
Full Terms & Conditions of access and use can be found at
https://informahealthcare.com/action/journalInformation?journalCode=inet20

Network: Computation in Neural Systems

ISSN: 0954-898X (Print) 1361-6536 (Online) Journal homepage: informahealthcare.com/journals/inet20

Analyzing multicomponent receptive fields from
neural responses to natural stimuli

Ryan J. Rowekamp & Tatyana O. Sharpee

To cite this article: Ryan J. Rowekamp & Tatyana O. Sharpee (2011) Analyzing multicomponent
receptive fields from neural responses to natural stimuli, Network: Computation in Neural
Systems, 22:1-4, 45-73, DOI: 10.3109/0954898X.2011.566303

To link to this article:  https://doi.org/10.3109/0954898X.2011.566303

© 2011 The Author(s). Published by Taylor &
Francis.

Published online: 22 Jul 2011.

Submit your article to this journal 

Article views: 1224

View related articles 

Citing articles: 1 View citing articles 

https://informahealthcare.com/action/journalInformation?journalCode=inet20
https://informahealthcare.com/journals/inet20?src=pdf
https://informahealthcare.com/action/showCitFormats?doi=10.3109/0954898X.2011.566303
https://doi.org/10.3109/0954898X.2011.566303
https://informahealthcare.com/action/authorSubmission?journalCode=inet20&show=instructions&src=pdf
https://informahealthcare.com/action/authorSubmission?journalCode=inet20&show=instructions&src=pdf
https://informahealthcare.com/doi/mlt/10.3109/0954898X.2011.566303?src=pdf
https://informahealthcare.com/doi/mlt/10.3109/0954898X.2011.566303?src=pdf
https://informahealthcare.com/doi/citedby/10.3109/0954898X.2011.566303?src=pdf
https://informahealthcare.com/doi/citedby/10.3109/0954898X.2011.566303?src=pdf


Network: Computation in Neural Systems
March–December 2011; 22(1–4): 45–73

Analyzing multicomponent receptive fields from
neural responses to natural stimuli

RYAN J. ROWEKAMP & TATYANA O. SHARPEE

The Computational Neurobiology Laboratory, The Salk Institute for Biological Studies,

La Jolla, CA 92037, USA and The Center for Theoretical Biological Physics, University of

California, San Diego, La Jolla, CA, USA

(Received 18 November 2010; accepted 22 February 2011)

Abstract
The challenge of building increasingly better models of neural responses to natural stimuli is
to accurately estimate the multiple stimulus features that may jointly affect the neural spike
probability. The selectivity for combinations of features is thought to be crucial for achieving
classical properties of neural responses such as contrast invariance. The joint search for these
multiple stimulus features is difficult because estimating spike probability as a multi-
dimensional function of stimulus projections onto candidate relevant dimensions is subject to
the curse of dimensionality. An attractive alternative is to search for relevant dimensions
sequentially, as in projection pursuit regression. Here we demonstrate using analytic
arguments and simulations of model cells that different types of sequential search strategies
exhibit systematic biases when used with natural stimuli. Simulations show that joint
optimization is feasible for up to three dimensions with current algorithms. When applied to
the responses of V1 neurons to natural scenes, models based on three jointly optimized
dimensions had better predictive power in a majority of cases compared to dimensions
optimized sequentially, with different sequential methods yielding comparable results. Thus,
although the curse of dimensionality remains, at least several relevant dimensions can be
estimated by joint information maximization.

Keywords: Information theory, natural scenes, single neuron computation, visual system

Introduction

An essential element for achieving a quantitative understanding of sensory

processing consists of characterizing the computational rules according to which

the incoming stimuli are encoded within the sensory pathways. A useful and
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relatively laconic description of responses of a sensory neuron consists of specifying

(1) the relevant stimulus features that affect its spike probability and (2) the

nonlinear gain function that describes the dependence of the spike probability on

the stimulus projections along these relevant dimensions. These features form the

framework of the linear/nonlinear (LN) model (de Boer and Kuyper 1968; Shapley

and Victor 1978; Meister and Berry 1999). The crucial simplification of this

framework is that the number of relevant dimensions is assumed to be small.

Recent studies of neural responses to randomized stimuli have revealed that

responses of many types of sensory neurons are modulated by more than one

stimulus feature. In the visual system, at least two stimulus features were found to be

relevant for responses of fly H1 motion sensitive neuron (Brenner et al. 2000a),

retinal ganglion cells (Fairhall et al. 2006), the thalamic visual neurons (Sincich

et al. 2009), and neurons in the primary visual cortex (V1) (Brenner et al. 2000a;

Touryan et al. 2002, 2005; Rust et al. 2005; Chen et al. 2007; Rapela et al. 2010).

Two-dimensional encoding was also observed for neurons in the somatosensory

(Maravall et al. 2007) and auditory (Atencio et al. 2008) cortices. Finally, two or

more relevant stimulus features can arise even as a result of basic nonlinear

processes of spike generation as was demonstrated both in slice recordings from the

brainstem nucleus magnocellularis (Slee et al. 2005) and in computations of model

Hodgkin–Huxley neurons (Hong et al. 2007). Thus, multidimensional encoding

appears to be quite ubiquitous and can arise both as a result of single neuron

dynamics and computations at the circuit level.

Most of the studies demonstrating the presence of multidimensional encoding

used randomized stimuli, such as white noise or correlated Gaussian noise. The

next open question is to study multidimensional feature selectivity with natural

stimuli. Such comparison is necessary because many aspects of neural responses

exhibit adaptation to a host of statistical parameters of the stimulus distribution,

including mean, variance (Fairhall et al. 2001; Maravall et al. 2007), or differences

in the power spectra between noise and natural stimuli (Sharpee et al. 2006).

Adaptation has often been observed on multiple time scales (Wark and Fairhall

2007; Lundstrom et al. 2008). It is desirable to study differences in the

multicomponent feature selectivity between natural and randomized stimuli.

However, we must first establish that the computational methods perform

adequately given the constraints imposed by the statistics of natural scenes and

available neurophysiological data. Several computational methods have been

previously described in the literature for this purpose. These include finding

relevant dimensions as those that maximize the amount of mutual information

about the neural response (Sharpee et al. 2004a), maximization of other related

objective functions (Paninski 2003; Sharpee 2007), and the projection pursuit

regression (Rapela et al. 2006, 2010). Although information maximization has been

shown analytically to estimate relevant dimensions with the smallest amount of

variance in the limit of large datasets (Kouh and Sharpee 2009), the feasibility of a

joint search of dimensions was demonstrated only for two relevant dimensions using

model neurons with spatial (Sharpee et al. 2004a) or spatiotemporal (Sharpee et al.

2004b) features. Thus, it is not clear how well the performance of the joint search

algorithm would fare for a larger number of dimensions. As the number of

dimensions increases, the multidimensional probability distributions required for

information maximization become increasingly noisy as the data are distributed
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across the growing number of histogram bins. This effect is known as the curse of

dimensionality (Bellman 1961). A recent study by Rapela et al. (2010) proposed

instead to search for dimensions sequentially. This is a very attractive possibility.

However, the projection pursuit method relies on the assumption that the spike

probability is a separable function of different relevant stimulus components. This

assumption is unlikely to hold exactly for real neurons. In this article, we explore the

relative advantages and disadvantages of the joint search and different types of

sequential searches for the relevant stimulus dimensions with a focus on practical

issues of reconstructing neural responses to natural stimuli within the framework of

the LN model.

Characterizing neural feature selectivity: Multidimensional

linear-nonlinear model

Responses of sensory neurons can be modulated by a wide range of stimuli, from

those that suppress their firing below the spontaneous rate to those that elicit near

maximal firing rates. The classical LN model (de Boer and Kuyper 1968; Shapley

and Victor 1978; Meister and Berry 1999) aims to account for all of these responses.

