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Abstract
Lack of physical activity (PA) is a risk factor for Alzheimer’s disease (AD), and PA interventions are believed to provide an
effective non-pharmacological approach for attenuating the symptoms of this disease. However, the mechanism of action
of these positive effects is currently unknown. It is possible that the benefits may be at least partially mediated by the effects
on the neuroendocrine stress system. Chronic stress can lead to dysfunction of the hypothalamic–pituitary–adrenal (HPA)
axis, leading to aberrant basal and circadian patterns of cortisol secretion and a cascade of negative downstream events.
These factors have been linked not only to reduced cognitive function but also increased levels of amyloid-b plaques and
protein tau “tangles” (the neuropathological hallmarks of AD) in the non-demented mouse models of this disease. However,
there is evidence that PA can have restorative effects on the stress neuroendocrine system and related risk factors relevant
to AD. We explore the possibility that PA can positively impact upon AD by restoring normative HPA axis function, with
consequent downstream effects upon underlying neuropathology and associated cognitive function. We conclude with
suggestions for future research to test this hypothesis in patients with AD.
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Introduction

Alzheimer’s disease (AD) is a neurodegenerative

condition creating progressive deterioration of higher

cognitive functioning in the areas of memory, problem

solving, and thinking (Rimmer and Smith 2009).

AD is the most common form of dementia and its

pathological hallmarks in the brain are neuritic plaques

(composed predominantly of amyloid-b peptides) and

neurofibrillary tangles (formed by hyper-phosphory-

lated forms of tau protein; Cummings et al. 1998).

AD is characterized by an inability to carry out

everyday tasks or perform instrumental activities, and

may be accompanied by behavioral disorders such as

agitation, aggression, and wandering (Onor et al.

2007; Rimmer and Smith 2009). Mild cognitive

impairment (MCI) often represents a prodromal form

of dementia, conferring a 10–15% annual risk of

converting to probable AD (Risacher et al. 2009).

As the world’s population ages the prevalence of this

debilitating disease is increasing, which is becoming

a social and economic concern important to families,

caregivers, professionals, and others in public health

systems (Haan and Wallace 2004). In 2006, the

prevalence of AD worldwide was reported to be 26.6

million, and by 2050 this number is estimated to

quadruple to 106.8 million (Brookmeyer et al. 2007).

The estimated worldwide societal cost of AD in 2005

was US$315.4 billion (Wimo et al. 2007). Given the

scale and impact of the problem, it is imperative that

acceptable and inexpensive intervention strategies are

identified in order to retard the onset or attenuate the

progression of the disease. It has been estimated that if

interventions could delay disease onset or progression

of AD by as little as 1 year, nearly 9.2 million fewer

patients would be expected by the year 2050

(Brookmeyer et al. 2007).

Risk factors for AD

Over 99% of AD cases are sporadic, not associated

with any known genetic mutation, although the
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presence of one or two alleles of apolipoprotein

(APOE) e4 as opposed to APOE e2 or APOE e3

increases disease risk by several fold (Corder et al.

1993). Aging is probably the biggest risk factor for

non-AD-associated dementia and AD (Querfurth and

LaFerla 2010). However, environmental, behavioral,

and social factors can increase the risk of developing

AD, indicating that disease progression is potentially

modifiable. Such risk factors include head trauma

(Rothman and Mattson 2010), alcohol abuse,

addictive smoking, diet filled with high fat content

(Gustaw-Rothenberg 2009), and lack of mental

stimulation (Wilson et al. 2007) through the life span.

Chronic stress is a major risk factor for the develop-

ment of AD, and there is evidence that it exacerbates

the cognitive deficits and the accompanying brain

pathological characteristics of the condition (see

Rothman and Mattson 2010, for a review). People

exposed to chronic stress have been estimated to be

2.7 times more likely to suffer from AD, and they are

also more likely to experience more rapid disease

progression (Wilson et al. 2006). Similarly, depression

is considered a risk factor for AD (Green et al. 2003)

since it may be strongly related to stress (Davidson

et al. 2002). As effective social support is known to be

a successful buffer to psychological stress (Cohen and

Wills 1985), it is not surprising that a lack of social

support and meaningful social networks may also

contribute to the development of AD (Fratiglioni et al.

2004; Solfrizzi et al. 2008).

Chronic stress is related to increased risk of

cardiovascular (CV) conditions (Björntorp 1997;

Rosmond et al. 1998) which are also risk factors for

AD, and play a role in the development of the disease

(Gustafson et al. 2003; Arvanitakis et al. 2004;

Kivipelto et al. 2005; Whitmer et al. 2005; Helzner

et al. 2009). Furthermore, type 2 diabetes is

associated with chronic stress (Nader et al. 2010)

and a risk factor for AD (Ott et al. 1999; Messier

2003; Arvanitakis et al. 2004; Strachan et al. 2008;

Maher and Schubert 2009). Indeed, type 2 diabetes

and/or elevated fasting glucose are reported in up to

80% of patients with AD (Janson et al. 2004). A later

systematic review of this literature found that

individuals with diabetes had a higher incidence of

AD in 8 of 13 studies (Biessels et al. 2006). Relevant

to this review, lack of PA (along with other detrimental

health behaviors such as smoking, poor diet, and

sleep disruption) can be a behavioral product of

chronic stress (Kyrou and Tsigos 2009), and is also

consistently identified as a risk factor for AD (Laurin

et al. 2001; Podewils et al. 2005; Rovio et al. 2005;

Karp et al. 2006; Larson et al. 2006; Simons et al.

2006; Taaffe et al. 2008). See Figure 1 for a summary

of the links between stress, risk factors for AD, and

disease progression.

