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Introduction

For several decades, the concept of cancer immunotherapy 
(CIT) has been struggling to establish itself as the fourth pillar 
of acknowledged cancer treatment strategies alongside surgery, 
radiation and chemotherapy. With its nomination as Science 
‘Breakthrough of the Year 2013’ (Couzin-Frankel 2013) and 

preclinical studies gradually translating into clinical data, the 
field of CIT has finally reached a state of acceptance among the 
established oncological domains. Currently, different immuno-
therapeutic approaches are standing their ground as powerful 
treatment strategies for a wide range of malignant diseases.  
A very prominent and recent example of an outstanding CIT 
success involves immune checkpoint blockade therapy by 
monoclonal antibodies (mAb) targeting inhibitory molecules 
on either immune effector T-cells or tumor cells. Interfering with 
co-inhibitors has been shown to unleash a powerful anti-tumor 
T-cell response (Pardoll 2012). Promising early-stage clinical 
trials have shown safety and impressive activity of mAb block-
ing activity of programmed cell death 1 (PD1), expressed on 
T-cells (Topalian et al. 2012), or one of its ligands, programmed 
death-ligand 1 (PD-L1) (Brahmer et al. 2012). Recently, the FDA 
approved lambrolizumab, a PD1-targeting mAb for treatment 
of advanced or unresected melanomas that no longer respond 
to other drugs (Hamid et  al. 2013). Furthermore ipilimumab, 
a mAb against cytotoxic T-lymphocyte-associated antigen  
4 (CTLA4) on T-cells, was approved for the treatment of meta-
static melanoma (Lipson and Drake 2011). In 2013, a combina-
tion of anti-CTLA4 and anti-PD1 mAb treatment was reported 
to act synergistically in increasing survival and tumor regression 
in advanced melanoma patients (Wolchok et  al. 2013). This 
novel immunomodulatory approach exhibits great potential 
especially for the treatment of severe malignancies resistant to 
conventional therapies.

However, major obstacles to broad clinical applicability 
of CIT become more evident. Whereas significant improve-
ments of overall and progression-free survival can be 
achieved in individual cancer patients, most CIT strategies 
fail to establish long-lasting tumor rejection in large patient 
groups – with many patients responding poorly to treatment 
(Brahmer and Pardoll 2013, Fishman 2014, Raval et al. 2014). 
The precise processes behind this high variability of thera-
peutic efficacy remain to be clarified, but most likely involve 
high heterogeneity of different tumor types as well as poor 
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Abstract
Purpose: This review focuses on recent advances in the field of 
combining radiation with immunotherapy for the treatment of 
malignant diseases, since various combinatorial cancer therapy 
approaches have lately proven highly successful.
Results: With initial case reports and anecdotes progressively 
converting into solid clinical data, interest in cancer 
immunotherapy (CIT) has risen steeply. Especially immune 
checkpoint blockade therapies have recently celebrated 
tremendous successes in the treatment of severe malignancies 
resistant to conventional treatment strategies. Nevertheless, the 
high variability of patient responses to CIT remains a major hurdle, 
clearly indicating an urgent need for improvement. It has been 
suggested that successful cancer therapy most probably involves 
combinatorial treatment approaches. Radiotherapy (RT) has been 
proposed as a powerful partner for CIT due to its broad spectrum 
of immune modulatory characteristics. Several preclinical studies, 
supported by an increasing number of clinical observations, 
have demonstrated synergistic interactions between RT and CIT 
resulting in significantly improved therapy outcomes.
Conclusions: Numerous reports have shown that radiation is 
capable of tipping the scales from tumor immune evasion to 
elimination in different tumor types. The next puzzle to be  
solved is the question of logistics – including types, schedule 
and dosage of combinatorial RT and CIT strategies.

