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LABORATORY STUDY

Bioinformatic analysis of specific genes in diabetic nephropathy
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Abstract

Objective: We attempt to explore the pathogenesis and specific genes with aberrant expression
in diabetic nephropathy (DN). Methods: The gene expression profile of GSE1009 was
downloaded from Gene Expression Omnibus database, including 3 normal function glomeruli
and DN glomeruli from cadaveric donor kidneys. The differentially expressed genes (DEGs) were
analyzed and the aberrant gene-related functions were predicted by informatics methods. The
protein–protein interaction (PPI) networks for DEGs were constructed and the functional sub-
network was screened. Results: A total of 416 DEGs were found to be differentially expressed in
DN samples comparing with normal controls, including 404 up-regulated genes and 12 down-
regulated genes. DEGs were involved in the process of combination to saccharides and the
decline of tissue repairing ability of the organisms. The genes of VEGFA, ACTG1, HSP90AA1 had
high degree in the PPI network. The main biological process of genes in the sub-network was
related with cell proliferation and signal transmitting of cell membrane receptor. Conclusion:
Significant nodes in PPI network provide new insights to understand the mechanism of DN.
VEGFA, ACTG1 and HSP90AA1 may be the potential targets in the DN treatment.
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Introduction

Diabetic nephropathy (DN), is the most common complica-

tion in patients with diabetes.1 It affects 15–40% patients with

type I diabetes.2,3 and the prevalence of DN in type 2 diabetes

patients is around 5–20%4 DN can result in renal failure,

hypertension, arteriosclerosis and proteinuria. Thus, DN is

one of the risk factors contributing to the high cardiovascular

disease mortality.5 DN is a progressive disease and can cause

death within two or three years of lesion. DN is a major

medical problem, but this disease is not well-controlled yet.

Previous evidence shows that good control of hypergly-

cemia and hypertension is the effective way to prevent the

development of DN.6 In the diabetic renal complications,

hyperglycemia could induce the damage of glomerular and

tubular locations at a cellular level. Hyperglycemia in DN

patients may induce the increased flux through the polyol

pathway, excessive formation of advanced glycation end-

products, oxidative stress, and activation of the protein kinase

C (PKC) pathway.7 Besides, with the development of

microarray technology, it provides a novel insight to under-

stand the mechanism of DN. Previous microarray analysis of

the diabetic glomeruli and control showed that the aberrant

expression of genes was related with vascular damage,

mesangial matrix expansion.8 In addition, the tissue repair

capability was found to be decreased in the progression of

DN. Besides, miRNA-25, 29, 124 and 21 might be therapeutic

target for DN.9 However, the interactions of specific genes in

the DN progression have not been clarified sufficiently.

In the current work, we downloaded the microarray data to

perform bioinformatic analysis. The genes with aberrant

expression were explored and the protein–protein interaction

(PPI) network was constructed for these genes. We attempted

to further explore the potential mechanism and key genes in

DN progression.

Methods

Microarray data and preprocessing

The freely disseminated microarray data (accession ID:

GSE1009) was downloaded from publicly available GEO

repository, which were contributed by Baelde et al.8 The

dataset was developed from 3 pairs of normal function

glomeruli and diabetic glomeruli samples from cadaveric

donor kidneys.8 DEGs were screened in DN samples compared

with controls.

The raw data were normalized by Affy package in R

language (version 1.44.0, Fred Hutchinson, Seattle, WA). The

CEL data were converted to the expression measures matrix

and the probe-level data were transferred to expression

measures based on the platform of Affymetrix Human

Genome U95 Version 2 Array (Affymetrix, Inc., Santa

Clara, CA). If a single gene corresponds to multiple probes
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(many expression values), the average expression value was

calculated for this specific gene.

DEGs screening and function analysis

DEGs were identified by using Limma (linear models for

microarray data) package.10 Only the genes with p� 0.01 and

jlogFCj41 were selected as the DEGs for further analysis.

GO (gene ontology) function and KEGG (Kyoto

Encyclopedia of Genes and Genomes) pathway enrichment

analysis were performed using DAVID (Database for

Annotation, Visualization and Integrated Discovery)

(Clinical services Program, SAIC-Frederick, Inc., Frederick,

MD).11 p-Value50.05 was considered as the cutoff value.

