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Abstract
The heterotetrameric K+-channel KCNQ1/KCNE1 is expressed in heart, skeletal muscle, liver and several epithelia including
the renal proximal tubule. In the heart, it contributes to the repolarization of cardiomyocytes. The repolarization is impaired in
ischemia. Ischemia stimulates the AMP-activated protein kinase (AMPK), a serine/threonine kinase, sensing energy depletion
and stimulating several cellular mechanisms to enhance energy production and to limit energy utilization. AMPK has
previously been shown to downregulate the epithelial Na+ channel ENaC, an effect mediated by the ubiquitin ligase Nedd4-2.
The present study explored whether AMPK regulates KCNQ1/KCNE1. To this end, cRNA encoding KCNQ1/KCNE1 was
injected into Xenopus oocytes with and without additional injection of wild type AMPK (AMPKa1 + AMPKb1 + AMPKg1),
of the constitutively active gR70QAMPK (a1b1g1(R70Q)), of the kinase dead mutant aK45RAMPK (a1(K45R)b1g1), or of the
ubiquitin ligase Nedd4-2. KCNQ1/KCNE1 activity was determined in two electrode voltage clamp experiments. Moreover,
KCNQ1 abundance in the cell membrane was determined by immunostaining and subsequent confocal imaging. As a result,
wild type and constitutively active AMPK significantly reduced KCNQ1/KCNE1-mediated currents and reduced
KCNQ1 abundance in the cell membrane. Similarly, Nedd4-2 decreased KCNQ1/KCNE1-mediated currents and
KCNQ1 protein abundance in the cell membrane. Activation of AMPK in isolated perfused proximal renal tubules by
AICAR (10 mM) was followed by significant depolarization. In conclusion, AMPK is a potent regulator of KCNQ1/KCNE1.

Keywords: AMPK, ischemia, cardiac action potential

Introduction

The K+ channel KCNEx/KCNQ1 (KCNE1 was for-
merly called mink or IsK and KCNQ1 was also
named KvLQT1 or Kv7.1) is expressed in a variety
of tissues including the heart (Barhanin et al. 1996,
Sanguinetti et al. 1996), skeletal muscle (Finsterer
and Stollberger 2004) and several epithelia, such as
the stria vascularis (Wangemann 2006), the renal
proximal tubule (Vallon et al. 2001), the gastric parietal
cells (Dedek and Waldegger 2001, Grahammer et al.
2001, Heitzmann et al. 2004), intestinal cells
(Sugimoto et al. 1990, Schroeder et al. 2000, Dedek
and Waldegger 2001, Nicolas et al. 2001, Vallon et al.
2001, Heitzmann et al. 2004) and hepatocytes

(Demolombe et al. 2001, Lan et al. 2005, Lan et al.
2006).
Genetic defects of KCNE1 or KCNQ1 lead to

Romano Ward syndrome, a disorder characterized
by Long QT syndrome and cardiac arrhythmia pre-
disposing to sudden cardiac death (Chiang and
Roden 2000). Severe genetic loss-of-function defects
in KCNQ1/KCNE1 lead to the Jervell and Lange-
Nielson syndrome in humans comprising Long
QT syndrome and deafness (Barhanin et al. 1996,
Sanguinetti et al. 1996, Neyroud et al. 1997).
KCNQ1 polymorphisms have further been associated
with diabetes (Unoki et al. 2008, Yasuda et al. 2008).
KCNQ1 knockout mice are deaf and display a

shaker/waltzer phenotype (Lee et al. 2000, Casimiro
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et al. 2001), defective gastric acid secretion
(Scarff et al. 1999, Lee et al. 2000), vitamin B12

deficiency with anemia, blunted stimulation of intes-
tinal Cl- secretion by cAMP, intestinal loss of Na+ and
K+, as well as impaired renal and intestinal substrate
transport (Vallon et al. 2005). Moreover, KCNQ1
participates in cell volume regulation (Grunnet et al.
2003, Lan et al. 2005, 2006, Bachmann et al. 2007,
vanTol et al. 2007).
KCNQ1/KCNE1 activity is decreased and thus