Keywords:  Radiation, radiotherapy, immunotherapy, cancer, 
combination therapy
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immunogenicity and evolving capability to escape immune 
recognition (Kalbasi et al. 2013, Kelderman et al. 2014). Based 
on the concept of cancer immunoediting, tumors undergo 
three distinct phases of interaction with the immune system: 
Elimination, equilibrium and ultimately escape (Schreiber 
et al. 2011). Progressing through these steps involves tumors 
actively shaping the immune system in order to circumvent 
immune recognition and establish a state of permanent 
immune evasion. Successful therapy approaches counteract 
this active immunosuppression and empower the immune 
system to regain control over tumor growth. In numerous 
patients, CIT by itself fails at stably reversing the immuno-
editing process (Kalbasi et  al. 2013). Therefore, the search 
has begun to look for potent partners in tipping the scales 
back from tumor immune escape to elimination.

Radiation therapy (RT) comes into play as a particularly 
attractive partner for CIT in empowering the immune system 
to re-engage in tumor elimination, since recent years have 
shown a number of mechanisms through which RT interacts 
with immunity. In addition to being highly effective at reduc-
ing tumor burden by inducing irreversible DNA damage caus-
ing cancer cell death, RT has been demonstrated to contribute 
actively to tumor immune recognition by various means as 
will be outlined in the following section (Kwilas et al. 2012).

From escape back to elimination – the immune 
modulatory capacities of radiotherapy

Numerous lines of evidence have initiated a paradigm shift 
from the traditional notion of radiation causing detrimen-
tal effects on various immune cell types towards the rec-
ognition of a potent systemic immunostimulatory impact 
(McBride et al. 2004, Formenti and Demaria 2013). This more 
recent concept has moved into the center of attention due 
to repeated observations of so-called abscopal RT effects 
(Kalbasi et al. 2013), which describe the regression of tumor 
growth at sites distant from the primary field of irradiation 
(Demaria et  al. 2004). Several such case reports inspired 
researchers to investigate how radiation can systemically 
induce tumor elimination which led to the discovery of  
various mechanisms through which RT actively induces  
anti-tumor immunity (Barker and Postow 2014).

Of utmost importance, radiation causes a strong increase 
in tumor-associated antigen (TAA) quantity and variety 
through induced cancer cell death (Corso et al. 2011, Burnette 
et al. 2012) as well as enhanced protein translation (Reits et al. 
2006), permitting specialized antigen-presenting cells (APC) 
such as dendritic cells (DC) to effectively prime T-cells for 
specific recognition and efficient clearance of residual tumor 
cells (Ahmed et al. 2013, Frey et al. 2014). In addition, it has 
been shown that radiation is capable of inducing activation 
of DC by the release of specific damage-associated molecular 
patterns (DAMP) through immunogenic tumor cell death, 
a process critical for enabling DC to orchestrate a potent 
anti-tumor immune response (Roses et  al. 2014). Particu-
larly high-mobility group box 1 protein (HMGB1), released 
from irradiated dying tumor cells, has been demonstrated 
to induce sustained DC maturation through activation of 
the toll-like receptor (TLR) 4 pathway, which also increases 

efficiency of TAA processing and presentation (Apetoh et al. 
2007). Persistent DC activation forms a critical part in gen-
erating a potent anti-tumor immune response since imma-
ture antigen-presenting DC induce anergy or even deletion 
of antigen-reactive T-cells – a mechanism which has been 
shown to be actively exploited by tumor cells as a means to 
escape T-cell recognition and cytotoxicity (Kim et al. 2006). 
The combined effects of radiation providing antigens along 
with adjuvant activating signals hinder tumors at taking the 
final step in the immunoediting process – escape – and have 
therefore led to the concept of referring to RT as an in situ 
anti-tumor vaccine (Demaria et al. 2014, Frey et al. 2014).