Here, one assumes that the neural response is an arbitrary nonlinear function g of

the degree of similarity (as measured by the projection value) between a given

stimulus s and the relevant dimension ê1:

rðsÞ ¼ �r gðs1Þ, ð1Þ

where �r denotes the average spike rate across all stimuli, and s1¼ s � ê1 denotes the

projection values onto the relevant dimension ê1. The nonlinear function g describes

the modulation of the neuron’s response relative to its mean firing rate. This

function g can be an arbitrary, potentially highly nonlinear, function of the stimulus

projections. Typical examples include sigmoid or threshold functions that are

needed to describe such properties of neural responses as saturation and

rectification. Beyond its first application to describe response properties of auditory

neurons, the LN model has provided insights into the coding properties of neurons

in many different sensory systems, including auditory (Theunissen et al. 2000,

2001; Sen et al. 2001; Hsu et al. 2004; Gill et al. 2006; Nagel and Doupe 2006,

2008; Woolley et al. 2006a,b), visual (Shapley and Victor 1978; Meister and Berry

1999; Chichilnisky 2001; Nykamp and Ringach 2002; Ringach et al. 2002; Ringach

2004; Fairhall et al. 2006), and recently olfactory (Geffen et al. 2009) neurons.

Recent studies have shown that extensions of this model allowing for the

possibility of multiple relevant dimensions are necessary to better describe neural

computations arising both from the dynamics of spike generation (Agüera y Arcas

and Fairhall 2003; Agüera y Arcas et al. 2003; Hong et al. 2007) and circuit

mechanisms, again in several sensory modalities including auditory (Atencio et al.

2008, 2009), somatosensory (Maravall et al. 2007), olfactory (Geffen et al. 2009),

and visual (de Ruyter van Steveninck and Bialek 1988; Brenner et al. 2000a; Bialek

and de Ruyter van Steveninck 2005; Rust et al. 2005; Fairhall et al. 2006; Chen

et al. 2007; Sincich et al. 2009). In this extended multidimensional form, the spike
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probability is determined by an arbitrary nonlinear function g of K variables:

rðsÞ ¼ �r gðs1, . . . , sK Þ, ð2Þ

where si¼ s � êi represent projection values of the stimulus s onto K relevant

dimensions {ê1, . . . , êK}. It is also implicitly assumed that the number of relevant

dimensions K is much smaller than the dimensionality D of the stimulus space.

It should be noted that, for clarity and simplicity, this article uses the presence or

absence of a single spike as the response of interest. Optimization procedures

described below can be adapted for other types of responses, such as patterns of

spikes across time or neural populations (Brenner et al. 2000b).

The reduction of dimensionality provided by the LN model makes analyzing

neural responses to complex stimuli tractable, both in terms of its estimation from

neural data and interpretation of results. Although each particular stimulus

represents a point in a high-dimensional space, the model specifies that only a

small number of dimensions are relevant for spike generation. At the same time, the

LN model is quite versatile and can account for many types of neural responses.

This is because relevant dimensions can represent arbitrary profiles in space, time,

or other relevant variables, such as frequency for auditory neurons. Additional

versatility is provided by the fact that the nonlinear gain function g(s1, . . . , sK) can

take an arbitrary shape. The reduced dimensionality of the model makes it amenable

for interpretation of results in terms of the computations performed. Profiles

specified by the relevant dimensions represent the relevant stimulus features, and

the nonlinear gain function describes how these features modulate the neural firing

rate. Finally, the LN model also allows one to make predictions of the firing rate

elicited by novel stimuli not used in the estimation of the model.

Here we focus on the problem of estimating multiple relevant dimensions from

neural responses to natural stimuli. Although many types of natural stimuli have

certain statistical properties in common, such as strong pairwise and higher-order

correlations and other non-Gaussian properties (Ruderman and Bialek 1994;

Schwartz and Simoncelli 2001; Simoncelli and Olshausen 2001; Lewicki 2002), the

generative model for natural stimuli is not available. Therefore, the corresponding

statistical methods that we will test do not rely on any specific assumption about

stimulus statistics. In testing the methods for estimating the multidimensional LN

model, we will compare their performance with natural and more randomized

stimuli, such as uncorrelated Gaussian noise.

Maximally informative dimensions

Given a set of stimuli and responses, the estimation of the LN model consists of two

parts. The first task is to find a subspace that determines the activity of the neuron.

The second task is to estimate the nonlinear function g. The first task is much more

computationally difficult than the second task. This is because given a set of

dimensions, g can be determined empirically using

gðs1, . . . , sK Þ ¼
Pðs1, . . . , sK jspikeÞ

Pðs1, . . . , sK Þ
: ð3Þ
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We note that the problem is formulated in terms of the relevant subspace (Sharpee

et al. 2004a): any non-degenerate linear combination of vectors {êi} will span the

same subspace and provide an equivalent description of the neural responses.

A number of methods and objective functions can be used to fit the LN model to

the data. Early approaches for fitting one-dimensional LN models (Hunter and

Korenberg 1986) relied on iterative updating between the estimates of dimensions

and the corresponding gain functions. However, this method only works with

monotonic gain functions that can be inverted, and thus cannot be applied to find

multiple relevant dimensions. A complementary approach known as the spike-

triggered covariance method that is suitable for multidimensional LN models

consists of diagonalizing the difference between second-order matrices of all

presented stimuli and those that elicited a spike (de Ruyter van Steveninck and

Bialek 1988; Bialek and de Ruyter van Steveninck 2005; Schwartz et al. 2006). The

corresponding eigenvectors yield the relevant dimensions associated with a spike,

and no separate optimization of the nonlinear gain function is required. However,

the spike-triggered covariance method, as well as its information-theoretic gener-

alizations (Pillow and Simoncelli 2006) that achieve better convergence by utilizing

the sensitivity of the mutual information to changes in both the mean and

covariance, are unbiased only with Gaussian stimuli (Bussgang 1952; Paninski

2003; Bialek and de Ruyter van Steveninck 2005). This suggests that fitting of the

multidimensional LN model to data from non-Gaussian stimuli requires optimi-

zation of both the estimates of relevant dimensions and the corresponding

multidimensional nonlinear gain function.

Fortunately, optimization of the nonlinear gain function can be done automat-

ically by incorporating it into the definition of the objective function that evaluates

the quality of fit. This is possible because Equation (3) provides a closed form

expression for the optimal gain function for a given set of dimensions. Therefore,

instead of explicitly computing the predicted firing rate for all presented stimuli and

comparing them to the measured values, it is possible to write down the

corresponding measure of the quality of fit that will depend explicitly only on the

dimensions themselves. For example, one might wish to find the LN model that

yields firing rate predictions that best match experimentally measured values in least

squares terms. The corresponding objective function for evaluating a candidate set

of relevant dimensions {vi} is given by the Rényi divergence of order 2 between

probability distribution of stimuli P(x1, . . . , xK) along K dimensions under consid-

eration and the analogous probability distribution P(x1, . . . , xKjspike) that is

computed across the subset of stimuli that elicited spikes:

R2ðv1, . . . , vK Þ ¼

Z
dx PðxÞ

PðxjspikeÞ

PðxÞ

� �2

�1, x ¼ ðx1, . . . , xK Þ, ð4Þ

where the probability distribution P(x) and P(xjspike) are defined as

PðxÞ ¼

Z
ds PðsÞ

YK
i¼1

�ðxi � s � viÞ ð5Þ

and

PðxjspikeÞ ¼

Z
ds PðsjspikeÞ

YK
i¼1

�ðxi � s � viÞ, ð6Þ
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where �(x) is the Dirac delta function and xi¼ s � vi. These distributions can be

determined empirically by binning the projection values into normalized histograms,

which would approximate g as a piecewise constant function, or by fitting them using

parametric distributions, such as Gaussian (Pillow and Simoncelli 2006) or

exponential (Paninski 2004). Although with sufficient data any continuous function

can be approximated to a desired accuracy with a piecewise constant function,

practical limitations may prevent this (see Section ‘Discussion’ for further detials).

Rényi divergences of other orders can also be used as an objective function. These

objective functions explicitly depend only on the relevant dimensions (v1, . . . , vK).

However, the ratio of probability distributions that appears in their expression

represents the nonlinear gain function (compare Equations (3) and (4)), which is

thus implicitly taken into account. Although optimization of Rényi divergence of any

order will yield correct relevant dimensions in the limit of infinite data, these

objective functions yield different estimation variance in the case of finite data.