action potential duration enhanced by ischemia
(Liu et al. 2007). Cellular mechanisms accounting
for the downregulation of KCNQ1/KCNE1 activity
during ischemia have remained elusive. Candidates
include the AMP-activated protein kinase (AMPK),
which is activated upon cellular energy depletion. The
kinase senses the cytosolic AMP/ATP concentration
ratio and thus the energy status of the cell (Towler and
Hardie 2007, Winder and Thomson 2007). AMPK
stimulates cellular glucose uptake, glycolysis, fatty
acid oxidation and enzymes required for ATP pro-
duction (Ojuka et al. 2000, Winder et al. 2000,
Zheng et al. 2001, MacLean et al. 2002, Jessen
et al. 2003, Li et al. 2004, Luiken et al. 2004, Lei
et al. 2005, Walker et al. 2005, Carling 2007,
Jensen et al. 2007, Natsuizaka et al. 2007, Winder
and Thomson 2007, Guan et al. 2008, Horie et al.
2008, Park et al. 2009). AMPK thus enhances the
cellular ATP generation (McGee and Hargreaves
2008). It further inhibits several energy-utilizing
mechanisms, such as protein synthesis, gluconeogen-
esis and lipogenesis (Carling 2007, Winder and
Thomson 2007, McGee and Hargreaves 2008).
AMPK stimulates glucose uptake (Carling 2007,
Winder and Thomson 2007), an effect largely due
to activation of the facilitative glucose carriers
GLUT1, GLUT2, GLUT3 and GLUT4 (Ojuka
et al. 2000, Winder et al. 2000, Zheng et al. 2001,
MacLean et al. 2002, Jessen et al. 2003, Li et al. 2004,
Luiken et al. 2004, Lei et al. 2005, Walker et al. 2005,
Natsuizaka et al. 2007, Guan et al. 2008, Park et al.
2009) and of the secondary active SGLT1 carrier
(Sopjani et al. 2010). Accordingly, AMPK confers
some protection against cell death during energy
depletion (Hardie 2004, McGee and Hargreaves
2008, Foller et al. 2009).
AMPK has been shown to control the membrane

abundance of the epithelial Na+ channel ENaC, an
effect mediated by the ubiquitin ligase Nedd4-2
(Hallows et al. 2003a, Carattino et al. 2005, Bhalla
et al. 2006, Almaca et al. 2009).
The present study explored whether AMPK reg-

ulates KCNQ1/KCNE1 channels. To this end,
voltage-gated current was determined in Xenopus
oocytes expressing KCNQ1/KCNE1 with or without

wild type, constitutively active and inactive AMPK
variants. Moreover, the KCNQ1 protein abundance
at the cell membrane was determined by immuno-
histochemistry and confocal microscopy. Additional
experiments explored whether the effect of AMPK is
mimicked by coexpression of Nedd4-2. Finally, the
potential difference across the basolateral membrane
in the proximal renal tubule was studied without and
upon activation of AMPK.

Methods

Constructs

For generation of cRNA, constructs were used
encoding wild type human KCNQ1/KCNE1
(Seebohm et al. 2008, Henrion et al. 2009), wild
type AMPKa1-HA, AMPKb1-Flag, AMPKg1-HA
(Fraser et al. 2007), constitutively active
R70QAMPKg1-HA (Hamilton et al. 2001), kinase
dead mutant K45RAMPKa1-HA (Hallows et al.
2003a), wild type AMPK a2-HA (Steinberg and
Kemp 2009), wild type Nedd4-2 (Boehmer et al.
2008a) and Nedd4-2S795A lacking an AMPK phos-
phorylation site [refer to “site directed mutagenesis”].
The AMPK inhibitor compound C (Calbiochem, Bad
Soden, Germany) was used at a concentration
of 10 mM, dibutyril-cAMP (Sigma, Schnelldorf,
Germany) at a concentration of 1 mM.