But the effects of RT on TAA detection and presentation 
go beyond increasing antigen availability: The induction of 
calreticulin translocation to the surface of tumor cells serves 
as a signal for recognition and phagocytosis by DC, thereby 
enhancing TAA processing and presentation (Obeid et  al. 
2007). Also trafficking of APC to regional lymph nodes, where 
interaction with T-cells takes place, has been described to 
be augmented by RT (Lugade et  al. 2005). A similar effect 
has been reported regarding recruitment and cytotoxic-
ity of CD8 T-cells. Lim et  al. (2014) observed the induc-
tion of type I and II interferons (IFN) through radiation, 
leading to enhanced intratumoral numbers and cytolytic  
activity of effector T-cells. Also Draghiciu et  al. (2014) 
reported enhanced recruitment of tumor-specific CD8 
cells into tumors upon low-dose radiation. In addition, the 
production of chemokines such as CXCL16 has been shown 
to be upregulated following radiation, which also attracts 
effector T-cells to the irradiated tumor site (Matsumura and 
Demaria 2010). The direct recruitment of cytotoxic T-cells 
into the tumor provides a strong basis for the immune system 
to regain control over the transformed tissue.

RT has also been described to alter the phenotype of 
residual tumor cells surviving irradiation, mostly due to 
lower doses being transmitted further away from the radia-
tion source (Garnett et  al. 2004, Gameiro et  al. 2014). This 
alteration includes upregulated expression of various sur-
face molecules, such as major histocompatibility complex 
(MHC) I, co-stimulatory T-cell signaling molecules, adhesion  
molecules and death receptors, thus further contributing to 
immune recognition and elimination by rendering tumor 
cells more visible to the immune system (Chakraborty et al. 
2004, 2008b, Bernstein et al. 2014).

Furthermore, effects of RT on vascular normalization 
and density within tumors have been observed. As a result 
of excessive production of pro-angiogenic factors, tumors 
establish an abnormal vascular structure, which creates a 
hypoxic microenvironment that polarizes inflammatory 
immune cells towards immunosuppressive activity and 
hinders immune cells at effectively entering into tumor 
tissue (Huang et al. 2013). In CIT, increasing evidence indi-
cates that a normalized tumor vasculature substantially 
enhances immunotherapeutic success as it reverses the 
hypoxic microenvironment and enables immune effector 
cell infiltration (Huang et al. 2013). RT was shown to induce 
normalization of tumor vasculature by increasing expression 
of chemokines CXCL9 and CXCL10, leading to vessel remod-
eling, as well as vascular cell adhesion protein 1 (VCAM-1), 
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facilitating T-cell migration into tumors (Kershaw et  al. 
2013). A study by Ganss et al. (2002) showed that RT led to 
enhanced vessel density and diameter within tumors, which 
facilitated access of T-cells by enabling them to adhere to the 
endothelium, ultimately leading to tumor regression (Ganss 
et al. 2002). Effects of radiation on vessel remodeling there-
fore provide another promising rationale for its combination 
with CIT by actively contributing to tumor elimination.

Another branch of the immune system affected by RT 
is humoral immunity. In melanoma patients, increases in 
tumor-specific antibody levels have been observed following 
radiation (Postow et al. 2012). Demaria et al. (2005a) reported 
RT to induce production of pro-inflammatory cytokines, 
resulting in the activation and migration of various immune 
cell subsets. Nevertheless, the actual contribution of a  
heavily pro-inflammatory cytokine milieu on tumor pro-
gression or rejection has become a matter of debate among 
immunologists and has to be considered carefully in a  
context-dependent manner (Grivennikov et al. 2010).

Nevertheless, when dissecting mechanisms of RT impact-
ing on immunity, its effects on immunosuppression also 
have to be taken into account. Such mechanisms include 
proportionally increasing regulatory T-cell (Treg) incidence, 
which can be attributed to an inherently higher radioresis-
tance of these cells (Formenti and Demaria 2013), as well as 
induction of transforming growth factor (TGF) b secretion, 
which was shown to inhibit systemic immune-activating 
effects of RT (Diamond et  al. 2013). Blockade of TGFb was 
proven not only to induce abscopal RT effects, but also to 
overcome local immunosuppression (Diamond et al. 2013). 
In addition to these observations, expression of co-inhibitory 
molecules such as PD-L1 was shown to be induced in tumor 
cells after local high-dose irradiation (Deng et al. 2014). This 
consequence provides a clear example of the strong rationale  
for combining RT with immune checkpoint blockade.  
Hence, it has been implicated that radiation may promote 
immunosuppression by different means in a dose-dependent 
manner (Kwilas et al. 2012).