This wide range of risk factors is indicative of an

underlying system (or systems) that interacts with the

disease process to contribute to disease progression,

and points to a role for the stress neuroendocrine

system. We go on to explore the possible pathways by

which psychological stress can affect cognitive func-

tion and the neuropathological bases of AD.

Evidence that stress impacts on cognitive

function and AD

Chronic stress, allostatic overload, aging, and memory

function

Excessive and repeated responses to stress and/or the

inability to turn off the response when it is no longer

needed are associated with increased activity of the

sympathetic nervous system and a dysfunction of

the hypothalamic–pituitary–adrenal (HPA; McEwen

2008) axis. The latter causes, among other things,

aberrant patterns of cortisol secretion (Meerlo et al.

2002; Nader et al. 2010) and typically excessive levels

of basal circulating cortisol (Lupien and Lepage

2001), which over time produces accumulative wear

and tear on the body and brain (McEwen 2008).

Under these circumstances, the ability to achieve

stability through change (allostasis) fails, producing

Chronic psychosocial stress

Allostatic overload, decreased feedback inhibition of the
HPA axis, HPA axis dysfunction,

Excessive circulating levels & disrupted patterns of cortisol secretion

Hippocampal
processes:

Decreased BDNF &
insulin sensitivity;

degeneration, atrophy

Increased levels of
Amyloid-β and

Tau

Decline in
memory

Peripheral processes & risk
factors for AD:

Aging; type 2 diabetes;
cardiovascular disease;
increased inflammatory

markers; oxidative stress;
melancholic depression.

Increased risk of AD and/or more
rapid disease progression

PA attenuates

PA attenuates

PA attenuates

PA attenuates

PA
attenuates

Figure 1. Summary diagram: arrows indicate pathways between

psychosocial stress and AD (arrows indicate direction of causality).

PA ¼ physical activity and is located on arrows where it has been

shown to attenuate that pathway (see text).
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a condition of allostatic overload (Seeman et al. 1997;

McEwen 1998; McEwen 2008).

Allostatic overload also has several behavioral

sequelae known to be risk factors for AD, including

disrupted sleep, unhealthy eating patterns, drinking

too much alcohol, smoking, and lack of physical

activity (PA; McEwen 2008; Kyrou and Tsigos 2009).

Increasing age (the major risk factor for cognitive

decline and AD) is associated with increases in the

HPA axis response to the challenge in some studies

[see Otte et al. (2005) for a meta-analysis of 45 stress

challenge studies of young vs. old healthy partici-

pants]. However, only four of these studies involved

psychosocial challenge, and thus the ability of acute

psychological stress changes to change the sensitivity

of the HPA axis which remains to be firmly

established. Furthermore, the finding that females

changed more in response to increasing age may be

more closely related to their known greater sensitivity

to pharmacological challenge than psychosocial-

related threat (Uhart et al. 2006). Other studies have

reported enhanced HPA responsivity to psychosocial

stress in older males and not older females (Kudielka

et al. 2004). Moreover, some studies have shown no

age-related effects on HPA axis reactivity; see

Kudielka et al. (2009) for a review of individual

differences in salivary cortisol responses to challenge.

Increasing age in healthy participants is also

associated with higher overall basal levels of cortisol

secretion and flatter circadian profiles (van Cauter

et al. 1996; Deuschle et al. 1997). However, some

have suggested that an association is apparent only in

depressed individuals (Kudielka et al. 2000). Other

studies report aberrant cycles in sub-populations of

the healthy old (Ice et al. 2004; Kumari et al. 2010).

Interactions between increasing age, chronic stress

exposure, and changing stress reactivity are a complex

area recently reviewed and discussed by Gruenewald

and Seeman (2010). They conclude that the biological

changes typically observed with advancing age may

render older adults more susceptible to negative

biological and health consequences of chronic stress.

Allostatic overload is consistently associated with

reduced memory function; for example, in a longi-

tudinal study of 194 participants aged 70–79 years,

increased urinary free cortisol excretion was corre-

lated with a decline in memory performance (Seeman

et al. 1997). This study showed significant differences

in memory decline only for females, while males

participating in the study did not present any

significant associations. However, in a different

longitudinal study of 154 healthy men and women

aged between 70 and 79 years, urinary excretion of

epinephrine predicted cognitive decline in men but

not in women (Karlamangla et al. 2005). Interestingly

enough, Seeman et al. (1997) found that the decline

in women’s memory was reversible: declines in

cortisol were associated with improvements in

memory. These data are consistent with evidence

that elevated levels of cortisol are linked to impaired

memory in healthy participants (Wolf et al. 2002a,

2009) and in patients with MCI (Wolf et al. 2002b;

Arsenault-Lapierre et al. 2010).

Chronic stress and hippocampal function

Stress-associated decline in memory is attributed to

hippocampal atrophy and degeneration caused by

excessive levels of cortisol, as this area of the brain is

characterized by high glucocorticoid sensitivity as a

result of dense expression of glucocorticoid receptors

(McEwen 1994; de Kloet et al. 2005). Furthermore,

corticosteroids exert suppressive effects on cell

proliferation (neurogenesis) in the dentate gyrus of

the rat hippocampus (Cameron and Gould 1994).

Thus, the inability to cope with stress may lead to a

reduction in total hippocampal volume and loss of

neurons in this region (Lupien et al. 1999; Warner-

Schmidt and Duman 2006). The hippocampus is a

key area for memory storage and processing, being

one of the main areas affected by AD (Rothman and

Mattson 2010). In fact, hippocampal atrophy is found

in all stages of AD (Fox et al. 1996; Dickerson et al.

2001). Similar hippocampal atrophy is found in

stressed patients and MCI (Lupien et al. 1999), and

can be used as a predictor of conversion of MCI to AD

(Apostolova et al. 2006). However, as noted in the

recent review by Rothman and Mattson (2010), there

are still no studies reporting changes in hippocampal

plasticity in AD after chronic stress.