PPI network analysis

The PPI network is able to reveal the functions of proteins at

the molecular level and help discover the rules of cellular

activities including growth, development, metabolism,

differentiation and apoptosis.12,13 Identification of protein

interactions in a genome-wide scale is important for the inter-

pretation of the cellular control mechanisms.10 In this study,

the protein pairs corresponding to DEGs were collected from

STRING (Search Tool for the Retrieval of Interacting Genes)

online datasets.14 The PPI network was constructed by the

Cytoscape software (National Institute of General Medical

Sciences (NIGMS), Bethesda, MD).15 Besides, sub-networks

were screened and the node degrees were calculated using

MCODE (Molecular Complex Detection) plugin.16 Besides,

the sub-network functions were analyzed with the function of

MCODE plugin.

Results

Microarray data analysis between normal sample and
DN samples

After pre-processing, expression values of 8657 genes in

6 glomeruli samples were obtained. The expression values of

these genes were scaled to a standard level after data

normalization (Figure 1). Total 416 DEGs were screened

out, including 404 up-regulated genes and 12 down-regulated

genes in the glomerulus of DN patients (Supplementary

material).

The results of GO function and pathway enrichment

analysis for DEGs were shown in Table 1. The DEGs were

enriched in 3 different GO categories, including biological

process (BP), molecular function (MF) and cellar component

(CC). The down-regulated genes were mainly enriched in

response to toxin related BP, sugar binding related MF.

The significant pathway involved with down-regulated

DEGs was steroid hormone biosynthesis (hsa00140).

Besides, the overrepresented GO terms of up-regulated

genes contained intracellular signaling cascade (BP), regula-

tion of cell proliferation (BP), intracellular non-membrane-

bounded organelle (CC), non-membrane-bounded organelle

(CC), cytoskeletal protein binding (MF) and calcium ion

binding (MF). Furthermore, significantly enriched path-

ways included regulation of actin cytoskeleton (hsa04810),

focal adhesion (hsa04510), and tight junction pathway

(hsa04530).

PPI network of DEGs

The PPI network was constructed by STRING online tool

(Figure 2). The sub-network 1 with nodes410 in PPI network

was selected (Figure 3A). Hub proteins with connective

degree 410 were also selected, such as VEGFA, ACTG1,

HSP90AA1, YWHAQ, VIM (Table 2). Among the hub nodes,

VEGFA had the highest connective degree (degree¼ 27).

Then, network 2 with VEGFA and its direct interaction

proteins were constructed (Figure 3B). The function analysis

showed that genes in sub-network 1 were mainly related with

regulation of cell proliferation and cell surface receptor linked

signal transduction. The main functions of genes in sub-

network 2 were regulation of cell proliferation, positive

regulation of cell proliferation (Table 3).

Figure 1. Box figure of expression value before (A) and after normalization (B) (the horizontal axis represents samples, while the vertical axis
represents expression value). The black line in the box was the median of every group of data, which can tell the extent of normalization. As can be seen
from the figure, the black lines were almost on the same straight line, indicating a high level of normalization.
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Discussion

DN is a major cause of death in patients with diabetes

mellitus.17 A good understanding of DN pathogenesis is

accessible to improving the prevention strategies. In the

present study, we screened the genes with aberrant expression

and explored the function and interrelationship of these genes.

Bioinformatic analysis showed that 404 genes were over-

expressed and 14 genes were down-regulated in diabetic

glomeruli tissues. The number of up-regulated genes was

higher than that of the down-regulated gene, which was

corresponding to the originally published report.8 The up-

regulated genes were significantly enriched in intracellular

signaling cascade, regulation of cell proliferation and regu-

lation of apoptosis. So, the disordered cell activation is a

common event in DN progression. The PPI network revealed

that the genes of VEGFA (vascular endothelial growth

factor A), ACTG1 (Actin, gamma 1), HSP90AA1 (Heat

shock protein 90 kDa alpha (cytosolic), member A1) had high

connective degrees with others, suggesting that these genes

might play important roles in the occurrence and development

of DN.