The importance of gaining deeper understanding of 
RT-mediated effects and the resulting cellular interactions 
becomes apparent when taking the increased recognition 
of the tumor stroma into account. It has become well-
established that various types of cells ranging from cancer 
cells themselves (including cancer stem and bulk cells), 
local and bone marrow-derived stromal stem and progeni-
tor cells, endothelial cells, pericytes and cancer-associated 
fibroblasts to immune cells, contribute to the formation  
of a unique tumor microenvironment (Hanahan and  
Weinberg 2011). In order to achieve sustained therapy  
success, this entire tumor niche has to be considered 
and numerous groups currently focus on gaining deeper 
understanding of the predominant processes and cellular 
interactions.

Finding the perfect RT-CIT match – preclinical 
and clinical observations

Several groups have embarked on the mission of actively evalu-
ating synergisms between individual RT-CIT combinations 

and first results showed robust improvements in therapy 
outcome. At a preclinical state, external beam RT (EBRT)  
in combination with adoptive tumor-specific CD8 T-cell 
therapy (Chakraborty et al. 2003, Reits et al. 2006) and vac-
cination approaches including recombinant virus strategies 
and TLR ligand administration (Chakraborty et  al. 2004, 
Demaria et al. 2013, Witek et al. 2014) was demonstrated to 
result in drastically enhanced tumor regression by increased 
CD4 and CD8 T-cell responses. Similar results were 
obtained with radiolabeled mAb (Chakraborty et al. 2008a) 
as well as brachytherapy and vaccine-mediated CIT (Hodge 
et  al. 2012). As indicated earlier, combining local radiation 
with antibodies targeting immune checkpoint blockade 
molecules such as CTLA4 or PD-L1 also yielded highly  
synergistic effects on therapy outcome (Demaria et al. 2005b, 
Dewan et  al. 2009, Deng et  al. 2014). Another immuno-
therapeutic agent, which has been investigated in search of 
beneficial combinatorial strategies, is IL-2. Given its limita-
tions in establishing long-term tumor rejection, relatively 
low response rates and association with severe side effects 
(Siegel and Puri 1991, Atkins et al. 1999, Schwartz et al. 2002, 
McDermott 2007, Seung et  al. 2012a), several preclinical 
studies have focused on evaluating the potential of combin-
ing IL-2 with RT for improved therapy successes (Cameron 
et  al. 1990, Safwat et  al. 2003, 2004). Importantly, these  
studies showed varying results based on RT dose and target 
with promising synergistic observations for the adminis-
tration of focal radiation prior to IL-2 injection in a mouse 
model of liver metastases (Cameron et  al. 1990). These are 
just few examples of the manifold preclinical investigations 
conducted thus far, which have been paving the way for a 
clinical evaluation of combination treatments.

Clinical data on the synergism of RT and CIT are not as 
extensive yet. Nevertheless, various case reports strengthen 
pre-clinical observations and in a number of early-stage 
clinical trials, combinations of mostly local low-dose RT with 
different immunotherapeutic strategies have been proven 
safe and well-tolerated and exhibit great potential of syner-
gistically improving therapy outcomes, with various trials 
ongoing (reviewed extensively by e.g., Kwilas et  al. 2012, 
Formenti and Demaria 2013, Kalbasi et al. 2013, Barker and 
Postow 2014, Demaria et al. 2014, Wattenberg et al. 2014).