Cardiovascular factors

Chronic stress is related to increased risk of CV

conditions (Björntorp 1997; Rosmond et al. 1998)

that are implicated in cognitive decline (Gustafson

et al. 2003; Arvanitakis et al. 2004; Kivipelto et al.

2005; Whitmer et al. 2005; Helzner et al. 2009).

Indeed, cerebrovascular disease is the second most

common cause of acquired cognitive impairment and

dementia, and contributes to cognitive decline in the

neurodegenerative dementias (O’Brien et al. 2003).

For example, higher pre-diagnosis total cholesterol

and low-density lipoprotein concentrations (and

history of diabetes, see below) were associated with

faster cognitive decline in patients with AD (Helzner

et al. 2009). There is accumulating evidence that

increased plasma homocysteine level (an amino acid

linked to CV disease) may play a role in cognitive

decline and the onset of AD (Seshadri et al. 2002;

Zhuo et al. in press). A recent study has found a link

between elevated levels of homocysteine in non-

demented patients with type 2 diabetes and hippo-

campal atrophy (Shimomura et al. 2011). The

mechanism by which elevated homocysteine may

affect cognitive function is still under investigation,
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but implicated pathways include increased oxidative

stress, excitotoxic damage, and direct effects on

amyloid-b and tau phosphorylation in the brain (see

Zhuo et al. in press, for a summary).

Type 2 diabetes and the role of brain insulin

Chronic stress and allostatic overload are associated

with a group of related disorders, including type 2

diabetes (Chrousos 2009; Kyrou and Tsigos 2009).

For example, the prevalence of newly diagnosed type 2

diabetes is related to a high number of relatively

common major life events during the preceding 5-year

period (Mooy et al. 2000). This is relevant here,

as type 2 diabetes is associated with cognitive decline

(Wrighten et al. 2009). These deficits are reported

to be more selective for hippocampal-related memory

performance (Gold et al. 2007), and in animal

models these deficits are attributed to deficiencies in

the regulation of insulin within the hippocampus

(Moosavi et al. 2007). Insulin mediates several brain

functions including cognition and memory (Craft

et al. 1996; Craft and Watson 2004), which may

be associated with a high concentration of insulin

receptors in the hippocampus (Craft et al. 1996;

Craft and Watson 2004; Craft 2009). In the

hippocampus, insulin appears to have some neuro-

protective effects against memory loss in animal and

human studies (Moosavi et al. 2007; Reagan 2007).

Insulin and insulin receptors are reduced in animal

models of AD, suggesting that insulin-signaling

pathways might be impaired (Takeda et al. 2010;

Wang et al. 2010). Increased plasma insulin admin-

istration through intravenous infusion improved

memory in AD patients (Craft et al. 1996).

Furthermore, Wang et al. (2010) demonstrated that

diabetes induced by streptozotocin increased the

amyloid load in a transgenic mouse model of AD.

Another study using a mouse model of AD with

diabetes indicates that the diabetic condition increases

cognitive dysfunction, along with vascular inflam-

mation and increased amyloid burden (Takeda et al.

2010). These changes were mediated by impaired

brain insulin signaling. Furthermore, in this study,

amyloid pathology seemed to negatively impact

diabetes pathogenesis, once again pointing to the

presence of deteriorating cycles of negatively interact-

ing systems.

Brain-derived neurotrophic factor (BDNF)

Levels of BDNF are diminished in the hippocampus

of patients with AD (Podewils et al. 2005; Querfurth

and LaFerla 2010). There is compelling evidence

from mice experiments on the negative impact of

stress on BDNF production (reviewed in Duman and

Monteggia 2006). Stress may play a key role in the

growth factor’s cascade due to altered levels of cortisol

(Chao et al. 1998; Schaaf et al. 1998), serotonin

(Vaidya et al. 1997), or interleukin-1b (Barrientos

et al. 2003) in the hippocampus, interfering with

growth factor signaling, reducing the BDNF avail-

ability in the hippocampus, and resulting in a decrease

in neurogenesis and brain plasticity.

Inflammation

There is a strong correlation between inflammatory

responses and the early stages of AD in humans

(Parachikova et al. 2007). In rats, acute stress may

facilitate innate immunity, and PA enhances this

positive effect (Fleshner et al. 2002). However,

chronic stress results in excessive levels of inflamma-

tory markers (McEwen 2008). Furthermore, elevated

levels of pro-inflammatory factors may be responsible

for the decreased levels of growth factors, especially in

the hippocampus [see Cotman et al. (2007) for a

review of human and animal literature]. Inflammation

increases peripheral and central risk factors driving

cognitive decline and neurodegeneration in humans

and rodents (Yaffe et al. 2003; Cotman et al. 2007).

Melancholic depression

Hippocampus atrophy, insulin resistance, decreased

BNDF levels, and increased inflammation are also

shown in patients with melancholic depression

(Rothermundt and Arolt 2001; Duman 2005; Kyrou

and Tsigos 2009). In parallel, serotonin expression is

inhibited by depression and chronic stress (Cameron

and Gould 1994; Lopez et al. 1998). High corticos-

terone levels decrease the density of 5HT fibers or

5HT1A receptors in rat brain (Cameron and Gould

1994). Data derived from studies on postmortem

human brain tissue indicate that serotonin may play an

important role in learning and memory formation

(Elliot et al. 2009), possibly through enhancing

neurogenesis in the dentate gyrus via activation of

the 5HT1A receptor (Gould 1999).