Among the hub nodes, VEGFA has the highest degree

(degree¼ 27) and is a member of the vascular endothelial

growth factor (VEGF) family. The endothelial dysfunction is

a clinical hallmark in DN patients, which is characterized

by increased endothelial permeability and proliferation.18

Previous evidence suggests that the expression of VEGF is

induced by hyperglycemia, hypoxia and increased blood

pressure.19,20 VEGF level is found to be elevated in the early

stage of DN in men and VEGF plays a predictable role in DN

initiation,21 which is in agreement with our findings that

VEGFA was overexpressed in diabetic glomeruli by bioinfor-

matic analysis.

Considerable research has focused on the critical role of

VEGFA in kidney. VEGFA and epidermal growth factor

(EGF) were decreased in mRNA level in DN, which was

Table 1. The GO terms which DEGs in PPI network were enriched in.

Groups Category Term Count p-Value

Down-regulate genes GOTERM_BP_FAT GO:0009636 – response to toxin 2 0.026757
GOTERM_MF_FAT GO:0005529 – sugar binding 3 0.004485
GOTERM_MF_FAT GO:0030246 – carbohydrate binding 3 0.014218
GOTERM_MF_FAT GO:0048029 – monosaccharide binding 2 0.021373
KEGG_PATHWAY hsa00140:Steroid hormone biosynthesis 2 0.026899

Up-regulate genes GOTERM_BP_FAT GO:0007242 – intracellular signaling cascade 45 0.011647
GOTERM_BP_FAT GO:0042127 – regulation of cell proliferation 38 1.31E-04
GOTERM_BP_FAT GO:0043067 – regulation of programmed cell death 38 2.43E-04
GOTERM_BP_FAT GO:0010941 – regulation of cell death 38 2.61E-04
GOTERM_BP_FAT GO:0042981 – regulation of apoptosis 37 4.12E-04
GOTERM_BP_FAT GO:0006793 – phosphorus metabolic process 37 0.010125
GOTERM_BP_FAT GO:0006796 – phosphate metabolic process 37 0.010125
GOTERM_BP_FAT GO:0008219 – cell death 35 2.25E-04
GOTERM_BP_FAT GO:0016265 – death 35 2.48E-04
GOTERM_BP_FAT GO:0008104 – protein localization 35 0.006783
GOTERM_CC_FAT GO:0043232 – intracellular non-membrane-bounded organelle 98 8.60E-06
GOTERM_CC_FAT GO:0043228 – non-membrane-bounded organelle 98 8.60E-06
GOTERM_CC_FAT GO:0044459 – plasma membrane part 72 0.010806
GOTERM_CC_FAT GO:0005856 – cytoskeleton 66 2.52E-07
GOTERM_CC_FAT GO:0005829 – cytosol 52 0.001116
GOTERM_CC_FAT GO:0005783 – endoplasmic reticulum 44 1.16E-04
GOTERM_CC_FAT GO:0044430 – cytoskeletal part 43 1.96E-04
GOTERM_CC_FAT GO:0000267 – cell fraction 38 0.029378
GOTERM_CC_FAT GO:0012505 – endomembrane system 36 5.28E-04
GOTERM_CC_FAT GO:0005794 – Golgi apparatus 35 0.006056
GOTERM_MF_FAT GO:0008092 – cytoskeletal protein binding 40 9.39E-11
GOTERM_MF_FAT GO:0005509 – calcium ion binding 37 0.002501
GOTERM_MF_FAT GO:0003779 – actin binding 30 1.20E-09
GOTERM_MF_FAT GO:0042802 – identical protein binding 25 0.020767
GOTERM_MF_FAT GO:0005198 – structural molecule activity 24 0.032475
GOTERM_MF_FAT GO:0046983 – protein dimerization activity 23 0.011619
GOTERM_MF_FAT GO:0019899 – enzyme binding 20 0.048259
GOTERM_MF_FAT GO:0019904 – protein domain specific binding 19 0.001091
GOTERM_MF_FAT GO:0016564 – transcription repressor activity 16 0.009519
GOTERM_MF_FAT GO:0030246 – carbohydrate binding 15 0.048293
KEGG_PATHWAY hsa04810:Regulation of actin cytoskeleton 19 4.67E-05
KEGG_PATHWAY hsa04510:Focal adhesion 14 0.005696
KEGG_PATHWAY hsa04530:Tight junction 12 0.001755
KEGG_PATHWAY hsa05412:Arrhythmogenic right ventricular cardiomyopathy (ARVC) 11 6.27E-05
KEGG_PATHWAY hsa05410:Hypertrophic cardiomyopathy (HCM) 9 0.003213
KEGG_PATHWAY hsa05414:Dilated cardiomyopathy 9 0.005232
KEGG_PATHWAY hsa04670:Leukocyte transendothelial migration 9 0.021777
KEGG_PATHWAY hsa04610:Complement and coagulation cascades 8 0.003797
KEGG_PATHWAY hsa05130:Pathogenic Escherichia coli infection 7 0.006059