Voltage clamp in Xenopus oocytes

Xenopus oocytes were prepared as previously described
(Boehmer et al. 2008b, Laufer et al. 2009). cRNA
encoding KCNQ1 (1.5 ng) and 1.5 ng cRNA encoding
KCNE1 were injected with or without 4.6 ng of cRNA
encoding either AMPKa1-HA + AMPKb1-Flag +
AMPKg1-HA (WTAMPK), or AMPKa1-HA +
AMPKb1-Flag + R70QAMPKg1-HA (gR70QAMPK)
or K45RAMPKa1KD-HA + AMPKb1-Flag +
AMPKg1-HA (aK45RAMPK) or AMPKa2-HA +
AMPKb1-Flag + R70QAMPKg1-HA (gR70QAMPKa2)
and with or without 5 ng cRNA encoding Nedd4-2 or
Nedd4-2S795A on the day of preparation of the Xenopus
oocytes. All experiments were performed at room
temperature 3 or 4 days (Nedd4-2) after injection. In
two-electrode voltage-clamp experiments KCNQ1/
KCNE1 channel currents were elicited every 20 s with
5 s depolarizing pulses to +80 mV applied from a
holding potential of �120 mV. Pulses were applied
in 20 mV increments. The data were filtered at 1 kH
and recorded with a Digidata 1322A A/D-D/A con-
verter and Chart V.4.2 software for data acquisition
and analysis (Axon Instruments) (Ureche et al. 2008).
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The analysis of the data was performed with Clampfit
8 (Axon Instruments) software. Activating current
traces were fitted using the simplex algorithm to one
exponential function: y = A0 + A1 * exp (�t/t).

Immunohistochemistry

After 4% paraformaldehyde fixation for at least
12 h, oocytes were cryoprotected in 30% sucrose,
frozen in mounting medium and placed on a cryostat
(Gehring et al. 2009). Sections were collected at a
thickness of 8 mm on coated slides and stored at
�20�C. For immunostainings, sections were dehy-
drated at room temperature, fixated in acetone/
methanol (1:1) for 15 min at room temperature,
washed in PBS and pre-incubated for 1 h in 5%
bovine serum albumin in PBS. The primary antibody
used was rabbit anti-KCNQ1 antibody (diluted
1:500, Abcam, Cambridge, UK). Incubation was
performed in a moist chamber overnight at 4�C.
Binding of primary antibody was visualised with a
goat anti-rabbit conjugated FITC antibody (diluted
1:500, Invitrogen, United States). Then, oocytes
were analyzed by a fluorescence laser scanning
microscope (LSM 510, Carl Zeiss MicroImaging
GmbH, Germany) with A-Plan 40x/1.2W DICIII.
Brightness and contrast settings were kept cons-
tant during imaging of all oocytes in each injection
series.

Western blot

For western blotting, 20 intact healthy oocytes were
homogenized with a pestle in 400 ml Buffer-H
(100mM NaCl, 20mM Tris-HCl, pH 7.4, 1% Triton
X-100, and Complete Protease Inhibitor [Roche
Diagnostics GmbH, Mannheim, Germany]). The
samples were kept at 4�C for 1 h on a rotator, then
centrifuged for 2 min at 13,000 rpm. After measure-
ment of the total protein concentration (Bradford
assay), 50 mg of protein were solubilized in Roti-
Load1 Buffer (Carl Roth GmbH, Karlsruhe, Ger-
many) at 95�C for 10 min and resolved by 10%
SDS-PAGE. For immunoblotting proteins were
electro-transferred onto a nitrocellulose membrane
and blocked with 5% non-fat milk in TBS-0.10%
Tween 20 at room temperature for 1 h. The mem-
brane was then incubated with rabbit anti-KCNQ1
antibody (diluted 1:500, Abcam, Cambridge, UK) at
4�C overnight. After washing (TBST), the blot was
incubated with secondary anti-rabbit HRP antibody
(diluted 1:1000, Cell Signaling Technology, Danvers,
MA, USA) for 1 h at room temperature. For loading
control the blot was stripped in stripping buffer (Carl