Oxidative stress

Oxidative stress, the imbalance in production of

reactive oxygen species (ROS) and antioxidative

defense (Gella and Durani 2009), is associated with

both psychological stress and experimental models of

AD (Rothman and Mattson 2010). ROS are

physiological products of aerobic metabolism involved

in cellular repair and adaptation. However, ROS

overproduction is strongly implicated as a causal

factor in the aging process, and occurs in neurode-

generative diseases such as Parkinson’s and AD

(Radak et al. 2005, 2008) and correlated with

cognitive decline (Gella and Durani 2009). In

experimental animal models of AD, oxidative damage

precedes pathological changes in AD (Querfurth and
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LaFerla 2010), implicating ROS in disease onset.

b-amyloid peptide (Ab) is a potent generator of ROS,

making it a prime generator of this damage and Ab

accumulation and a possible etiological factor in AD

(Querfurth and LaFerla 2010; Wan et al. 2011).

Experiments with male Wistar rats have shown that

social stress (isolation) increases oxidative stress

(Pajović et al. 2006). Moreover, other stressors (such

as restraint or immobilization) increase the production

of ROS (Kovács et al. 1996; Zaidi and Banu 2004).

Not surprisingly, direct administration of corticoster-

one in rats promotes oxidative stress in the brain,

suggesting that the stress neuroendocrine system plays

a causal role in the oxidative stress process (Zafir and

Banu 2009). At the same time, rats subjected to

oxidative stress display serious damage to hippocam-

pal pyramidal cells that is linked to impaired cognitive

function (Sato et al. 2010).

Summary

Evidence from animal and human studies indicates

that chronic psychological stress can impact upon a

number of different interconnected routes relevant

to cognition. It is also worth emphasizing that

the hippocampus is involved in the regulation of the

HPA axis (Jacobson and Sapolsky 1991; Lupien et al.

1998; Lupien and Lepage 2001). The hippocampus is

rich in glucocorticoid receptors and many studies have

demonstrated their role in HPA feedback regulation.

In general, animal studies have shown that lesions to

the hippocampus result in elevated corticosterone

levels under basal and post-stress conditions (Wilson

et al. 1980; Sapolsky et al. 1984). Stress-induced

atrophy in this region can lead to further loss of the

feedback inhibition of this system and a consequent

reciprocal cycle of deterioration (Warner-Schmidt and

Duman 2006).

The HPA axis in AD

HPA axis dysfunction is found in the early stages of

patients with AD (Csernansky and Dong 2006), with

reports of elevated basal levels of circulating cortisol

(Swanwick et al. 1998; Wahbeh et al. 2008) and the

inability to suppress cortisol after a dexamethasone

(DEX) challenge (Hatzinger et al. 1995; Näsman et al.

1995). Furthermore, there is a relationship between

hypercortisolemia and progression of the disease in

humans (Weiner et al. 1993, 1997). In both of these

studies, higher values of midday serum cortisol

concentrations were associated with a more rapid

cognitive decline. However, the sample size in these

studies was small: just 12 patients followed up for

12 months in the first study, and 9 patients followed

longitudinally for 2–3 years in the second study.

Consistent with these findings, higher baseline

morning cortisol levels are associated with a greater

level of cognitive impairment in 27 patients diagnosed

with AD (Miller et al. 1998). Similarly, higher

morning levels of plasma cortisol are linked to rapid

disease progression and decreased performance in

neuropsychological tests in patients with mild or very

mild AD (Csernansky and Dong 2006). This latter

study was a longitudinal design, in which 33

community-dwelling participants with very mild and

mild Alzheimer-type dementia [scores of 0.5 and 1 on

the five-point Clinical Dementia Rating Scale

(CDRS)] and 21 participants without dementia

provided plasma for determination of morning cortisol

concentration at the start of the study. Subsequently,

they performed a battery of neuropsychological tests

and the CDRS annually for up to 4 years. In both

groups of dementia participants combined, but not in

those without dementia; higher plasma cortisol levels

were associated with more rapidly increasing symp-

toms and more rapidly decreasing performance on

neuropsychological tests. The results support the idea

of a negative impact of elevated cortisol levels on

cognitive performance and thus on the progression

of AD. However, this small study was not able to

distinguish very mild from no dementia in terms of

morning plasma cortisol levels at the start of the study.

Some of the most persuasive data linking psycho-

logical stress and AD are evidence of increased

formation of amyloid-b plaques and protein tau

“tangles,” alongside a decrease in their degradation,

following stress exposure in mice models of AD

(Green et al. 2006; Jeong et al. 2006; Dong et al.

2008; Lee et al. 2009). These neuropathological

features are considered the two main hallmarks of

AD and implicate stress in the disease process, rather

than just cognitive function. However, it is also

possible that elevated levels of amyloid-b plaques in

the hippocampus may precede elevations in basal

levels of plasma corticosterone, which could imply

that the observed alteration in the HPA axis in AD

may be subsequent to neuropathology (Green et al.

2006; Nuntagij et al. 2009; Rothman and Mattson

2010). Further work is required to elucidate the extent

to which these pathways are causally associated in AD.

Converging evidence from human and animal

studies indicates that chronic stress and AD cause

similar cognitive impairments and pathological hall-

marks, specifically in the hippocampus, and that

stress may both increase the risk of developing AD and

cause a more rapid disease progression (Rothman and

Mattson 2010; see Figure 1).

The stress–AD link implies that stress management

could be a key component of AD prevention and

treatment. Within non-pharmacological approaches,

PA could be an inexpensive option for reducing the

effects of stress, with many proven health benefits

and very little or no side effects. However, to our

knowledge, the mechanism of the effect of PA on
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disease progression in AD patients has not been

explored.