Notes: BP, biological process; CC, cellular component; MM, molecular function.
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associated with a reduction in peritubular capillary densities.1

The expression of VEGFA was inversely correlated with

proteinuria level, but was positively related with hypoxia-

inducible factor-1a in mRNA level.1 Recently, it is found

that VEGFA produced by tubular epithelial cells is critical

in maintaining the peritubular capillary network in kidney.22

VEGFA isoform VEGF-A165b is proved to have the

vasculoprotective effects against DN.23 Besides, sub-network

2 with VEGFA as the centre node was screened in our

paper. Function analysis showed that sub-network 2 was

closely related with cell proliferation regulation related

biological process. It is in accordance with the recorded

functions of VEGFA as mediator in endothelial cell growth,

promoting cell migration, and inhibiting apoptosis.

Figure 2. PPI network construction in diabetic nephropathy. The nodes stand for DEGs (differentially expressed genes) and the lines stand for the
interactions between two proteins.
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Therefore, VEGFA plays a key role in DN progression and

good control of the VEGFA expression may be effective in

DN prevention.

Gene ACTG-1 (degree¼ 18) is another hub node in PPI

network. ACTG-1 encoding Actin, gamma 1 is a major

component of cytoskeleton. According to AceView, ACTG-1

protein encoded by this gene are expected to have molecular

functions (ATP binding, nucleotide binding) and localize in

various compartments (cytoplasm, cytoskeleton, nucleus).24

It is reported that ACTG-1 is expressed at very high level in

DN and has been tested to be associated with various diseases,

such as neoplasms, hearing loss and kidney disease.25 In our

work, ACTG-1 was found to be involved in pathways such as

adherens junction, bacterial invasion of epithelial cells,

dilated cardiomyopathy, which indicated the possible rela-

tions between ACTG-1 gene and the disease occurrence.

In addition, HSP90AA1 (degree¼ 17) is an inducible

molecular chaperone,26 which promotes the structural main-

tenance, maturation and proper regulation of specific target

proteins involved in signal transduction and cell cycle

control27 HSP90AA1 undergoes a functional cycle that is

linked to its ATPase activity, which induces conformational

changes in the client proteins. HSP90AA1 could interact

dynamically with various co-chaperones to modulate its

substrate recognition.28 However, there is no report about the

correlation between HSP90AA1 and DN. Further analysis of

HSP90AA1 may provide new evidence for the molecular

mechanism of DN.

In conclusion, the up-regulated genes play a major role in

DN progression. Genes of VEGFA, ACTG1 and HSP90AA1 as

significant nodes in PPI network are closely related with the

molecular mechanism of DN. The significant nodes in PPI

network provide new insights to understand the development

of DN. VEGFA, ACTG1 and HSP90AA1 may be potential

targets in the DN treatment. However, our findings are in

urgent need of a large number of experimental validations

in the future.
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Figure 3. Subnetwork 1 was obtained by MCODE while subnetwork 2 was established based on the first nodes of hub proteins. The nodes stand for
DEGs and the lines stand for the interactions between two proteins. (A) Subnetwork 1; (B) Subnetwork 2.

Table 2. A list of genes with connective degree than 10 in the PPI
network.

Gene Degree Gene Degree

VEGFA 27 STAT1 12
ACTG1 18 PSMA3 12
HSP90AA1 17 XPO1 12
YWHAQ 17 CTGF 12
VIM 15 WT1 12
CALD1 14 ITGB5 12

Note: Neovascularization albuminuria generalized vascular process has
been used.

Table 3. Main biological processes where DEGs in the sub-networks are
involved.

Subnetwork
rank

Number of
nodes Main biological processes

1 12 Regulation of cell proliferation, cell sur-
face receptor linked signal transduction

2 28 Regulation of cell proliferation, positive
regulation of cell proliferation
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