Roth GmbH, Karlsruhe, Germany) at 56�C for
30 min. After washing with TBST the blot was
blocked with 5% non-fat milk in TBST for 1 h at
room temperature. The blot was then incubated with
a rabbit anti-GAPDH antibody (diluted 1:1000, Cell
Signaling Technology, Danvers, MA, USA) at 4�C
overnight. After washing with TBST, the blot was
incubated with anti-rabbit HRP antibody (diluted
1:1000, Cell Signaling Technology, Danvers, MA,
USA) for 1 h at room temperature. Antibody-
binding was detected with the ECL detection reagent
(Amersham, Freiburg, Germany). Bands were quan-
tified with Quantity One Software (Biorad, München,
Germany).

Site-directed mutagenesis

The mutated human Nedd4-2S795A was generated
by site-directed mutagenesis (QuikChange II Site-
Directed Mutagenesis Kit; Stratagene, Heidelberg,
Germany) according to the manufacturer’s ins-
tructions. The following primers were used:
Nedd4-2S795A s: 5¢ GGATTTGAAGCCCAATGG
GGCAGAAATAATGGTCACAAA 3¢ and
Nedd4-2S795A as: 5¢ TTTGTGACCATTATTTCT
GCCCCATTGGGCTTCAAATCC 3¢. The mutant
was sequenced to verify the presence of the desired
mutation.

(Consensus motive for AMPK substrate recognition)

                         S795

human           YQVDLKPNGSEIMVTNEN
mouse           YQVDLKPNGSEIMVTNEN
rat             YQVDLKPNGSEIMVTNEN
xenopus         YQVDLKPNGSEMVVTNDN

***********::***:*
Φ ΦBxxxSxxx

where: F is Hydrophobic residue; B is Basic residue;
and ST is Phosphorylated serine residue.

Potential difference across the basolateral cell membrane
of isolated perfused proximal straight tubules

The potential difference across the basolateral cell
membrane (PDbl) was determined following incu-
bation of isolated renal tubules from C57 BL/6 mice
for 1 h at 22�C in the absence or presence of
AMPK stimulator AICAR (10 mM). The bath and
luminal perfusates were composed of (all numbers
mmol/l): 120 NaCl, 5 KCl, 20 NaHCO3, 1.3 CaCl2,
1 MgCl2, 2 Na2HPO4. PDbl was measured by a
high impedance electrometer (FD223, WPI, Science
Trading, Frankfurt, Germany) connected with the
electrode via an Ag/AgCl half cell. An Ag/AgCl
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reference electrode was connected to the bath. Entry
of positive charge by electrogenic transport is
expected to depolarize the basolateral cell membrane.
The magnitude of the depolarization depends on the
magnitude of the induced current on the one hand
and on the resistances of cell membranes and shunt
on the other.

Statistical analysis

Data are provided as means ± SEM, n represents the
number of experiments. All oocyte experiments were
repeated with at least two batches of oocytes; in all

repetitions qualitatively similar data were obtained.
Data were tested for significance using ANOVA or
t-test, as appropriate, and results with p < 0.05 were
considered statistically significant.

Results

AMPK inhibited voltage-gated outward currents in
KCNQ1/KCNE1-expressing Xenopus oocytes