In a series of pilot trials, Gulley et al. evaluated the safety 
of combining EBRT with low- or metronomic-dose IL-2 
and a recombinant vaccinia virus-based vaccination strat-
egy in prostate and rectal cancer (Gulley et  al. 2005, 2011, 
Lechleider et  al. 2008). These studies revealed safety and 
tolerance of the therapy combinations as well as efficacy in 
generating tumor-specific immune responses. Another RT 
strategy, which is currently being evaluated in combina-
tion with recombinant vaccinia virus-based vaccination, 
is Samarium-153-ethylene diamine tetramethylene phos-
phonate (153Sm-EDTMP). In an interim analysis, 29.4% of  
metastatic castration-resistant prostate cancer (CRPC) 
patients receiving the combined therapies were found to 
remain progression-free after 4 months as compared to  
11.8% receiving RT alone (Heery et al. 2012). A more recent 
study, in which different regimens of stereotactic body RT 
(SBRT) were combined with high-dose IL-2 in metastatic 
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the full potential of RT-CIT combination. The repertoire is 
sheer endless – ranging from different RT strategies includ-
ing EBRT, SBRT, bone-seeking radionuclides, radiolabeled  
antibodies, brachytherapy and proton therapy, to numer-
ous CIT approaches such as immune checkpoint blockade, 
unspecific stimulation, different vaccine-based concepts, 
adoptive effector cell transfer or targeted immunotherapeu-
tics like antibodies – and not to forget the matters of dosage, 
timing, and choosing the right patient population as well as a 
reasonable stage of disease.

One major challenge remaining is to identify the most 
promising strategies and treatment schedules which will 
result in maximum efficacy by taking advantage of the 
strengths of each single therapy. Considering the broad  
spectrum of mechanisms by which RT impacts on the 
immune system, the balance between immunosuppres-
sion and activation ultimately determines whether a certain 
approach will result in successful tumor elimination. This 
underlines the importance to evaluate the predominant 
immunomodulatory effects of different RT regimens. Various 
publications have shown that dose, mode of delivery and 
schedule of RT can cause substantially different effects on 
the tumor immune response – with the most vital question 
remaining ‘to fractionate or not to fractionate?’ (Formenti 
and Demaria 2013, Barker and Postow 2014). Several groups 
have reported low-dose irradiation (LDI) to induce immune-
activating effects by altering tumor and immune cell surface 
molecule expression (Ina and Sakai 2005, Kwilas et al. 2012), 
promoting T-cell-stimulatory capacities of DC (Shigematsu 
et al. 2007), or an anti-tumor macrophage phenotype (Klug 
et  al. 2013). Simultaneously, ablative high-dose irradiation 
(HDI) was reported to stimulate potent anti-tumor cytotoxic 
T-cell responses, mediated primarily through DC activation 
(Lee et  al. 2009, Gupta et  al. 2012) whereas Schaue et  al. 
(2012) reported beneficial effects of medium-dose fraction-
ated versus single dose radiation. A study by Shen et  al. 
(1988) revealed higher natural killer cell activity and superior  
survival in tumor-bearing mice treated with hypofraction-
ated RT as compared to conventionally fractionated RT.  
All these observations indicate that to date, no conclusive 
explanation could be given as to which strategy will provide 
the best platform for combination with CIT approaches.

Another major obstacle to precisely evaluating effects of 
RT and CIT combinations on tumor progression is posed by 
the still limited available imaging modalities especially in  
the clinical setting (Kalbasi et  al. 2013). Monitoring the 
successful administration of immunotherapeutic agents 
and their ability to interact with tumor cells often requires 
tracking of individual cell populations and therefore asks for 
labeling techniques in order to distinguish specific immune 
effector subsets. The optimal characteristics for labeling 
agents include visualization in a non-invasive manner, 
minimal toxicity, possibility of serial imaging over longer 
time periods, specificity, as well as quantitative localization  
(Akins and Dubey 2008). For this purpose, several molecular 
imaging agents have been developed – including radioiso-
topic, fluorescent, bioluminescent, and magnetic resonance 
imaging (MRI) agents (Youn and Hong 2012). However, 
choosing an appropriate imaging technique for a given 

melanoma and renal cell carcinoma patients, revealed a 
promising 71% response rate in patients treated with 1 or 
2 fractions of 20 Gy as compared to a response rate of 16% 
for IL-2 monotherapy, with responding patients showing 
enhanced immune activation (Seung et al. 2012a, 2012b).