Among different orders of Rényi divergences, the Kullback–Leibler divergence,

which is also a Rényi divergence of the first order, not only produces dimensions

with the smallest variance compared to other Rényi divergences, but also saturates

the Cramér–Rao bound, and thus achieves the smallest variance possible for any

unbiased estimator (Kouh and Sharpee 2009). Similar to how the Rényi divergence

of order 2 corresponds to minimizing the least squares difference between measured

and predicted firing rates, maximization of the Kullback–Leibler divergence

maximizes the amount of information captured by a given set of dimensions:

Iðv1, . . . , vK Þ ¼

Z
dx PðxjspikeÞlog2

PðxjspikeÞ

PðxÞ

� �
: ð7Þ

The amount of information I(v1, . . . , vK) accounted for by a given set of N

dimensions cannot exceed the mutual information between spikes and unreduced

stimuli:

Ispike ¼

Z
ds PðsjspikeÞlog2

PðsjspikeÞ

PðsÞ

� �
: ð8Þ

According to the data processing inequality, reducing stimuli to a set of projections

will decrease the information unless all of the discarded dimensions do not influence

the spike probability. This suggests that the number of relevant dimensions can be

determined by iteratively increasing the number of vectors being optimized until the

information explained approaches Ispike. Once this is achieved, no additional

information remains to be accounted for and thus all of the relevant dimensions

have been found. From a practical standpoint, the information per spike Ispike can be

estimated by observing variations in neural responses to repeated stimuli, calculat-

ing the information for various lengths of data, and extrapolating to infinite data

(Strong et al. 1998; Brenner et al. 2000b). This circumvents the problem of

exploring the entire stimulus space in Equation (8).

Comparison of sequential and joint optimization of relevant stimulus

dimensions

The central question that we would like to address in this article is whether

the relevant stimulus dimensions can be found one-by-one through a series of
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one-dimensional optimizations or whether a truly multidimensional, joint optimi-

zation of the relevant dimensions is required. One way to perform a sequential

search is to optimize information along a single dimension,

Iðv1Þ ¼

Z
dx1Pðx1jspikeÞlog2

Pðx1jspikeÞ

Pðx1Þ

� �
, ð9Þ

to find the first maximally informative dimension (MID-1), and then continue to

optimize this function by restricting the search to all dimensions that are orthogonal

to the first, and all of the subsequently found dimensions. This procedure represents

a very attractive possibility, and it can be carried out not only by maximizing

information, but also by maximizing the percentage of variance explained using a

one-dimensional version of Equation (4). Optimization of any one-dimensional

objective function only requires the sampling of one-dimensional input/output

functions, which have lower requirements for the recording size and computational

time compared to computations of multidimensional gain functions, as in

Equation (7).

Analysis of systematic bias of sequential information maximization

To validate any sequential optimization, we need to verify that (i) the estimates of

dimensions that are computed first are not biased by the presence of other relevant

dimensions and (ii) the estimates of subsequently computed dimensions are not

biased by restricting the search to the subspace orthogonal to the previously found

dimensions. The two effects are related. However, we demonstrate below that the

presence of stimulus correlations has a stronger effect on the estimation of

subsequent dimensions, mainly through stimulus correlations with the previously

found dimensions. These issues do not represent a problem during a joint

optimization, because it provides an opportunity to adjust all relevant dimensions

and interactions between them.

To address these questions analytically, let us consider the case where only two

stimulus dimensions are relevant. The first question is whether the estimate of the

first dimension will be biased because the second dimension was ignored during the

one-dimensional search. Let ê1 be the maximally informative linear combination of

the relevant dimensions and ê2 be the component of the relevant subspace that is

orthogonal to ê1. The gradient of information when evaluated along ê1 is given by

(Sharpee et al. 2004a):

rê1
Iðê1Þ ¼

Z
ds1Pðs1jspikeÞðhsjs1, spikei � hsjs1iÞ

d

ds1

log2 gðs1Þ: ð10Þ

If the gradient rê1
Iðê1Þ is non-zero, then the estimated relevant dimension will be

pulled out of the relevant subspace, which leads to a biased reconstruction. It is

convenient to expand expression (10) within the relevant subspace using the fol-

lowing identities: hsjs1iP(s1)¼
R

ds2P(s1, s2)hsjs1, s2i and hsjs1, spikei P(s1jspike)¼R
ds2 P(s1, s2jspike)hsjs1, s2, spikei. Noting that hsjs1, s2, spikei¼ hsjs1, s2i because s1

and s2 are sufficient statistical variables (i.e. they contain all of the information
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between the stimulus and spikes), Equation (10) can be written as

rê1
Iðê1Þ ¼

Z
ds1ds2 Pðs1, s2Þhsjs1, s2i

Pðspikejs1, s2Þ � Pðspikejs1Þ

PðspikeÞ

d

ds1

log2 gðs1Þ: ð11Þ

This last expression illustrates that, if the conditional average hsjs1, s2i of stimuli with

projections s1 and s2 onto the two relevant dimensions has components outside of

the relevant plane, the gradient of information may also have such non-zero

components. This average can be expressed as hsjs1, s2i¼ c(s1, s2)þ s1ê1þ s2ê2 with c

being the component orthogonal to the relevant subspace. In the case of

uncorrelated Gaussian stimuli, c is a constant vector. Its contribution integrates

out to zero in Equation (11) because

Z
ds2 Pðs1, s2ÞðPðspikejs1, s2Þ � Pðspikejs1ÞÞ ¼ 0: ð12Þ

Therefore, in the case of uncorrelated stimuli, the gradient of information along the

maximally informative vector within the subspace will have no components outside

the relevant subspace. Thus, the maximally informative vector within the subspace

will also be the maximally informative vector across the entire stimulus space. This

argument can be extended to cases where c is either independent of s2 or varies

linearly with s2, which is the case for correlated Gaussian stimuli. Components that

are independent of s2 integrate to zero because of Equation (12) and the

components that increase linearly with s2 integrate to zero because they are

proportional to the gradient of the information along ê2 which is zero according to

the definition of ê1 as the maximally informative dimension within the relevant

subspace. Thus, if stimuli are Gaussian (with or without correlations), then the first

dimension obtained through one-dimensional optimization does not need to be

updated once other relevant dimensions are estimated. The same could still be true

in the case of correlated non-Gaussian stimuli, but not generically. For example,

one condition that is sufficient to ensure that the first dimension does not need to be

updated using the joint search is if the conditional spike-triggered average

hsjs1, spikei� hsjs1i is zero for all values of s1 (cf. Equation (10)). One way in

which this could happen is if (i) the nonlinear gain function is symmetric with

respect to s2 and �s2 and at the same time, (ii) the conditional stimulus probability

distribution P(s2js1) has a mean of zero. These two conditions (i) and (ii) should

hold for any value of s1. Thus, in the case of natural stimuli, which are strongly non-

Gaussian (Ruderman and Bialek 1994; Schwartz and Simoncelli 2001; Simoncelli

and Olshausen 2001), it appears likely that previously found dimensions would need

to be updated.

Similar arguments can be used to analyze the bias in the subsequently found

dimensions. Our goal now is to verify that the gradient of one-dimensional

information rê2
Iðê2Þ, which can be computed analogously to Equation (11):

rê2
Iðê2Þ ¼

Z
ds1ds2 Pðs1, s2Þhsjs1, s2i

Pðspikejs1, s2Þ � Pðspikejs2Þ

PðspikeÞ

d

ds2

log2 gðs2Þ,

ð13Þ

has no components along vectors other than ê1 (components along ê1 do not

represent a problem, because they are removed by restricting the search to the
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subspace orthogonal to ê1). In the case of uncorrelated stimuli, hsjs1, s2i is a constant

vector. Taking into account thatZ
ds1 Pðs1, s2ÞðPðspikejs1, s2Þ � Pðspikejs2ÞÞ ¼ 0, ð14Þ

we find that the gradient rê2
Iðê2Þ will have no components along dimensions other

than ê1 and ê2. Thus, the sequential optimization is valid for any type of neural gain

function if stimuli are uncorrelated.

If stimuli are correlated, then hsjs1, s2i¼ c(s1, s2)þ s1 ê1þ s2 ê2, where the vector

c(s1, s2) has components along irrelevant dimensions whose magnitude may increase

linearly with s1 (higher-order terms are also possible for correlated non-Gaussian

stimuli). In the general case, the expressionZ
ds1s1Pðs1, s2ÞðPðspikejs1, s2Þ � Pðspikejs2ÞÞ ¼ Pðs2, spikeÞ hs1js2, spikei � hs1js2i½ �

ð15Þ

is non-zero; it is proportional to the component of the gradient of along ê1. Thus,

the gradient rê2
Iðê2Þ may have components along irrelevant dimensions.