In KCNQ1/KCNE1-expressing, but not in water-
injected Xenopus oocytes, depolarization triggered a
slowly activating current (IKs) with strong outward
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Figure 1. Co-expression of AMPK decreased voltage-gated outward current in KCNQ1/KCNE1 expressing Xenopus oocytes. (A) Original
tracings of the current induced by depolarization from �60 mV to �40, �20, 0, 20, 40, 60, and 80 mV in Xenopus oocytes injected with water
(a), expressing KCNQ1/KCNE1 without (b) or with (c) additional co-expression of wild type AMPK, of kinase dead mutant aK45RAMPK (d)
or of constitutively active gR70QAMPK (e). (B) Arithmetic means ± SEM (n = 22–36) of depolarization-induced K+ current at +80 mV in
Xenopus oocytes injected with water (1st bar), expressing KCNQ1/KCNE1 without (2nd bar) or with additional coexpression of wild type
AMPK (3rd bar), of kinase dead mutant K45RAMPK (4th bar) or of constitutively active R70QAMPK (5th bar). ***(p < 0.001) indicates
statistically significant difference from the values obtained in oocytes expressing KCNQ1/KCNE1 alone. (C) Arithmetic means ± SEM of
depolarization-induced current (Ig) as a function of the potential inXenopus oocytes injected as in B. (D) Arithmetic means ± SEM (n = 12–24)
of depolarization-induced K+ current at +80 mV in Xenopus oocytes injected with water (1st bar), expressing KCNQ1/KCNE1 without (2nd
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indicate significant difference from the absence of compound C. (E) Arithmetic means ± SEM (n = 8–17) of depolarization-induced K+ current
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constitutively active R70QAMPKa2 (3rd bar). ### (p < 0.001) indicates significant difference from the absence of R70QAMPKa2.
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rectification (Figure 1A–C). Coexpression of the
AMP-activated protein kinase (AMPKa1 +
AMPKb1 + AMPKg1) was followed by a significant
decrease of IKs by 41 ± 7% (n = 4 batches of 25–
36 oocytes) at +80 mV. Furthermore, coexpression of
the constitutively active R70QAMPK (AMPKa1 +
AMPKb1 + R70QAMPKg1) similarly decreased the
slowly activating outward current of KCNQ1/
KCNE1. In contrast, coexpression of the inactive
K45RAMPK mutant [K45RAMPKa1 + AMPKb1 +
AMPKg1] did not significantly modify the slowly
activating outward current of KCNQ1/KCNE1-ex-
pressing Xenopus oocytes. In addition, pharmacolog-
ical inhibition of AMPK by compound C (10 mM)
significantly blocked the AMPK effect on KCNQ1/
E1-mediated currents (Figure 1D). Thus, kinase
activity is required for the effect of AMPK on
KCNQ1/KCNE1 activity.
Another series of experiments tested whether

AMPKa2 similarly decreases KCNQ1/KCNE1 activ-
ity. As shown in Figure 1E, the constitutively active
R70QAMPKa2 indeed also decreases KCNQ1/
KCNE1-mediated currents.
To test, whether AMPK changes the activation

kinetics of the channel the activation constant t was
determined. As shown in Figure 2, coexpression of
constitutively active R70QAMPK did not significantly
modify t. Further experiments aimed to investigate
whether PKA-dependent stimulation of KCNQ1/
KCNE1 was modified by AMPK. To this end,
KCNQ1/KCNE1-dependent currents were measured
in the presence or absence of dibutyril-cAMP (1 mM)
for three days. As a result, exposure to dibutyril-
cAMP significantly increased the normalized current
to 1.29 ± 0.06 rel. units (n = 25 oocytes) whereas

coexpression of constitutively active R70QAMPK sig-
nificantly reduced the normalized current to 0.72 ±
0.03 rel. units (n = 23 oocytes). Most importantly,
dibutyril-cAMP failed to significantly modify the nor-
malized KCNQ1/KCNE1-mediated current in
oocytes co-expressing constitutively active R70QAMPK
(0.73 ± 0.04, n = 22 oocytes). Thus, PKA fails to
stimulate KCNQ1/KCNE1-dependent currents in
oocytes expressing constitutively active R70QAMPK.

AMPK decreased the KCNQ1 protein abundance in the
cell membrane

A decrease of the slowly activating outward current
could have resulted from a decrease of KCNQ1/
KCNE1 protein abundance in the cell membrane.
To test this possibility, the KCNQ1 protein abundance
was determined by confocal microscopy in Xenopus
oocytes injected with water and in oocytes expressing
KCNQ1/KCNE1 alone or together with AMPK. As
shown in Figure 3A, the KCNQ1 cell surface expres-
sion of the channel protein in Xenopus oocytes injected
with cRNA encoding KCNQ1/KCNE1 was indeed
decreased by the co-expression of wild-type or consti-
tutively active AMPK. The total protein abundance
was not affected by AMPK (Figure 3B).

