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EDITORIAL

Marginal Structural Models for Comparing Alternative
Treatment Strategies in Ophthalmology using

Observational Data

Marshall M. Joffe1,2, Maxwell Pistilli3, and John H. Kempen1,2,3

1Center for Clinical Epidemiology and Biostatistics, 2Department of Biostatistics and Epidemiology, and
3Ocular Inflammation Service, Department of Ophthalmology, The University of Pennsylvania Perelman School

of Medicine, Philadelphia, PA, USA

Treatment of many conditions in ophthalmology
involves an extended sequence of decisions over a
period of time. For example, in managing glaucoma, a
target intraocular pressure (IOP) may be selected, and
a topical eye drop prescribed, after which IOP is
reassessed. If the IOP goal is not met using the one eye
drop, another may be prescribed, and so on.1 Failure
to adequately control IOP initially may lead to
worsening of glaucoma as manifested by increased
optic disk cupping and/or visual field loss, after
which the target pressure may be revised further
downward, and additional interventions considered.
At each visit, a decision is made about whether or not
to start a new treatment, or whether to stop an
existing treatment. The goal of a clinician contemplat-
ing a series of decisions should be to choose the best
available decision at each time or the best available
strategy over time. Evaluation and comparison
of such strategies using observational or non-
experimental data is more difficult than the evalu-
ation of simple one-time decisions or treatments,
because of the complexities of characterizing the
joint effects of a sequence of treatment decisions
over time and adjusting for time-varying confounders
in these settings.

The joint effects of a given series of treatments are
evaluated with respect to a competing or comparison
series as contrasts of what would happen under the
different strategies.2,3 Even if one is interested in the
effects of a single treatment among an extended series
of treatments, it is important to avoid improperly
attributing the effects of the treatment of interest to
the effects of the other treatments in the sequence
(each of which may be correlated with the treatment

of interest). To accomplish these objectives, it is best to
characterize these effects in terms of comparisons of
treatment strategies which differ only at one point in
time. In this editorial, we briefly describe these
difficulties, present marginal structural models as an
appropriate approach for dealing with them, and
consider why some other popular methods are not
appropriate for this setting.

Treatment strategies can be compared by a rando-
mized trial in which each arm involves a different
treatment strategy. For instance, the Multicenter
Uveitis Steroid Treatment Trial compared a systemic
versus a surgical implant strategy for non-infectious
uveitis.4 However, it may not be feasible to conduct a
randomized trial for every comparison of interest,
particularly for less common diseases. In this situ-
ation, if evidence-based guidance is to be had, it is
necessary to rely on observational data. When using
observational data, one might think of simply
comparing people who followed the different strate-
gies, adjusting for confounding variables by using the
standard approaches of regression adjustment or
stratification for those confounders. This approach is
problematic because of time-varying confounding
variables affected by earlier treatment. Such variables
have the following three characteristics2,3 (depicted in
a causal diagram in Figure 1A): (1) they are independ-
ently associated with the outcome of interest – either
because (1A) they cause that outcome, or because (1B)
they share common causes with that outcome; (2) they
are associated with the choice of subsequent treatment;
and (3) they are affected by earlier treatment.

For instance, in the context of estimating the effects
of treatment for ocular inflammatory disease,
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activity/severity of ocular inflammation likely plays
this role. Because inflammatory activity is thought to
be the major underlying cause of loss of visual acuity
and most other adverse outcomes (condition 1A),
observation of activity motivates the clinician to try a
new (subsequent) therapy (condition 2), and is
affected by prior treatment (condition 3). Elevated
IOP in the context of glaucoma (see above) also may
play this role, and several other examples may exist in
ophthalmology. Characteristics 1A and 2 make the
variable a confounder of the effect of subsequent
treatment; to estimate that effect, one must adjust for
the confounder. Characteristics 1A and 3 make the
variable an intermediate on the causal pathway from
earlier treatment to outcome.

It usually is inappropriate to adjust for a variable
affected by treatment when one is attempting to
estimate the treatment’s effect. For instance, in an
observational dataset, it would be inappropriate to
adjust for IOP after treatment when evaluating the
effect of that treatment on the visual outcome of
glaucoma cases. The reason for this is that when a
variable (e.g. IOP) is an intermediate variable on the
causal pathway (conditions 1A and 3), adjusting for it
will produce biased estimates of the effect of the
treatment of interest. If one tries to simultaneously
estimate the effect of earlier and later treatments,
adjusting by stratification or regression for an inter-
mediate variable (e.g. IOP), the estimates of the effect
of earlier treatment will be biased; the variable has
characteristics 1A and 3 and so is an intermediate in
the causal pathway by which a treatment has its effect
on visual outcome (e.g. lower IOP may have a better
visual outcome). However, if one tries to estimate the
joint effects without adjusting for the intermediate
variable (e.g. IOP), the estimates of the effect of the
later treatment will be confounded, because charac-
teristics 1 and 2 make that variable also a confounder

which requires adjustment. Thus, in the presence of
confounding by variables affected by prior and
subsequent treatments (often known as time-varying
or time-dependent confounders), standard analytic
methods will be inappropriate.2,3