PA and stress: current evidence of interactions

and mechanisms

In the UK, it is recommended that adults should

participate in a minimum of 30 min of at least

moderate intensity activity (such as brisk walking,

cycling, or climbing the stairs) on 5 or more days of

the week (Department of Health 2004) to maintain

health and well-being. However, only 39% of men and

29% of women in England meet this recommended

level (Craig et al. 2008). PA participation has

remained low despite its benefits being widely

publicized. Guidelines for older adults are provided

by the World Health Organisation (2010). It is

recommended that older adults (65 years plus) should

do at least 150 min of moderate intensity, or 75 min of

vigorous intensity, aerobic PA throughout a typical

week or do an equivalent combination of moderate-

and vigorous-intensity activity. Promoting PA for

older adults is deemed especially important because

this population is the least physically active of any

age group.

Evidence of the effects of PA on stress response

systems is complicated by the wide array of PA and

stressors investigated. For ease of reference, relevant

studies are summarized in Tables I (for evidence in

humans) and II (for evidence from rodent studies).

The tables indicate that there is increasing evidence

of the benefits of PA to cope with psychological/

exercise stress from both human (for example, Sinyor

et al. 1983; Holmes and McGilley 1987; Deuster et al.

1989; Brown 1991; Korkushko et al. 1995; Unger et al.

1997; Broocks et al. 2001; Salmon 2001; Traustadóttir

et al. 2004; Rimmele et al. 2007; Rimmele et al. 2009)

and animal studies (for example, Watanabe et al. 1991;

Droste et al. 2003, 2006, 2007; Greenwood et al. 2007;

Hill et al. 2010; Kannangara et al. 2011). However,

there are significant inconsistencies in both literatures

(humans: de Geus et al. 1993, see meta-analysis

by Jackson and Dishman 2006; Heiden et al. 2007;

rodents: Moraska et al. 2000; Fediuc et al. 2006).

There are several potential reasons for identified

inconsistencies, including the use of different PA

training protocols and different stressors (Rimmele

et al. 2007). It seems that the effects of PA may vary

depending on factors such as intensity, type, and the

duration of the exercise. In human studies, population

characteristics, such as age and gender, are also

important, as these factors are associated with activity

of the stress neuroendocrine system and may interact

with the effects of PA. Another factor that needs to be

taken into consideration, for both human and rodent

studies, is whether the interaction being studied is

between PA and a physical exercise stressor (which

may or may not be novel) or psychological stressor,

which is typically novel (see Dickerson and Kemeny

2004). Considering all these possibly interacting

variables, it is not surprising that, alongside the

controversy about the interaction of PA with

psychological stress, the underlying mechanisms that

mediate the claimed effects remain unclear.

The effects of PA on responses to physical exercise stress

It is clear that the effects of a single bout of PA are

different than those seen with regular PA. Acute bursts

of PA induce a strong neuroendocrine stress response

in rodents (Timofeeva et al. 2003; Campbell et al.

2009). Similarly, short bursts of PA increase levels of

adrenocorticotrophic hormone (ACTH) and gluco-

corticoids in humans (Kiive et al. 2004), especially

if the exercise is of high intensity (Viru et al. 1992).

In rodents, these changes are attenuated after long-

term adaptation to exercise [Campbell et al. 2009;

unless absolute intensity is gradually increased (Park

et al. 2005)]. In humans, if the intensity of the exercise

is moderate or light, acute exercise may not increase

cortisol secretion (Nieman et al. 2005).

Long-term regular physical training in rodents may

reduce or enhance the stress response, depending on

whether exposure is to a familiar physical stressor, a

novel physical stressor, or a psychological stressor

(Droste et al. 2003, 2006, 2007). There is evidence

from both human and rodent studies that exercise

training produces adaptations in HPA axis reactivity to

familiar acute exercise stress. This includes evidence

from rodents of higher threshold of activation and

attenuated ACTH and corticosterone responses

(Watanabe et al. 1991; White-Welkley et al. 1995;

Dishman et al. 2000). Greater maximal capacity of the

adrenal glands is reported in both human (Luger et al.

1987; Kjær 1992; Deuster et al. 1998) and rodent

studies (Watanabe et al. 1991). Similar adaptations

are also reported in older humans (Korkushko et al.

1995). However, in rats, physical training increases

HPA axis reactivity to a novel physical stressor (White-

Welkley et al. 1996; Droste et al. 2007). The higher

cortisol responses after a novel physical stress may be

adaptive, as novel physical stressors can be seen as

life-threatening challenges, requiring increased gluco-

corticoid levels to successfully respond to the physical

challenge (Droste et al. 2007).

The effects of PA on responses to psychological stress

The interaction between PA training and psychologi-

cal stress is called “cross-stress adaptation.” Studies

have reported inconsistent findings, especially in

human populations, with most of them focusing on

CV changes (Rimmele et al. 2007). Some studies

focusing on HPA axis reactivity did not show lower

levels of cortisol after a psychological stress for aero-

bically fit human participants (Sinyor et al. 1983;
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ó
tt

ir

et
a
l.

(2
0
0
5
)

C
a
se

–
co

n
tr

o
l

st
u

d
y

3
6

fe
m

a
le

s:
1
0

y
o
u

n
g

u
n

fi
t

(1
9

–
3
6

y
ea

rs
),

1
4

o
ld

er

u
n

fi
t

(5
9

–
8
1

y
ea

rs
),

1
2

o
ld

er
fi

t
(5

9
–

8
1

y
ea

rs
)

C
la

ss
ifi

ed
a
s

u
n

fi
t

o
r

fi
t

b
a
se

d

o
n

th
ei

r
m

a
x
im

a
l

o
x
y
g
en

co
n

su
m

p
ti

o
n

(V
O

2
m

a
x
.)