KCNQ1 protein abundance is decreased by the ubiquitin
ligase Nedd4-2

To test whether KCNQ1/KCNE1 is regulated by the
AMPK-sensitive ubiquitin ligase Nedd4-2, KCNQ1/
KCNE1 was expressed together with or without
Nedd4-2, with or without constitutively active
R70QAMPK. As shown in Figure 4A and 4B,
Nedd4-2 indeed decreased KCNQ1/KCNE1-depen-
dent currents. In another series of experiment, the
effect of Nedd4-2 on KCNQ1/KCNE1-dependent
currents was significantly reduced by co-expression
of constitutively active R70QAMPK (Figure 4C).
Nedd4-2S795A which lacks an AMPK phosphorylation
site similarly decreased KCNQ1/KCNE1-dependent
currents (Figure 4C). Constitutively active
R70QAMPK, however, failed to significantly modify
the Nedd4-2S795A action on KCNQ1/KCNE1-
dependent currents (Figure 4C). Additional experi-
ments were performed to determine whether
Nedd4-2 is effective through altering KCNQ1 protein
abundance in the cell membrane. The KCNQ1 pro-
tein abundance in the cell membrane was determined
in oocytes expressing KCNQ1/KCNE1 together with
or without Nedd4-2, with or without constitutively
R70QAMPK. As shown in Figure 5, the AMPK effect
on KCNQ1 protein cell membrane abundance was
indeed mimicked by co-expression of Nedd4-2.
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potential in Xenopus oocytes expressing KCNQ1/KCNE1 alone
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Stimulation of AMPK depolarizes proximal renal tubule
cells

Isolated proximal renal tubules from C57 BL/6 mice
express both, AMPK and KCNQ1 (Figure 6A). To

test whether AMPK activity depolarizes proximal
tubular cells as suggested by AMPK-dependent inhi-
bition of KCNQ1/KCNE1, the potential difference
across the basolateral cell membrane (PD bl) of
isolated perfused proximal tubular cells was deter-
mined following incubation in the presence and
absence of the AMPK stimulator AICAR (10 mM)
for 1 h. As shown in Figure 6B, AICAR indeed
depolarized proximal tubular cells.

Discussion

The present study reveals a novel regulator of the
slowly activating outward current generated by
the heterotetrameric K+ channel KCNQ1/KCNE1.
The AMP-activated protein kinase AMPK down-
regulates the channel and thus decreases K+ conduc-
tance and repolarization.
The AMPK-dependent downregulation of KCNQ1

is at least partially due to stimulation of the ubiquitin
ligase Nedd4-2. AMPK has previously been shown to
phosphorylate Nedd4-2 (Bhalla et al. 2006) thus influ-
encing the interaction of the ubiquitin ligase with the
epithelial Na+ channel ENaC (Carattino et al. 2005,
Bhalla et al. 2006, Almaca et al. 2009).
According to the present observations, AMPK fur-

ther disrupts the well known (Boucherot et al. 2001,
Marx et al. 2002, Dilly et al. 2004, Nicolas et al. 2008,
Dai et al. 2009) stimulation of KCNQ1 by cAMP.
The AMPK-dependent regulation of the Cl- channel
CFTR (Hallows et al. 2000, 2003a, 2003b, 2006,
2010, Crawford et al. 2006, Muimo et al. 2006,
Mehta 2007) involves the phosphorylation of the R
domain of the channel thus decreasing the activation
of CFTR by protein kinase A (Walker et al. 2003,
King et al. 2009, Kongsuphol et al. 2009a, 2009b).
In contrast to KCNQ1/KCNE1 activity, AMPK