For example, a one-dimensional search for the second informative dimension

may yield a dimension that is strongly correlated with the first MID (although

orthogonal to it), but provides little extra information in addition to ê1 when

evaluated using the joint information.

In summary, the sequential search for relevant dimensions from neural responses

to natural stimuli faces two problems. First, although estimation of the first

dimension is not affected by stimulus correlations of the second order, it may be

affected by stimulus correlations of higher orders (which represent non-Gaussian

effects previously demonstrated for natural stimuli). Second, the sequential

estimation of secondary dimensions may be affected by both second-order and

higher-order correlations. Below we will examine the strength of these effects by

comparing results of joint and sequential optimization for model cells with two and

three relevant stimulus dimensions.

For the joint search, these effects are not of concern. When the number of

optimized dimensions is equal to the number of relevant dimensions, the

information maximum is guaranteed to occur at the relevant dimensions by the

data-processing inequality. Furthermore, the gradient of information is computed

with respect to a single dimension but which takes into account other relevant

dimensions:

rêi
Iðê1, . . . , êK Þ ¼

Z
d~sPð~sjspikeÞðhsj~s, spikei � hsj~siÞ

d

dsi

log2 gð~sÞ, ~s ¼ ðs1, . . . sK Þ

ð16Þ

is zero for any linear combinations of the relevant dimensions.

Analysis of systematic bias of projection pursuit regression

Our discussion so far has been focused on comparing sequential and joint

optimizations in the context of information maximization. We chose information
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maximization among other Rényi divergences because its estimation variance is the

lowest possible for joint optimization and because it represents a way to perform

maximum likelihood fitting that is adapted to the structure of the LN model (Kouh

and Sharpee 2009). However, in the case of sequential optimization, other strategies

are possible. The classic projection pursuit strategy is one of the most widely used

(Friedman and Stuetzle 1981), and it was recently adapted to analyze multi-

component neural feature selectivity (Rapela et al. 2006, 2010). Projection pursuit

regression (PPR) models approximate the neural response function as a sum of one-

dimensional functions of projections onto individual dimensions. This model can be

fitted using least squares regression. Here, each subsequent dimension is computed

using least squares regression to describe the residual between the neural firing rate

and its predictions based on all of the previously found dimensions.

To analytically investigate under what circumstances the projection pursuit

regression has no systematic biases, we first consider the case of a one-dimensional

(1D) LN model, and then generalize the argument to the multidimensional case.

In the case of a 1D LN model, previous work has demonstrated that a mismatch

between the model and neural nonlinear gain functions does not generate a

systematic bias in the estimates of the relevant dimension as long as stimuli are

Gaussian, with or without correlations (Ringach et al. 2002; Sharpee et al. 2004a).

Those arguments were made in regards to the method of spike-triggered average by

demonstrating that the estimation of the relevant dimensions was not affected by the

linear approximation of the nonlinear gain function. Here we provide an alternative

derivation that is tailored to the PPR method and can be generalized to

multidimensional LN models.

The relevant dimension is computed by minimizing the least square difference

between the measured and predicted firing rates :

�2½v� ¼

Z
dsPðsÞ gðs1Þ � f ðs � vÞ½ �

2: ð17Þ

Here, we denote as f the fitted nonlinear gain function from PPR, which might differ

from the neural gain function g(s1) from Equation (1). If neural spikes are indeed

based on one relevant dimension ê1 and the functional form f makes possible for it to

match the nonlinear gain function g(s1), then �2 difference will reach its minimal

value of zero for v¼ ê1. Let us examine the magnitude of the �2 gradient:

r�2½v� ¼ �2

Z
ds PðsÞs gðs1Þ � f ðs � vÞ½ � f 0ðs � vÞ: ð18Þ

When evaluated at v¼ ê1,

r�2½ê1� ¼ �2

Z
ds PðsÞs gðs1Þ � f ðs1Þ½ � f 0ðs1Þ, ð19Þ

so that the gradient is indeed zero whenever f¼ g. Furthermore, it can be shown that

the gradient will also be zero if stimuli are Gaussian (with or without correlations).

This can be demonstrated by carrying out the averaging in Equation (19) with

respect to all possible input components, except for s1:

r�2½ê1� ¼ �2

Z
ds1Pðs1Þhsjs1i gðs1Þ � f ðs1Þ½ � f 0ðs1Þ: ð20Þ
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We recall that in the case of Gaussian stimuli, hsjs1i ¼ c1s1, where c1 is a constant

vector (the mean stimulus was set to zero because PPR relates stimulus variations to

the firing rate variations). Therefore, the magnitude of the gradient in all directions

is proportional to the magnitude of the gradient along ê1. In other words, when the

appropriate scale for the relevant dimension is found, the gradient will be zero in all

directions. Thus, in the case of Gaussian stimuli (with or without correlations), the

relevant dimensions can be computed with zero systematic bias even in the presence

of a mismatch between the neural g and model f gain functions. With non-Gaussian

stimuli, PPR will also provide a good estimate of the relevant dimension in the

situation where the spike probability is described by a 1D LN model. This is

because any continuous function can be uniformly approximated to an arbitrary

degree of precision with a set of polynomials (Rapela et al. 2010). The situation is

different, however, when neural responses are affected by multiple stimulus

components.

When a multidimensional LN model is necessary to describe the neural

responses, we can again look for dimensions that minimize the least square

difference (for illustration purposes we consider a 2D case):

�2½v1, v2� ¼

Z
dsPðsÞ gðs1, s2Þ � f ðs � v1, s � v2Þ½ �

2: ð21Þ

The gradient of �2 with respect to either the first (and analogously the second)

dimension when evaluated with v1¼ ê1 and v2¼ ê2 is given by

rê1
�2½ê1, ê2� ¼

Z
ds1ds2Pðs1, s2Þhsjs1, s2i gðs1, s2Þ � f ðs1, s2Þ½ �

@f ðs1, s2Þ

@s1

: ð22Þ

As before, for Gaussian stimuli the components of the conditional average hsjs1, s2i

are linearly dependent on s1 and s2. In this case therefore, when the magnitude of the

relevant dimensions reaches such values that the components of the gradient along

ê1 and ê2 are zero, then all other components of the gradient will also be zero. With

non-Gaussian stimuli, the gradient of �2 will have no components along irrelevant

dimensions only when g(s1, s2) can be well approximated by the model neural gain

function f(s1, s2). Unfortunately, this is in many cases not possible, because the

essential feature of PPR is that it considers nonlinear gain functions that are sums of

nonlinear functions of different components, such as f1(s1)þ f2(s2), whereas non-

separable nonlinear gain functions are prominent in neural LN models (Rust et al.

2005; Fairhall et al. 2006; Chen et al. 2007; Atencio et al. 2008, 2009).

Furthermore, one can expect systematic biases even in the estimate of a single

PPR dimension because the one-dimensional gain function cannot fully account for

the multidimensional nonlinear gain function. In summary, analytical consider-

ations suggest that one should expect to find similar systematic biases in the relevant

dimensions computed from neural responses to natural stimuli with either

sequential information maximization or projection pursuit regression.

Numerical algorithms

In what follows, we compared relevant dimensions that were reconstructed

using either sequential or joint optimization of information or PPR. The
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latter has been recently described by Rapela et al. (2010) and is publicly

available at http://vpl.usc.edu/projects/ePPR/. Therefore, we focus here on the

differences between the algorithms for joint and sequential optimization of

information. For the first dimension, sequential and joint optimization are

equivalent. The sequential search (as well as the search for the first dimension)

optimizes information given by Equation (9) with the gradient computed according

to Equation (10). Components of the gradient along the first and subsequent

dimensions are removed. This forces the optimization procedure to search within

the space orthogonal to all previously found dimensions. As pointed out above, this

has the advantage of allowing us to avoid calculating multidimensional probability

distributions, which become increasingly noisy as the data are distributed across the

growing number of histogram bins required for multiple dimensions. The joint

optimization maximizes full information of Equation (7) using the gradient given by

Equation (16). For most iterations, the gradient is taken with respect to the new

dimension, but every 100th iteration of the algorithm updates the previously found

dimensions. Optimizing previous dimensions is necessary to remove biases caused

by correlations between the relevant dimensions and other stimulus dimensions. We

observed that in few cases this changed the previously found dimensions by a

substantial amount.