,

th
ei

r
a
g
e,

a
n

d
th

e
A

m
er

ic
a
n

H
ea

rt
A

ss
o
ci

a
ti

o
n

C
la

ss
ifi

ca
ti

o
n

C
ri

te
ri

a

M
a
tt

S
tr

es
s

R
ea

ct
iv

it
y

P
ro

to
co

l

w
h

ic
h

co
m

b
in

es
m

en
ta

l

ch
a
ll
en

g
es

,
a

p
h
y
si

ca
l

ch
a
ll
en

g
e,

a
n

d
a

p
sy

ch
o
so

ci
a
l

st
re

ss
o
r

O
ld

er
u

n
fi

t
w

o
m

en
h

a
d

g
re

a
te

r
co

rt
is

o
l

re
sp

o
n

se
s

to
th

e
ch

a
ll
en

g
e

th
a
n

th
e

y
o
u

n
g
-u

n
fi

t
a
n

d
th

e
o
ld

er
fi

t
w

o
m

en
R

es
u

lt
s

su
g
g
es

t
th

a
t

a
g
in

g
is

a
ss

o
ci

a
te

d
w

it
h

g
re

a
te

r

re
a
ct

iv
it

y
o
f

th
e

H
P
A

a
x
is

b
u

t
P
A

a
tt

en
u

a
te

s

th
is

re
a
ct

iv
it

y

N
ie

m
a
n

et
a
l.

(2
0
0
5
)

C
a
se

–
co

n
tr

o
l

st
u

d
y

w
it

h
n

o
co

n
tr

o
l

g
ro

u
p

1
5

h
ea

lt
h
y

a
n

d
n

o
n

-o
b
es

e

fe
m

a
le

s.
M

ea
n

a
g
e:

3
7

y
ea

rs

P
eo

p
le

th
a
t

re
p

o
rt

ed
to

b
e

a
cc

u
st

o
m

ed
to

re
g
u

la
r

w
a
lk

in
g

W
a
lk

in
g

fo
r

3
0

m
in

a
t

a
n

in
te

n
si

ty

o
f

6
0
%

o
f

V
O

2
m

a
x
.

W
a
lk

in
g

u
si

n
g

th
e

B
O

D
Y

B
A

T
A

er
o
b

ic

E
x
er

ci
se

r

N
o

si
g
n

ifi
ca

n
t

in
cr

ea
se

s
in

p
la

sm
a

co
rt

is
o
l

w
er

e
se

en
o
ve

r
ti

m
e

W
a
lk

in
g

p
ro

d
u

ce
d

m
o
d

es
t

p
o
si

ti
ve

ch
a
n

g
es

in
im

m
u

n
e

p
a
ra

m
et

er
s

H
ei

d
en

et
a
l.

(2
0
0
7
)

R
a
n

d
o
m

iz
ed

co
n

tr
o
ll
ed

tr
ia

l

7
5

p
a
rt

ic
ip

a
n

ts
w

it
h

st
re

ss
-r

el
a
te

d
il
ln

es
se

s

(2
8

co
g
n

it
iv

e
b
eh

a
v
io

ra
l

in
te

rv
en

ti
o
n

;
2
3

P
A

in
te

rv
en

ti
o
n

;
2
4

u
su

a
l

ca
re

co
n

tr
o
l

g
ro

u
p

M
ea

n
a
g
e:

4
4

y
ea

rs

T
w

o
se

ss
io

n
s

p
er

w
ee

k
fo

r

1
0

w
ee

k
s

A
u

to
n

o
m

ic
re

g
u

la
ti

o
n

te
st

s

(m
en

ta
l

a
ri

th
m

et
ic

,
h
a
n

d
g
ri

p
,

a
n

d
d

ee
p

b
re

a
th

in
g

a
t

a
ra

te

o
f

6
b
re

a
th

s/
m

in
)

A
lg

o
m

et
ri

c
m

ea
su

re
m

en
ts

(p
re

ss
u

re
p
a
in

th
re

sh
o
ld

s)

Q
u

es
ti

o
n

n
a
ir

es
a
b

o
u

t
p

h
y
si

ca
l

a
n

d
m

en
ta

l
h

ea
lt

h
a
n

d
b

eh
a
v
io

ra
l

p
a
tt

er
n

s

N
ei

th
er

P
A

n
o
r

co
g
n

it
iv

e
b
eh

a
v
io

r
tr

a
in

in
g

p
ro

d
u

ce
d

si
g
n

ifi
ca

n
t

im
p

ro
v
em

en
ts

in

a
u

to
n

o
m

ic
a
ct

iv
it

ie
s

a
n

d
p

re
ss

u
re

p
a
in

th
re

sh
o
ld

s
co

m
p
a
re

d
w

it
h

u
su

a
l

ca
re

R
im

m
el

e
et

a
l.

(2
0
0
7
)

C
a
se

–
co

n
tr

o
l

st
u

d
y

2
2

tr
a
in

ed
el

it
e

sp
o
rt

sm
en

(2
1
.5

0
^

2
.3

5
y
ea

rs
)

a
n

d

2
2

h
ea

lt
h
y

u
n

tr
a
in

ed
m

en

(2
1
.8

4
^

2
.2

4
ye

a
rs

)

T
ra

in
ed

m
en

w
er

e
m

o
st

ly

en
d

u
ra

n
ce

a
th

le
te

s
w

it
h

a
S

w
is

s

O
ly

m
p
ic

C
a
rd

a
n

d
/o

r
m

em
b
er

s

o
f

th
e

S
w

is
s

n
a
ti

o
n

a
l

te
a
m

s.

U
n

tr
a
in

ed
m

en
re

p
o
rt

ed
to

ex
er

ci
se

fo
r

le
ss

th
a
n

2
h

p
er

w
ee

k

P
sy

ch
o
so

ci
a
l

la
b

o
ra

to
ry

st
re

ss
o
r

(T
ri

er
S

o
ci

a
l

S
tr

es
s

T
es

t)

E
li
te

sp
o
rt

sm
en

sh
o
w

ed
si

g
n

ifi
ca

n
t

lo
w

er

co
rt

is
o
l

se
cr

et
io

n
a
n

d
lo

w
er

h
ea

rt
ra

te

re
a
ct

iv
it

y
to

p
sy

ch
o
so

ci
a
l

st
re

ss
th

a
n

u
n

tr
a
in

ed
m

en

T
ra

in
ed

m
en

w
er

e
a
ls

o
g
en

er
a
ll
y

ca
lm

er

a
n

d
ex

h
ib

it
ed

b
et

te
r

m
o
o
d

a
n

d
lo

w
er

a
n

x
ie

ty

R
im

m
el

e
et

a
l.