A fictitious illustration of these problems is given in
Table 1. In this table, initial treatment decreases the
proportion of subjects with increased IOP (condition
3); increased IOP both increases the probability of
subsequent treatment (condition 2) and is associated
with a higher probability of diminished visual acuity
(condition 1A). Further, in this example, initial and
subsequent treatment each reduce the probability of
poor visual acuity by 10% within each subgroup. We
performed standard regressions of diminished visual
acuity simultaneously on treatment in both periods.
When one does not adjust for IOP measured after the
initial treatment, initial treatment is associated with a
10.7% decrease in poor visual acuity, whereas later
treatment is associated with a 5.4% decrease. When
adjusting for IOP, initial treatment is not associated
with poor visual acuity, whereas later treatment is
associated with a 10% decrease in poor acuity. Thus,
neither regression correctly recovers the correct effects
(10% reduction in the probability of poor visual
acuity) of earlier and later treatments when both
variables are included simultaneously in the regres-
sion models.

In response to this problem, Robins and co-workers
developed a series of methods to estimate joint effects
and model contrasts between treatment strategies in
the presence of time-varying confounders: G-compu-
tation,5 G-estimation,6 and marginal structural models
(MSMs).2,3 MSMs are the easiest to implement in
practice, and so have become the method most
commonly used to adjust for time-dependent con-
founding. MSMs typically are estimated using inverse
probability of treatment weighting.2,3 The basic idea is
to weight each subject by the inverse probability of
receiving the treatment history that that subject
actually had. This probability is computed from the
probability of receiving treatment at each point in
time given all that is known about that subject up to
that time (i.e. prior covariates and treatment history).
With the weighting, each subject stands in for himself
or herself as well as all the subjects who fail to follow
the same treatment history and who are otherwise
comparable to that subject up until the time that their
treatment history diverges from that of the index
subject. The weighting process creates a pseudo-
population in which prior covariate and treatment
history are not associated with subsequent treatment,
and so partially mimics a sequentially randomized
trial in which treatment is randomized many times.
The relationships among variables in the pseudo-
population are depicted in Figure 1B; the approach
removes the relationship between predictors of later
treatment and treatment (Condition 2) and so removes
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FIGURE 1. Causal diagrams depicting relationships among key
variables, illustrating the issue of time-dependent confounding.
(a) Actual relationships in a population, where the intermediate
variable L is a time-dependent confounder. (b) Relationships in
the pseudo-population created by weighting (condition 2 is
removed). A0, initial treatment; A1, subsequent treatment; L,
intermediate variable (disease activity); Y, outcome (visual
acuity); U, common cause (possibly unmeasured) of L and
Y. Conditions: (1) Covariate L is an independent predictor of
outcome Y because of 1A (effect of L on Y) and/or 1B
(unmeasured common cause U of L and Y). (2) Covariate L
influences subsequent treatment A1. (3) Covariate L is influ-
enced by earlier treatment A0.
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confounding by those predictors. An example of how
this is implemented is given in Table 1. Many
standard regression programs (e.g. Stata and SAS)
can perform weighted regressions. MSMs have been
used in analysis of data in a variety of biomedical
applications; their use for controlling confounding
by time-varying variables often leads to substantially
different and more plausible findings than more
familiar methods.7

MSMs have their limitations. Unlike randomiza-
tion, inverse probability weighting does not address
the problem of unrecognized confounding due to
unmeasured covariates. The approach thus requires
that (1) the available covariates in fact do convey the
information that was relevant to clinicians and
patients in selecting the treatment that actually was
used; and (2) that there is not enough unrecognized
confounding to distort observed relationships. Thus,
the inverse probability weighting only partially
mimics randomized trials in that randomization
addresses confounding not only by measured covari-
ates but also by unmeasured ones.

Additionally, the weighting process can result in
substantially increased uncertainty about treatment
effects (wider confidence intervals) than standard
regressions would when the latter are appropriate,
increasing the probability of a type 2 error (false
negative association result). This uncertainty can
result from the fact that, in the weighted estimation,
some subjects may have substantially lower weights
than others. The increase in standard errors often but
not always can be mitigated by using so-called
stabilized weights;2,3 other strategies for dealing
with large standard errors include weight truncation,
which can induce bias.8 These problems with
increased variance and some other problems also
can be mitigated with G-computation and G-estima-
tion, the other approaches to dealing with time-
varying confounders; however, both currently are
more difficult to apply than MSMs.

