protein level of cleaved

caspase-3, (the activated form of caspase-3) within the renal

tissues. Moreover, the activity of caspase-3 was down-

regulated as a result of Dex administration. Therefore, it is

hypothesized that Dex may protect renal cells against SCI

provoked apoptosis by suppressing caspase-3. Assorment of

research reports authenticate that Dex potentially minifies the

brain, intestine, heart, testis, neutrophils and kidney in the

event of oxidative insult.13–18

In conclusion, the findings of the current study substantiate

that renoprotective effect of Dex in post-SCI rats might be due

to the antioxidant, anti-inflammatory and antiapoptotic

mechanism, suggesting an additional agent to be further

studied for its consideration to be included in the combined

therapeutic interventions for limiting SCI-induced secondary

tissue degeneration.

However, further molecular studies are highly warranted to

explore the renoprotective effect of DEX and to establish its

feasible use in clinical setup as an adjunct candidate to spinal

cord trauma.
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