(2
0
0
9
)

C
a
se

–
co

n
tr

o
l

st
u

d
y

1
8

el
it

e
sp

o
rt

sm
en

(2
4
.1

7
^

0
.8

9
ye

a
rs

);

5
0

a
m

a
te

u
r

sp
o
rt

sm
en

(2
4
.8

2
^

0
.4

3
ye

a
rs

);

2
4

u
n

tr
a
in

ed
m

en

(2
3
.6

5
^

0
.6

1
ye

a
rs

)

P
a
rt

ic
ip

a
n

ts
w

er
e

cl
a
ss

ifi
ed

in
to

th
re

e
g
ro

u
p

s
b

a
se

d
o
n

a
p
h
y
si

ca
l

fi
tn

es
s

te
st

a
n

d

a
se

lf
-r

ep
o
rt

q
u

es
ti

o
n

n
a
ir

e

P
sy

ch
o
so

ci
a
l

la
b

o
ra

to
ry

st
re

ss
o
r

(T
ri

er
S

o
ci

a
l

S
tr

es
s

T
es

t)

E
li
te

sp
o
rt

sm
en

sh
o
w

ed
si

g
n

ifi
ca

n
t

lo
w

er

co
rt

is
o
l

se
cr

et
io

n
,

h
ea

rt
ra

te
,

a
n

d
st

a
te

a
n

x
ie

ty
re

sp
o
n

se
s

th
a
n

u
n

tr
a
in

ed
m

en

A
m

a
te

u
r

sp
o
rt

sm
en

sh
o
w

ed
a

si
g
n

ifi
ca

n
t

h
ea

rt
ra

te
re

sp
o
n

se
re

d
u

ct
io

n
b

u
t

n
o

d
if

fe
re

n
ce

s
in

co
rt

is
o
l

re
sp

o
n

se
s

th
a
n

u
n

tr
a
in

ed
m

en

J. Tortosa-Martı́nez and A. Clow250



T
a
b
le

II
.

E
ff

ec
ts

o
f

P
A

o
n

st
re

ss
re

sp
o
n

d
in

g
ro

d
en

t
st

u
d

ie
s.

A
u

th
o
r

(y
ea

r)
A

n
im

a
ls

T
y
p
e

o
f

P
A

T
y
p
e

o
f

st
re

ss
o
r

R
ep

o
rt

ed
o
u

tc
o
m

es

W
a
ta

n
a
b

e
et

a
l.

(1
9
9
0
)

M
a
le

a
lb

in
o

W
is

ta
r

ra
ts

F
o
rc

ed
sw

im
m

in
g

6
0

m
in

a
d

ay
5

d
ay

s
a

w
ee

k
d

u
ri

n
g

4
w

ee
k
s

S
w

im
m

in
g

P
la

sm
a

le
v
el

s
o
f

A
C

T
H

a
n

d
co

rt
ic

o
st

er
o
n

e
a
ft

er
a
cu

te

ex
er

ci
se

a
re

re
d

u
ce

d
w

it
h

ex
er

ci
se

tr
a
in

in
g

W
h

it
e-

W
el

k
le

y
et

a
l.

(1
9
9
5
)

O
va

ri
ec

to
m

iz
ed

fe
m

a
le

S
p

ra
g
u

e-
D

aw
le

y
ra

ts

F
o
rc

ed
tr

ea
d

m
il
l

ru
n

n
in

g

fo
r

6
w

ee
k
s

T
re

a
d

m
il
l

ru
n

n
in

g

N
o
v
el

im
m

o
b
il
iz

a
ti

o
n

E
x
er

ci
se

d
ra

ts
sh

o
w

ed
a
n

a
tt

en
u

a
te

d
A

C
T

H
a
n

d

p
ro

la
ct

in
re

sp
o
n

se
to

ru
n

n
in

g
,

b
u

t
a
n

in
cr

ea
se

d
A

C
T

H

re
sp

o
n

se
to

im
m

o
b
il
iz

a
ti

o
n

co
m

p
a
re

d

w
it

h
se

d
en

ta
ry

ra
ts

W
h

it
e-

W
el

k
le

y
et

a
l.

(1
9
9
6
)

O
va

ri
ec

to
m

iz
ed

fe
m

a
le

S
p

ra
g
u

e-
D

aw
le

y
ra

ts

F
o
rc

ed
tr

ea
d

m
il
l

ru
n

n
in

g

fo
r

6
w

ee
k
s

T
re

a
d

m
il
l

ru
n

n
in

g

N
o
v
el

fo
o
ts

h
o
ck

N
o
v
el

im
m

o
b
il
iz

a
ti

o
n

E
x
er

ci
se

d
ra

ts
sh

o
w

ed
in

cr
ea

se
d

H
P
A

a
x
is

re
sp

o
n

se
s

to
n

o
v
el

fo
o
ts

h
o
ck

co
m

p
a
re

d
w

it
h

se
d

en
ta

ry
ra

ts

D
is

h
m

a
n

et
a
l.