Except for the difference in optimization functions and their gradients, the

numerical algorithms for performing joint and sequential information maximization

were identical. The optimization algorithm was based on the combination of

simulated annealing and gradient ascent (Press et al. 1992; Sharpee et al. 2004a,

2006). Simulated annealing allows the algorithm to escape local maxima by

choosing trial dimensions with lower information value with the probability /

exp(DI/T ), where DI is the difference in information values at the current and a

tested point in the stimulus space, and parameter T (effective temperature) controls

the magnitude of decreases in information values that are accepted often (increase in

information are always chosen as new optimization points). The effective temper-

ature T is gradually decreased (by a factor 0.95) with each iteration until the

algorithm converges to a local maximum. When this happens, the temperature is

increased and the optimal point is perturbed by a large step, allowing it to follow the

gradient to another, possibly better maximum. The optimization continued for fixed

number of line optimizations (which is one of the adjustable parameters within the

publicly available version at http://cnl-t.salk.edu/Code/). In the analysis of the

simulated model cells and recordings from the visual cortex, each new dimension

was optimized for 1200 iterations, with the number of bins stepping from six to

eleven every 200 iterations.

To mimic as closely as possible the analysis steps involved in working with

neurophysiological data, each dataset was analyzed four times by omitting a

different 1/4 of the data. This resulted in four jackknife estimates of the relevant

dimensions (Efron and Tibshirani 1998), and in what follows we report results as

averages across these four estimates. The starting point in the calculation of the first

dimension was computed as the spike-triggered average across the subset of stimuli

that did not overlap with other jackknifes. The search for subsequent dimensions

used one of the stimulus frames as the starting point. This frame was different for

each new dimension and each jackknife estimates. In this way, the variability across

jackknifes reflects the contributions from variability across the stimulus subsets and
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the effects of local maxima and starting conditions during the non-convex

information maximization.

Subspace projection for evaluating reconstructions of model dimensions

One can evaluate the quality of the reconstructed dimensions by comparing the

similarity of the subspace they define to that defined by the relevant dimensions of

the model. If the subspaces are the same, then they simply represent alternative

coordinate systems that provide equivalent descriptions of the neural firing. One

way to measure this similarity is by measuring the intersection volume between unit

cubes of the two subspaces. If {êi} and fv̂ig are orthonormal sets of unit vectors

defining the model and reconstructed subspaces, respectively, then the Jacobian of

the transformation from model dimensions to the projections of reconstructed

dimensions onto the model subspace is given by a matrix Pij ¼ v̂j � êi. The

determinant of the Jacobian matrix represents a change in volume associated with

this transformation (Arfken and Weber 1970). Thus, jdet(P)j represents the volume

of the reconstructed unit cube that remains when projected onto the model

subspace. This expression can be generalized to the case of arbitrary sets of basis

vector rather than sets of orthonormal unit vectors by dividing it byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdetð gmodelÞdetð grecÞj

p
, where matrices gmodel

¼ êi � êj and grec ¼ v̂i � v̂j are the

metric tensors (also known as Gram matrices) of the model and reconstructed

subspaces, respectively. This is because the volume spanned by a set of dimensions

equals a square root of the metric tensor determinant (Dodson and Poston 1991;

Gradstein and Ryzhik 2000). Thus, in the general case the projected volume is

given by

volproj ¼
detðPÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jdetð gmodelÞdetð grecÞ
p

j
: ð23Þ

Finally, we convert the projected volume into a linear measure by taking the Kth

root (where K is the number of relevant dimensions):

O ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdetðêi � v̂j Þj

K
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdetðêi � êj Þj

2K
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jdetðv̂i � v̂j Þ
2K
p

j
: ð24Þ

The linear subspace projection O defined in Equation (24) ranges from zero,

indicating that the subspaces have no relation to each other, to one, indicating that

the subspaces are identical. For one dimension, it is simply the scalar product. For

K > 1, as mentioned above, it represents the linear dimension of the hypercube

whose volume represents the overlap between the model and reconstructed

dimensions. Quantifying the amount of overlap between the model and recon-

structed subspace in terms of linear dimensions (i.e., taking the Kth root) ensures

that the values do not become exponentially small solely due to the increased

dimensionality of the subspace. For example, if each of the three hypothetical

relevant dimensions are reconstructed with projection values of 0.8, the linear

subspace projections is O¼ 0.8, whereas the volume of the overlap is only �0.5.

Unlike the principal angles (Rapela et al. 2010), the subspace projection measure

(Equation (24)) has the advantage of being rotationally invariant, and is not affected
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if the reconstructed dimensions are not orthogonal or cluster around one particular

model dimension.

Simulations on model visual cells with spatiotemporal dimensions

Our first neural model was constructed according to an LN model based on two

relevant dimensions. These dimensions described spatiotemporal filters at three

time points and on a spatial grid of 16� 16 pixels (Figure 1A). At each moment in
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Figure 1. Joint optimization is required in the case of natural stimuli. (A) Spatiotemporal
filters of the model neuron and associated nonlinear gain functions. Nonlinear gain functions
were calculated from model responses to noise and natural stimuli. Axes of nonlinear gain
functions are shown in units of standard deviation of the corresponding relevant dimensions.
(B) Reconstruction in the case of noise stimuli. Optimization of one-dimensional information
is sufficient to reconstruct the relevant dimensions of the model (subspace project
O¼ 0.83�0.15). Joint optimization of two-dimensional information did not further improve
the result (O¼ 0.8�0.2). (C) Natural stimulus. Joint optimization of relevant dimensions by
maximizing the two-dimensional information markedly improves the subspace projection
between model and reconstructed dimensions from 0.60� 0.04 to 0.875� 0.008. Note that
the rotated nonlinear gain function in the relevant plane provides an equivalent description
the system. Color-scale for each of the reconstructed filters represents signal-to-noise ratio.
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time, both filters consisted of spatial Gabor filters with identical orientation and

spatial frequency but with orthogonal phases (DeAngelis et al. 1993). The time

dependence described by the filters was chosen to yield sensitivity to the onset of the

preferred spatial feature. A spike was produced according to a logical OR, that is, if

the absolute value of the stimulus components along either dimension 1 or

dimension 2 exceeded a threshold value � in the presence of Gaussian noise with

variance �2. The corresponding nonlinear gain function obtained after averaging

with respect to noise is also shown in Figure 1(A). In order to test analytical

predictions described above for the validity of sequential optimization for Gaussian

and non-Gaussian stimuli, we generated responses of this model cell to two

ensembles: white noise stimuli (Gaussian) and natural stimuli. Both stimulus

ensembles had the same number of frames (�50 000). The average spike rate was

47 and 42 Hz for noise and natural stimulus ensembles, respectively (assuming that

the frame rate of 33 Hz).

In agreement with theoretical arguments based on properties of the gradient

(Equation (11)), we found that in the case of noise stimuli, the two relevant

dimensions could be correctly reconstructed with a sequential search (Figure 1B).

The subspace projection value was O¼ 0.83� 0.15 (mean across

jackknifes�SEM). The joint optimization of dimensions did not improve results

further (O¼ 0.8� 0.2, cf. Figure 1C). In addition to the subspace projection, one

can also evaluate the performance of the reconstructed dimensions by computing

the log-likelihood of the corresponding LN model on a novel dataset. In the limit of

small spike probabilities within each bin of the spike train (which is also the

assumption underlying the fitting of LN models), the log-likelihood is proportional

to the mutual information (Kouh and Sharpee 2009). The relevant dimensions

reconstructed using the sequential and joint search accounted for 78.6� 0.6% and

83.8� 0.6% of the model information, respectively. Therefore, in the case of neural

responses to noise inputs, sequential and joint optimization of relevant dimensions

produced comparable results (the small difference in predictive power is likely due

to small non-Gaussian effects introduced during the discretization of intensity

levels). In summary, when analyzing the neural responses to Gaussian noise stimuli,

there is no need to perform the increasingly onerous task of calculating

multidimensional information (Equation (7)) for an increasing number of dimen-

sions, and instead the relevant dimensions can be found sequentially.