stimulates the activity of the facilitative glucose car-
riers GLUT1, GLUT2, GLUT3 and GLUT4 thus
increasing cellular glucose uptake (Ojuka et al. 2000,
Winder et al. 2000, Zheng et al. 2001, MacLean et al.
2002, Jessen et al. 2003, Li et al. 2004, Luiken et al.
2004, Lei et al. 2005, Walker et al. 2005, Natsuizaka
et al. 2007, Guan et al. 2008, Park et al. 2009). The
glucose uptake serves to provide the cell with fuel.
Beyond that AMPK stimulates glycolysis, fatty
acid oxidation and expression of enzymes required
for ATP production (Carling 2007, Winder and
Thomson 2007). All those functions counteract
ATP depletion.
Inhibition of KCNQ1 by AMPK may be consid-

ered a double-edged sword. On the one hand, inhi-
bition of K+ channels depolarizes the cell membrane,
fostering Cl- entry and potentially deleterious cell
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Figure 3. Co-expression of AMPK decreased the KCNQ1 protein
abundance within the plasma membrane of oocytes. (A) Confocal
images of KCNQ1 protein abundance in the plasma membrane of
Xenopus oocytes injected with water (2nd upper panel), expressing
KCNQ1/KCNE1 without (3rd upper panel) or with additional
co-expression of wild type AMPK (1st lower panel), of kinase
dead mutant aK45RAMPK (2nd lower panel) or of constitutively-
active gR70QAMPK (3rd lower panel). The cells were subjected to
immunofluorescent staining using FITC-conjugated antibody (grey/
green). The 1st upper panel serves as control (absence of primary
antibody). (B) Original Western Blots of total KCNQ1 (upper panel)
and GAPDH (lower panel) in Xenopus oocytes injected with water
(1st lane), expressing KCNQ1/KCNE1 without (2nd lane) or with
additional co-expression of wild-type AMPK (3rd lane), of kinase
dead mutant aK45RAMPK (4th lane) or of constitutively-
active gR70QAMPK (5th lane). The lower bar diagram displays the
densitometric analysis of theWestern blots (arithmetic means ± SEM
[n = 3]).
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swelling (Lang et al. 1986, 1998). In the heart, inhi-
bition of KCNQ1 is expected to delay repolarization
thus jeopardizing cardiac function (Peroz et al. 2008).
On the other hand, inhibition of K+ channels could
decrease energy expenditure. In the proximal renal
tubule, for instance, inhibition of K+ channels
decreases the driving force for Na+-coupled transport
of glucose and other substrates across the apical
membrane and at the same time decreases electro-
genic HCO3

- exit across the basolateral cell mem-
brane leading to cytosolic alkalinization and
subsequent inhibition of the apical Na+/H+ exchanger
(Lang and Rehwald 1992). Thus, depolarization

curtails Na+ entry and thus decreases the requirement
for energy-consuming Na+ extrusion by the Na+/K+

ATPase (Lang and Rehwald 1992). Inhibition of
KCNQ1/KCNE1 may further limit the cellular K+

loss during impaired function of Na+/K+ ATPase in
energy-depleted cells. Cellular K+ loss may foster
suicidal cell death (Bortner and Cidlowski 2004,
Foller et al. 2006, Shimizu et al. 2006, Becker
et al. 2007, Schneider et al. 2007). By counteracting
HCO3