It is worth briefly contrasting MSMs with some
other approaches which have become popular in
recent years for similar problems. Propensity score
adjustment9,10 is an appropriate approach to control-
ling confounding in simpler settings. However, stand-
ard propensity score adjustment cannot deal with
confounding by variables affected by treatment and so
is not appropriate for jointly estimating the effects of
treatments given at multiple times when such con-
founding is present. Principal stratification11 provides
a different approach for dealing with post-treatment
variables but has not been used to define or estimate
joint effects of a series of treatments in observational
studies. Structural equations models, in their simpler
forms,12 do not appropriately adjust for time-varying
confounders. A more general version of structural
equations models,12 not available in standard soft-
ware, is essentially equivalent to G-computation.T
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As discussed above, the possibility of unmeasured
confounders will prevent analysis of observational
data using marginal structural models from displa-
cing randomized clinical trials for key questions.
However, the approach provides a much improved
method for comparing alternative treatments in situ-
ations where clinical trials are not available but rich
observational datasets are. Use of marginal structural
models in this setting may improve substantially the
quality of the evidence base available to guide
treatment when clinical trials are not available or
feasible.

DECLARATION OF INTEREST

The authors report no declaration of interest. The
authors alone are responsible for the content and
writing of this paper.
This study was supported primarily by National Eye
Institute Grant EY014943 (Dr Kempen). Additional
support was provided by Research to Prevent
Blindness (RPB) and the Paul and Evanina Mackall
Foundation. None of the sponsors had any role in the
design and conduct of the report; collection, manage-
ment, analysis, and interpretation of the data; nor
in the preparation, review, and approval of this
manuscript.

Financial disclosures: Marshall M. Joffe: Employment
(E) University of Pennsylvania; Grant Funding
(G) National Institutes of Health; Maxwell Pistilli:
(E) University of Pennsylvania; (G) National Institutes
of Health; John H. Kempen: (E) University of
Pennsylvania; (Consultant (C)) Alcon, (C) Allergan,
(C) Lux Biosciences, (C) Xoma, (G) EyeGate
Pharmaceuticals, (G) National Institutes of Health,
(G) Food and Drug Administration, (G) Lions Clubs
International Foundation.

Contributions of authors: Conception and Design of
the study (MMJ, JHK); Writing the Article (MMJ);
Critical Review of the Article (MMJ, MP, JHK); Final
Approval of the Article (MMJ, MP, JHK); Provision of

Materials, Patients, or Resources (MMJ, JHK);
Statistical Expertise (MMJ, MP); Obtaining Funding
(JHK); Literature Search (MMJ); Administrative,
Technical, or Logistic Support (MMJ, JHK).

Statement about conformity with author information:
The material described in this paper is not research
and therefore did not require institutional review
board approval.

REFERENCES

1. Prum BEJ, Friedman DS, Gedde SJ, et al. Preferred practice
pattern: primary open-angle glaucoma. San Francisco, CA:
American Academy of Ophthalmology; 2010.

2. Hernan MA, Brumback B, Robins JM. Marginal structural
models to estimate the causal effect of zidovudine on
the survival of HIV-positive men. Epidemiology 2000;11:
561–570.

3. Robins JM, Hernan MA, Brumback B. Marginal structural
models and causal inference in epidemiology. Epidemiology
2000;11:550–560.

4. Kempen JH, Altaweel MM, Holbrook JT, et al. Randomized
comparison of systemic anti-inflammatory therapy versus
fluocinolone acetonide implant for intermediate, posterior,
and panuveitis: the multicenter uveitis steroid treatment
trial. Ophthalmology 2011;118:1916–1926.

5. Robins J. The control of confounding by intermediate
variables. Stat Med 1989;8:679–701.

6. Robins JM, Blevins D, Ritter G, Wulfsohn M. G-estimation
of the effect of prophylaxis therapy for pneumocystic
carinii pneumonia on the survival of AIDS patients.
Epidemiology 1992;3:319–336.

7. Suarez D, Borras R, Basagana X. Differences between
marginal structural models and conventional models in
their exposure effect estimates: a systematic review.
Epidemiology 2011;22:586–588.

8. Cole SR, Hernan MA. Constructing inverse probability
weights for marginal structural models. Am J Epidemiol
2008;168:656–664.

9. Rosenbaum PR, Rubin DB. The central role of the propen-
sity score in observational studies for causal effects.
Biometrika 1983;70:41–55.

10. Rubin DB. Propensity score methods. Am J Ophthalmol
2010;149:7–9.

11. Frangakis CE, Rubin DB. Principal stratification in causal
inference. Biometrics 2002;58:21–29.

12. Pearl J. Causality: models, reasoning, and inference. 2nd ed.
Cambridge: Cambridge University Press; 2009.

200 M. M. Joffe et al.

Ophthalmic Epidemiology