In contrast to the responses to noise stimuli, and again in agreement with the

theoretical analysis, in the case of natural stimuli sequential optimization of one-

dimensional information was not sufficient to correctly reconstruct relevant

dimensions. The reconstruction results using sequential optimization (Figure 1B)

had a subspace projection with the model of 0.60� 0.04. Further, joint optimization

yielded a significant improvement to 0.875� 0.008 in terms of subspace projection

value, as well as the improved visual match between the reconstructed Gabor

features to the model ones (Figure 1C). The percent information explained on a

novel dataset was 63� 3% for the sequential search and 90� 4% for the joint

search. These simulations illustrate that the non-Gaussian correlations in natural

stimuli are strong enough to qualitatively and quantitatively alter results of the

sequential optimization away from the true (model) relevant dimensions. These

deviations can be corrected by a joint optimization (Figure 1C). Thus, the

numerical simulations support the theoretical analysis in demonstrating that the
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joint optimization of relevant dimensions is required for analyzing multicomponent

feature selectivity based on neural responses to natural stimuli.

Comparison with projection pursuit regression

To further compare the performance of joint optimization with a sequential method,

in this case projection pursuit regression, we used a model cell with three relevant

dimensions, shown in Figure 2. This model cell was similar to the two-dimensional

model considered above but contained a simplified version of a divisive gain control

(Heeger 1992). The mean response of the cell was given by

rðsÞ ¼ �
ðs � ê1Þ

2
þ ðs � ê2Þ

2

1þ !ðs � ê3Þ
2

, ð25Þ

where the parameter � controls the mean response and its variance (the response

probability is a Poisson model), ! controls the relative strength of the suppressive

dimension, and ê1, ê2, and ê3 represent three relevant spatiotemporal dimensions.

Such a model cell provides a good testing ground for both joint information

maximization and projection pursuit methods for the following three reasons. First,

it allows us to test whether joint optimization of three dimensions can be done

reliably during information maximization. Second, the nonlinear gain function in

Equation (25) is not fully separable, and thus can serve as an illustration of how

projection pursuit methods can work with more realistic nonlinearities that are likely

to not be fully separable. Finally, this model cell was recently used to study

multidimensional feature selectivity (Rapela et al. 2010). To ensure continuity with

previous studies, we chose the same values for parameters in the gain function

(Equation (25)) and modeled the spatiotemporal filters as close as possible to that

study. We set � such that hr(s)i was equal to 0.56 and ! such that h1þ!(s � ê3)2
i

was equal to 4.26. We simulated responses of this model neuron to natural stimulus

ensembles of two lengths, 20 000 frames and 49 152 frames. The shorter

stimulus ensemble had the same length as in Rapela et al. (2010). The longer

stimulus ensemble is toward the upper limit of what can be reliably obtained in

physiological recordings at the present time.

Results of the joint search for three relevant features with information maximi-

zation are shown in Figure 2. All of the three relevant dimensions could be

reconstructed well using joint information maximization. The subspace projection

(Equation (24)) was O¼ 0.829� 0.005 for the longer stimulus and O¼ 0.65� 0.08

for the shorter stimulus. The percent information explained on a novel dataset was

89� 6% for dimensions found using the longer stimulus and 83� 6% for

dimensions found using the shorter stimulus. Both the excitatory dimensions ê1

and ê2, and the so-called suppressive dimension ê3 can be recovered by joint

information maximization. (This terminology derives from the effects of these

dimensions on the neural spike probability (Rust et al. 2005; Schwartz et al. 2006;

Chen et al. 2007)). The nonlinear gain functions computed with respect to the

reconstructed dimensions also yielded dependencies that were in agreement with

the model, taking into account that the reconstructed dimensions represent linear

combinations of model dimensions. This demonstrates that the joint information

maximization can estimate up to three relevant dimensions. This is no small feat,

60 R. J. Rowekamp and T. O. Sharpee



because a three-dimensional nonlinear gain function formally requires its estimation

at 1331 points (the maximal number of bins used at final stages of optimization was

11 along each dimensions), in addition to the spatiotemporal grid points that

describe the filters themselves.

Analysis of the same sequence of neural responses using projection pursuit

regression is shown in Figure 3. This analysis was done using the algorithm

of Rapela et al. (2010), which is publicly available at http://vpl.usc.edu/projects/

ePPR/. Reconstructions obtained by projection pursuit had subspace projection
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Figure 2. Reconstruction of a model neuron with three relevant dimensions using joint search
for three maximally informative dimensions (MID). (A) The three spatiotemporal filters of
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Equation (24). Notations are as in Figure 1.
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values of O¼ 0.59� 0.11 and O¼ 0.55� 0.05 for the longer and shorter stimuli,

respectively. The percent information explained was 81� 6% for dimensions found

using the longer stimulus and 72� 5% for dimensions found using the shorter

stimulus. These values were lower than the values obtained using joint information

maximization. Thus, in the case of natural stimuli, the estimation of relevant

dimensions is strongly affected by the separable assumption made in the PPR

method for the form of the nonlinear gain function. We also note that when

accounting for the neural responses to natural stimuli, relatively small differences in

the mutual information can indicate a large mismatch between the model and

relevant dimensions (Sharpee et al. 2004a). This is because even a random

dimension will have some component along the relevant dimensions and with the

help of stimulus correlations can account for a noticeable portion of the overall

information. Indeed, we observe that differences in the subspace projection were

more pronounced between different methods than those in the information

explained, although both measures are consistent with the better performance of

the joint information maximization.

Convergence properties of joint and sequential optimization

Simulations presented above demonstrated that, given a sufficiently long recording,

up to three relevant dimensions, each consisting of hundreds of points can be

estimated from neural responses to natural stimuli. In this section we examine how

fast the reconstruction results deteriorate as the number of spikes decreases
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Figure 3. Reconstruction of a model neuron with three relevant dimensions using projection
pursuit regression (PPR). The three relevant dimensions of this model neuron are shown in
Figure 2 and the nonlinear gain function is given by Equation (25). The reconstruction was
done on the longer natural stimulus ensemble (�50 000 frames). The subspace projection
between the model and reconstructed dimensions is O¼ 0.59� 0.11, smaller than that
obtained with the joint search for relevant dimensions using information maximization.
Notations are as in Figure 1.
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(Figure 4). The three-dimensional model cell was the same the one shown in

Figure 2, with the nonlinear gain function described by Equation (25). The one-

and two-dimensional model cells were similar, using the first one and two model

filters, respectively. The two-dimensional model cell was obtained by setting !¼ 0.

The nonlinear gain function for a one-dimensional model cell was given by r(s)¼ �
(s � ê1)2. To reduce the number of spikes, we systematically lowered the average

firing rate. Because the number of spikes was determined using a Poisson generator,

this is equivalent to using fewer repetitions of the stimulus. For each model cell and

firing rate, we used eight different simulations with different random seeds.

For joint optimization, we found that reasonable reconstructions of either two or

three dimensions (defined as subspace projections values >0.5) can be obtained as

long as the number of spikes is greater than the number of parameters needed to

define the dimensions. The estimation curve for a single dimension was significantly

better than those for two and three dimensions. An encouraging sign, however, is

that performance at estimating two or three dimensions is comparable, and no

drastic drop off is observed when expanding the number of relevant dimensions of

LN model from two to three. Indeed, the convergence curves for the joint

information maximization largely overlap when plotted as a function of KD/Nspikes.

This means that roughly three times as many spikes are needed to reconstruct three
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Figure 4. Convergence of the joint and sequential information maximization with increasing
number of spikes. Subspace projection, Equation (24), between the model and reconstructed
dimensions (y-axis) is plotted as a function of the ratio of stimulus dimensionality (D) times
the number of relevant dimensions (K) to the number of spikes (x-axis). Small x-values
correspond to good sampling (high signal-to-noise ratio). Results for model cells with K equal
to 1, 2, and 3 are shown in green, red, and blue, respectively. Results obtained with joint
information maximization (circles) are always better than those obtained with sequential
information maximization (squares). By construction, they are identical for 1D model cell.
In the case of 3D model cell, sequential optimization did not converge to the true subspace
with increasing number of spikes. Note that the number of spikes needed to achieve the same
quality of reconstruction increases linearly with the number K of reconstructed dimensions.