Barker et  al. and Postow et  al. focus on dissecting com-
binatorial effects of RT and ipilimumab in melanoma 
patients regarding safety and preliminary efficacy. In a ret-
rospective study, they reported a 39-month median overall  
survival in patients receiving RT during maintenance  
phase of ipilimumab administration ( 16 weeks after  
starting ipilimumab) as compared to 9 months in patients 
who received RT during the induction phase ( 16 weeks of 
starting ipilimumab), which underlines the importance of 
future research regarding treatment schedules. Importantly, 
they also found the combinatorial treatment to be as safe and 
feasible as each individual therapy alone, which is in accor-
dance with numerous case reports at different study centers 
(Postow et  al. 2012, Barker et  al. 2013, Barker and Postow 
2014). As in melanoma, the combination of ipilimumab  
with RT for the treatment of CRPC was also found to be  
well-tolerated – nevertheless, it did not reveal significant 
improvements in therapy outcome as compared to ipili-
mumab administration alone, but further clinical trials are 
currently under way (Slovin et al. 2009, 2013).

Further examples involve immunotherapeutic strategies 
aimed at DC-mediated tumor immune recognition (For-
menti and Demaria 2013). In patients bearing metastatic 
solid tumors, the combination of granulocyte macrophage 
colony-stimulating factor (GM-CSF) administration with 
local radiotherapy was shown to induce an abscopal response 
in 30% of patients (Formenti and Demaria 2009). Limited 
success was achieved in a different phase I trial, in which 
advanced hepatocellular carcinoma patients were injected 
intratumorally with autologous DC following a single fraction 
of radiotherapy, with eight of 14 patients showing enhanced 
tumor-specific immune responses (Chi et al. 2005). Another 
approach involved intratumoral autologous DC injection 
during fractionated EBRT in soft-tissue sarcoma patients, 
which led to remarkable tumor-specific immune responses 
and one-year progression-free survival in 12 of 17 patients 
(Finkelstein et al. 2012). Furthermore, a retrospective multi-
variate regression analysis by Dillman et al. (2011) revealed 
RT as one of six features correlating with survival in metastatic 
melanoma patients receiving vaccinations of autologous DC 
loaded with tumor antigens. Brody et  al. (2010) conducted 
a phase I/II trial for the combination of low-dose RT with 
intratumoral injection of a DC-activating TLR9 agonist in  
15 patients with low-grade B cell lymphoma and reported 
one complete and three partial responses. Finally, Dohnal 
et  al. (2007) demonstrated safety and feasibility of an  
autologous tumor-lysate-loaded DC therapy approach in 
combination with RT in pediatric sarcoma patients.

The era of combination therapy – hurdles to be 
taken in the future

In the final section we want to highlight the main chal-
lenges that have to be addressed in the future to exploit 
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combinatorial treatment strategy has to take into account 
limitations of each technique. As an example, optical fluo-
rescence or bioluminescence imaging offers high sensitivity, 
but shows poor penetration in deep tissues, which limits 
its clinical applicability (Liu and Li 2014). MRI on the other 
hand has high resolution and contrast while lacking sen-
sitivity (Akins and Dubey 2008, Liu and Li 2014). Positron 
emission tomography (PET) again offers high sensitivity as 
well as deep penetration, but suffers from a short half-life 
of labeling radioisotopes (Liu and Li 2014). Furthermore, 
powerful combination treatments most likely induce strong 
inflammatory responses resulting in temporary tissue  
swelling which can be hard to distinguish from persistent 
disease if imaging techniques lack high resolution, contrast 
or sensitivity (Kalbasi et al. 2013). Taken together, the track-
ing of tumor-immune system interactions on cellular level 
remains challenging, especially in a clinical setting.

Based on the extensive number of advantages that both  
RT and CIT treatment strategies offer, it seems obvious why 
there is growing interest in finding the right design of com-
bining these two approaches. As outlined, each individual 
therapy concept struggles with establishing potent and  
long-lasting tumor rejection in a large number of patients 
(Fishman 2014, Kelderman et al. 2014, Raval et al. 2014). The 
devil seems to lie in the details of overcoming the tumor’s 
ability to suppress and manipulate the immune system in 
order to maintain a state of immune evasion. The manifold 
pathways through which RT has now been shown to inter-
act with immunological mechanisms provide a particularly 
strong rationale as to why these two forces might represent 
specifically powerful allies in the ongoing war on cancer.
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