- exit depolarization may prevent cytosolic acid-
ification, which accelerates the death of apoptotic cells
(Lupescu et al. 2009) and compromises glycolysis
(Boiteux and Hess 1981).
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Figure 4. Similar to gR70QAMPK the ubiquitin ligase Nedd4-2 downregulated KCNQ1/KCNE1. (A) Original tracings of the current induced
by depolarization from �60 mV to �40, �20, 0, 20, 40, 60, and 80 mV in Xenopus oocytes injected with water (a), expressing KCNQ1/
KCNE1 without (b,d) or with (c,e) additional coexpression of constitutively active gR70QAMPK in the absence (b,c) or presence (d,e) of
Nedd4-2. (B) Arithmetic means ± SEM (n = 10–19) of depolarization-induced current at +80 mV in Xenopus oocytes injected with water
(H2O), expressing KCNQ1/KCNE1 (Q1E1) without or with additional co-expression of constitutively active R70QAMPK (AMPKR70Q) in the
absence (open bars) or presence (closed bars) of Nedd4-2. *** (p < 0.001) indicates statistically significant difference from the values obtained
in oocytes expressing KCNQ1/KCNE1 alone. (C) Arithmetic means ± SEM (n = 11–14) of depolarization-induced current at +80 mV in
Xenopus oocytes injected with KCNQ1/KCNE1 without (white bars) or with additional coexpression of constitutively active R70QAMPK (black
bars) in the absence (2 left bars) or presence of Nedd4-2 (2 middle bars) or of Nedd4-2S795A (2 right bars). *** (p < 0.001) indicates statistically
significant difference from the values obtained in oocytes expressing KCNQ1/KCNE1 alone. # (p < 0.05) indicates statistically significant
difference from the absence of R70QAMPK.
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The present observations may not only be relevant
for ischemia and energy depletion. AMPK is further
stimulated by an increase in the cytosolic Ca2+ activity
(Towler and Hardie 2007), by a decrease of O2 levels
(Evans et al. 2005) and by exposure to nitric oxide
(Lira et al. 2007).
Moreover, the AMPK-dependent regulation of

KCNQ1 is not only important for cardiac repolar-
ization and maintenance of cell membrane poten-
tial in proximal renal tubules of the kidney. In
addition to the heart (Barhanin et al. 1996,
Sanguinetti et al. 1996, Neyroud et al. 1997) and
kidney (Vallon et al. 2001) KCNQ1 is expressed in
the liver (Demolombe et al. 2001, Lan et al. 2005,
2006), skeletal muscle (Finsterer and Stollberger

2004) and several epithelia (Sugimoto et al. 1990,
Schroeder et al. 2000, Dedek and Waldegger 2001,
Grahammer et al. 2001, Nicolas et al. 2001,
Vallon et al. 2001, 2005, Heitzmann et al. 2004).
In the liver, for instance, KCNQ1 governs cell
volume and thus cell volume-sensitive functions
including glucose uptake (Boini et al. 2009).
Beyond that KCNQ1 is important for a variety of
functions including hearing (Lee et al. 2000,
Casimiro et al. 2001), gastric acid secretion
(Scarff et al. 1999, Lee et al. 2000), as well as
intestinal and renal transport (Vallon et al. 2005).
AMPK-dependent regulation of KCNQ1 could
thus participate in the pleotropic functional conse-
quences of energy depletion in those tissues.
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Figure 5. Similar to gR70QAMPK the ubiquitin ligase Nedd4-2 decreased the KCNQ1 protein abundance in the cell membrane. Confocal
images of KCNQ1 protein abundance in the plasma membrane of Xenopus oocytes expressing KCNQ1/KCNE1 without (1st panel) or with
additional coexpression of constitutively active gR70QAMPK (2nd panel), of the ubiquitin ligase Nedd4-2 (3rd panel) or of both, gR70QAMPK
and Nedd4-2 (4th panel). The cells were subjected to immunofluorescent staining using FITC-conjugated antibody (grey/green).

A. B.

AMPKalpha

KCNQ1

GAPDH

80

60

40

P
d 

bl
 [m

V
]

20

0
AICAR

*

Figure 6. Depolarization of proximal renal tubule cells by stimulation of AMPK (A) Original Western Blots demonstrating expression of
AMPKa (upper panel) and KCNQ1 (lower panel; GAPDH was used as loading control) in isolated proximal tubules of C57 BL/6 mice. (B)
Arithmetic means ± SEM (n = 7–8) of the potential difference across the basolateral membrane (PD) of isolated perfused proximal renal tubules
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Conclusion

The present observations unravel a powerful inhibi-
tory effect of the AMP-activated kinase AMPK on the
slowly activating K+ channels KCNQ1/KCNE1. The
effect is likely to profoundly affect cellular functions
during energy depletion, hypoxia, excessive cytosolic
Ca2+ activity, and exposure to nitric oxide.
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