Multicomponent receptive fields 63



dimensions as are sufficient to reach the same degree of overlap when reconstructing

a single dimension. Sequential optimization had some success with the two-

dimensional model cells, although joint optimization performed better. However,

for the three-dimensional cell, sequential optimization consistently performed

poorly even in cases where a large number of spikes was available.

Application to cells from the primary visual cortex (V1)

Having tested the algorithm on model neurons, we now use joint information

maximization to reconstruct three spatiotemporal dimensions for neurons in the

primary visual cortex (V1). Our results are not intended as a comprehensive analysis

of multidimensional feature selectivity in V1, but rather as a proof-of-principle

demonstration whether physiologically meaningful (and plausible) dimensions can

be computed from neural responses to natural stimuli.

Three relevant spatiotemporal features and the corresponding nonlinearities for

an example simple cell are shown in Figure 5. All three relevant dimensions could

be reliably estimated (signal-to-noise ratio reaching values >2 in each dimension).

The filters are tuned to a particular orientation and spatial frequency and exhibit

temporal modulation. The two-dimensional nonlinearities reveal complex interac-

tions between the pairs of filters. This cell was classified as simple according to the

F1/F0¼ 1.47� 0.21 ratio derived from its responses to moving gratings (Skottun

et al. 1991) (F1 is the amplitude of response at the frequency of the grating and F0

denotes the mean evoked firing rate). The MID analysis was based on 11 463 spikes

elicited by 49 152 frames presented at 33 Hz. When applied to a novel dataset, the

reconstructed 3D LN model accounted for 73� 3% of the information encoded in

the firing rate. The corresponding values for reduced models based on just the first
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Figure 5. Reconstruction of an example V1 simple cell. (left) Two excitatory spatiotemporal
filters (MID-1 and MID-2) and one inhibitory filter (MID-3). (right) The associated one-
and two-dimensional non-linear firing rate functions are consistent with the properties of
simple cells and nonlinear gain control model. Neuron 761 � 1.
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MID or first and second MID were 29.9� 1.0% and 55� 2% of information,

respectively. Consistent with the properties expected for a simple cell, the first MID

was associated with a rectifying nonlinearity. The second component could be

classified as excitatory, because the firing rate increased with the absolute value of

stimulus components along this dimension (Rust et al. 2005; Chen et al. 2007).

Finally, the third MID exhibited differences in the preferred orientation at different

latencies to the occurrence of a spike. This dimension was suppressive, because the

firing rate decreased with the absolute value of stimulus components along it. Thus,

both excitatory and suppressive dimensions could be reliably estimated not only in

model neurons, as in the above, but also in real V1 cells.

Complex cells are traditionally thought as presenting more of a challenge for

computational methods for reconstructing neural feature selectivity. Figure 6 shows

reconstruction results for three dimensions of an example complex cell. Here, we

also find that all three relevant dimensions could be reconstructed reliably with peak

signal-to-noise ratios >2 for each of the dimensions. The number of spikes available

in this recording was 5789, which places it within the lower range of signal-to-noise

values explored in Figure 4 for model neurons (the corresponding value is �0.4 on

the x-axis in Figure 4). Nevertheless, when applied to a novel dataset, the

reconstructed 3D LN model accounted for 72� 4% of the information encoded in

the firing rate. We find that the relevant features of this neuron are also tuned to a

particular orientation and spatial frequency, and are not space-time separable. One-

dimensional cross-sections through the three-dimensional nonlinear gain function

reveal that all of these three features are excitatory. This is consistent with the

classical energy model (Adelson and Bergen 1997) which predicts that the first two

relevant dimensions form a quadrature pair of Gabor functions with different spatial

phases. The first two relevant dimensions found here are consistent with a pair of

spatiotemporal Gabor functions with different temporal phases. Although all one-

dimensional cross-sections of the firing rate functions are similar for the three
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Figure 6. Reconstruction of an example V1 complex cell. (left) Three-dimensional
spatiotemporal receptive fields for a complex cell from V1. (right) The associated one- and
two-dimensional nonlinear gain functions. Neuron 946 � 2. Notations are as in Figure 1.
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dimensions, the two-dimensional cross-sections reveal complex interactions in how

the three relevant dimensions affect the spike probability.

The analysis of these two example V1 cells illustrates the combination of

dimensionality reduction and versatility that is provided by the LN model. Even

with natural stimuli, it is possible to reliably estimate multiple relevant dimensions

that differ in spatial and temporal phase, orientation, spatial frequency, are space-

time inseparable, can be either suppressive or excitatory, and with complex input/

output functions describing the neural response in this reduced space.

To quantify how well the reconstructed dimensions could describe the neural

responses, we computed the amount of information explained by them with respect

to a novel segment of neural responses. For this purpose we used the responses to

repeated natural stimuli, which also allowed us to estimate the total amount

information conveyed in the firing rate. In Figure 7 we show results as a percentage

of information explained by a 3D LN model for a population of 15 complex and

32 simple cells. In agreement with the analysis of model cells, we found that relevant

dimensions that were estimated with the joint search explained significantly more

information about the responses of V1 neurons than those estimated with the

sequential information maximization ( p¼ 3� 10�10, paired t-test, Figure 7A). The

same comparison held true when dimensions were estimated using PPR

( p¼ 4� 10�8, paired t-test, Figure 7B). Finally, the sequential optimization did

not produce significantly different results compared to PPR ( p¼ 0.75, paired t-test,

Figure 7C). Thus, analysis of the predictive power across the population of V1 cells

is consistent with the conclusion that the reconstruction of relevant dimensions

from neural responses to natural stimuli requires their joint optimization.
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Figure 7. Comparison of joint and sequential methods on the responses of V1 neurons to
natural stimuli. (A) Information about the responses of V1 neurons (n¼ 47) explained by
three spatiotemporal dimensions estimated using either joint or sequential information
maximization as a fraction of the total information per spike. Filled circles indicate cells where
the joint information and sequential information were significantly different ( p < 0.05).
Overall, joint information maximization performed significantly better than sequential
information maximization ( p < 10�4, paired t-test). (B) Comparison between joint informa-
tion maximization and projection pursuit regression. Joint information maximization
performed significantly better than projection pursuit regression ( p < 10�4, paired t-test).
(C) Comparison between sequential information maximization and projection pursuit
regression. The performance of the two methods was not significantly different ( p¼ 0.75,
paired t-test). All information values were evaluated using a set not used in estimations of the
relevant dimensions.
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Discussion

Searching for stimulus dimensions that jointly account for the largest amount of the

mutual information about neural responses provides a way to find the maximum

likelihood LN model for a given dataset. Because information maximization can be

mapped onto maximum likelihood (Kinney et al. 2007; Kouh and Sharpee 2009),

the relevant dimensions obtained by information maximization have the smallest

variance possible for any unbiased method. Although such properties are very

valuable in the well-sampled regime, estimation of multidimensional gain functions,

which is a required step of the joint search for multiple dimensions, makes the joint

search subject to the curse of dimensionality (Bellman 1961). As such, joint

optimization of a large number of dimensions will become inaccurate. In this article,

we demonstrated that joint optimization of up to three dimensions can be done

reliably for both model cells and neurons in the primary visual cortex. We have also

explored two possible methods of estimating relevant dimensions. Here, analytical

arguments together with the analysis of model and real V1 neurons show that

sequential strategies are generally not adequate in cases where neurons are probed

with natural stimuli. This conclusion contrasts with the case of uncorrelated inputs,

where sequential search is adequate. However, neural responses to Gaussian inputs

(even with correlations) may also be analyzed using spike-triggered covariance

method (de Ruyter van Steveninck and Bialek 1988; Schwartz et al. 2006), which

does not require numerical optimization and is simpler to implement.

Comparison of the accuracy with which relevant dimensions could be estimated

for model cells with one, two, and three relevant dimensions provides clues as to

how different optimization strategies might extrapolate to cells with a large number

of relevant dimensions. Reconstruction of the first dimension usually yielded results

with only small components outside the relevant subspace (e.g. Figure 1B), which

however still need to be corrected in the case of multidimensional LN cell (see

discussion of Equations (10)–(12)). Sequential reconstruction of the second

dimension relies on that of the first, making the systematic biases more obvious

qualitatively (Figure 1), and quantitatively (Figure 4). Here, although the estimation

accuracy of sequential search was substantially reduced for 2D model cells

compared to 1D model cells, the accuracy did improve with increasing number of

spikes, which provides better sampling of the probability distributions (Figure 4).

In contrast, the subspace projection between reconstructed and model dimensions

for sequential optimization on the 3D model cells did not increase with increasing

number of spikes. This indicates that systematic biases of the 3D sequential search

were larger than the uncertainties due to undersampling even for the smallest

number of spikes. The sequential reconstruction of the third dimension relies on

successful optimization of the first and second dimension. Thus, large systematic

biases in the reconstruction of the 3D model suggest that during sequential

optimization, systematic biases accumulate with every subsequent search for a new

orthogonal dimension.

Although we have reached different conclusions regarding the relative benefits of

the joint information maximization and the projection pursuit regression, our results

are not inconsistent with quantitative measurements of predictive power carried out

by Rapela et al. (2010). The previous study analyzed correlation coefficients

between the reconstructed and measured (or model) firing rates, and reported

better predictive power of MID models compared to PPR models for an example
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simple V1 cell and comparable performance between the two methods (with

overlapping errorbars), for example complex V1 cell and a model neuron in cases

where the number of input stimuli or the effective number of repetitions in the case

of the model neuron were large. For small number of inputs, Rapela et al. (2010)

reported better predictive power of PPR models compared to MID models.

It should be noted, however, that PPR models were derived by averaging across

different jackknifes whereas MID models represented only one of jackknifes. Thus,

in the previous study, MID models were derived from effectively a smaller dataset

compared to PPR models. In our study, we report results based on averages across

all jackknifes for all methods. Therefore, our findings of better performance by joint

MID models compared to sequential PPR models are not inconsistent with the

previous analyses.

In contrast to systematic biases that affect sequential searches for relevant

dimensions, their joint optimization is limited by uncertainties due to poor sampling

of multidimensional gain functions. Thus, the total number of dimensions that can

be reliably estimated in the general case, such as from neural responses to natural

stimuli, will be limited. The current algorithm allows for reliable estimation of up to

three dimensions. Comparing the accuracy of joint estimation for two and three

dimensions, we observed that requirements on the dataset size for a given accuracy

increased linearly rather than exponentially with the number of dimensions

(convergence curves overlap when plotted as a function of ratio between the

number of reconstructed dimensions and the number of spikes). One possible

explanation for this phenomenon is that, although the possible number of bins in

empirical histograms increases exponentially with the number of reconstructed

dimensions, many bins are empty. It is possible that strong correlations present in

natural scenes limit the growth in the number of occupied bins to a polynomial

function of the number of reconstructed dimensions. Because only occupied bins

contribute to the calculation of information and we also limit the calculation of the

gradient to bins that are occupied and have occupied neighboring bins, the number

of bins where noise can affect the estimation of relevant dimensions may increase

polynomially with K. Finally, the derivative (Equation (10)) is weighted by the

distribution of observations, which also limits the effects of poorly sampled bins.

The underlying reason why relevant stimulus dimensions need to be estimated

jointly from neural responses to natural stimuli is that, in the case of correlated non-

Gaussian stimuli (including natural stimuli), optimal dimensions depend on our

assumptions about the form of the nonlinear gain functions. This fact has two

interesting consequences for practical computations and expected signal-to-noise

ratios. First, in numerical computations nonlinear gain function cannot take a truly

arbitrary form. For example, the number of bins chosen to describe its shape will

effectively reflect our assumptions about how smooth this function is. Empirically,

we found that reducing the number of bins for representing the gain functions leads

to smoother shapes of relevant dimensions (even when the number of points over

which the relevant dimensions is not reduced). This is likely to be due to the fact

that the gradient is obtained through linear combination of conditional spike-

triggered averages (10). Each of the conditional spike-triggered averages has a

smooth profile because of correlations in the natural scenes. Therefore sharp

features in the gradient arise mainly from differences in the conditional spike-

triggered averages, becoming more pronounced with increasing number of bins.
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In this work, we gradually increased the number of bins from 6 to 11. In this way,

one can first optimize large-scale features in the relevant dimensions and then follow

up with finer-scale features. One can think of other ways of parameterizing the

nonlinear gain function, for example using an exponential function as proposed by

(Paninski 2004), a set of polynomials as done by Rapela et al. (2010), or as a sum of

Gaussians. These assumptions may lead to different estimates of relevant dimen-

sions. Thus, changing parameterization of the nonlinear gain functions can provide

a complementary way to control the receptive field smoothness compared to the

more established evidence-optimization techniques that directly introduce (and

learn from the data) the so-called hyperparameters that control the smoothness of

receptive fields (Sahani and Linden 2003). In the case of natural stimuli, it is

important that the resulting parameterization would be flexible enough to capture

the main features of the nonlinear gain function. This is because the systematic

errors in the estimation of relevant dimensions increase with a mismatch between

the true gain function and its model (Section ‘Analysis of systematic bias of

projection pursuit regression’; Sharpee et al. 2004a).

The second consequence is that the signal-to-noise (or variance) in receptive field

estimates is also contingent upon our assumptions about the form of nonlinear gain

functions. While it is true that information maximization yields the smallest variance

for any unbiased method of receptive field estimation, this statement only holds

within the same class of nonlinearities. For example, Sharpee and Victor (2009)

found that the variance of relevant dimensions for a general LN model was greater

than the estimation variance for relevant dimensions of a two-pathway model with

the gain function given by a sum of a linear half-rectifier and a full rectifier. The

relevant dimensions of the general LN model were estimated by information

maximization and those of the two-pathway model could be obtained with linear

methods that relied on specific properties of stimuli (which were two-dimensional

Hermite functions). Because of the difference in the assumptions for nonlinear gain

functions, the greater variance of MIDs in that case does not contradict their

property of having the smallest estimation variance for a general nonlinearity. In the

case where Hermite functions were used as stimuli, the relevant dimensions of the

two-pathway model could be estimated with no systematic biases. In the case of

natural stimuli, however, these comparisons suggest that one has to consider a

trade-off between systematic and random sources of estimation errors in relevant

dimensions. More constrained forms of nonlinear gain functions carry with them

the increased risk of systematic errors (if the constraints take the model away from

the true gain function) but lead to smaller random estimation errors.

Conclusions

In this article, we demonstrated that characterization of neural feature selectivity

within the framework of a general multicomponent LN model from neural

responses to natural stimuli requires a joint optimization of relevant dimensions.

A sequential search is, in the case of natural stimuli, generally not adequate and

leads to large systematic biases that often exceed the errors due to finite sampling,

even in the limit of small numbers of spikes where sampling is poor and random

errors are large. We found that reliable estimation of up to three relevant
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dimensions, each representing a spatiotemporal filter, is possible for both model and

real V1 cells. Encouragingly, simulation results indicated that requirements of the

dataset size scale linearly, and not exponentially, with the number of jointly

estimated dimensions.
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Appendix: Properties of subspace projection

Given an arbitrary basis of model dimensions f~eig, we can describe the components

of a reconstructed dimension ~v that fall within the relevant subspace as

~v ¼ vi~ei,

where vi are contravariant coordinates, and form the elements of the Jacobian

matrix. For example, given three reconstructed dimensions ~v, ~w, ~u, and a three-

dimensional model subspace, the Jacobian will be given by

J ¼

v1 v2 v3

w1 w2 w3

u1 u2 u3

0
B@

1
CA:

The contravariant components can be computed through the relationship that

gmodel
ij vj ¼ ~v � ~ei (vi ¼ ~v � ~ei are covariant components). Therefore, the Jacobian of the

transformation from model dimensions to the reconstructed dimensions (projected

onto the model subspace) is given by

J ¼ P 	 gmodel
� ��1

:

The determinant of this matrix gives the change in volume associated with this

transformation. To obtain the volume spanned by the reconstructed dimensions

within the model space, we multiply det( J) by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð gmodelÞ

p
to get

detðPÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det gmodelð Þ

p : ð26Þ

The volume fraction provided in Equation (23) is obtained by dividing Equation

(26) by the volume spanned by the reconstructed dimensions,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð grecÞ

p
.
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