(2
0
0
0
)

F
em

a
le

S
p

ra
g
u

e-
D

aw
le

y
ra

ts
F

o
rc

ed
tr

ea
d

m
il
l

ru
n

n
in

g

fo
r

6
w

ee
k
s

F
a
m

il
ia

r
tr

ea
d

m
il
l

ru
n

n
in

g

N
o
v
el

im
m

o
b
il
iz

a
ti

o
n

In
cr

ea
se

d
n

o
re

p
in

ep
h

ri
n

e
le

v
el

s
in

h
y
p

o
th

a
la

m
ic

a
n

d

li
m

b
ic

b
ra

in
re

g
io

n
s

w
it

h
tr

ea
d

m
il
l

ru
n

n
in

g
a
n

d

im
m

o
b
il
iz

a
ti

o
n

in
ex

er
ci

se
d

ra
ts

M
o
ra

sk
a

et
a
l.

(2
0
0
0
)

M
a
le

S
p

ra
g
u

e-
D

aw
le

y
ra

ts
F

o
rc

ed
tr

ea
d

m
il
l

ru
n

n
in

g

fo
r

8
w

ee
k
s

F
o
rc

ed
tr

ea
d

m
il
l

ru
n

n
in

g

w
it

h
fo

o
ts

h
o
ck

F
o
rc

ed
ru

n
n

in
g

h
a
d

si
m

il
a
r

ef
fe

ct
a
s

ch
ro

n
ic

st
re

ss
w

it
h

a
d

re
n

a
l

h
y
p
er

tr
o
p
h
y,

th
y
m

ic
in

vo
lu

ti
o
n

,
d

ec
re

a
se

d

se
ru

m
co

rt
ic

o
st

er
o
id

-b
in

d
in

g
g
lo

b
u

li
n

,
in

cr
ea

se
d

ly
m

p
h

o
cy

te
n

it
ri

te
co

n
ce

n
tr

a
ti

o
n

s,

su
p
p
re

ss
ed

ly
m

p
h
o
cy

te
p
ro

li
fe

ra
ti

o
n

,
a
n

d

su
p
p
re

ss
ed

a
n

ti
g
en

-s
p
ec

ifi
c

Ig
M

F
le

sh
n

er
et

a
l.

(2
0
0
2
)

M
a
le

H
a
rl

a
n

S
p

ra
g
u

e-
D

aw
le

y

sp
ec

ifi
c

p
a
th

o
g
en

-f
re

e
ra

ts

V
o
lu

n
ta

ry
w

h
ee

l
ru

n
n

in
g

fo
r

6
–

8
w

ee
k
s

T
a
il
s

sh
o
ck

a
n

d
b

a
ct

er
ia

l

ch
a
ll
en

g
e

P
A

en
h

a
n

ce
d

th
e

b
en

efi
ts

o
f

a
cu

te
st

re
ss

o
n

in
n

a
te

im
m

u
n

it
y

D
ro

st
e

et
a
l.

(2
0
0
3
)

M
a
le

C
5
7
B

L
/6

N
m

ic
e

V
o
lu

n
ta

ry
w

h
ee

l
ru

n
n

in
g

fo
r

4
w

ee
k
s

F
o
rc

ed
sw

im
m

in
g

a
n

d

re
st

ra
in

t
st

re
ss

N
o
v
el

en
v
ir

o
n

m
en

t

E
x
er

ci
si

n
g

m
ic

e
h

a
d

h
ig

h
er

co
rt

ic
o
st

er
o
n

e
le

ve
ls

in

re
sp

o
n

se
to

fo
rc

ed
sw

im
m

in
g

o
r

re
st

ra
in

t
st

re
ss

co
m

p
a
re

d
w

it
h

se
d

en
ta

ry
m

ic
e,

b
u

t
A

C
T

H
le

ve
ls

re
m

a
in

ed
si

m
il
a
r

E
x
er

ci
si

n
g

m
ic

e
p

re
se

n
te

d
lo

w
er

A
C

T
H

re
sp

o
n

se
s

to

n
o
v
el

en
v
ir

o
n

m
en

t
co

m
p
a
re

d
w

it
h

se
d

en
ta

ry
m

ic
e

T
im

o
fe

ev
a

et
a
l.

(2
0
0
3
)

M
a
le

W
is

ta
r

ra
ts

A
cu

te
b

o
u

t
o
f

6
0

m
in

o
f

in
te

n
se

fo
rc

ed
tr

ea
d

m
il
l

ru
n

n
in

g

T
re

a
d

m
il
l

ru
n

n
in

g
A

cu
te

in
te

n
se

tr
ea

d
m

il
l

ru
n

n
in

g
le

a
d

s
to

a
st

ro
n

g

ex
p
re

ss
io

n
o
f

c-
fo

s
m

R
N

A
a
n

d
a
ct

iv
a
te

s
th

e

h
y
p
o
p
h
y
si

o
tr

o
p
ic

C
R

H
sy

st
em

P
a
rk

et
a
l.

(2
0
0
5
)

S
p
ra

g
u

e-
D

aw
le

y
ra

ts
F

o
rc

ed
d

a
il
y

sw
im

m
in

g

4
5

m
in

/d
a
y,

5
d

ay
s

a
w

ee
k
,

d
u

ri
n

g
2
,

4
,

a
n

d
6

w
ee

k
s

S
w

im
m

in
g

a
n

d
sh

a
m

ex
er

ci
se

H
P
A

re
sp

o
n

se
to

ex
er

ci
se

tr
a
in

in
g

is
n

o
t

a
tt

en
u

a
te

d

if
ex

er
ci

se
in

te
n

si
ty

is
g
ra

d
u

a
ll
y

in
cr

ea
se

d

E
x
er

ci
se

tr
a
in

in
g

p
re

ve
n

ts
in

cr
ea

se
s

in
b
a
sa

l

p
it

u
it

a
ry

–
a
d

re
n

a
l

a
ct

iv
it

y

D
ro

st
e

et
a
l.

(2
0
0
6
)

M
a
le

C
5
7
B

L
/6

N
m

ic
e

V
o
lu

n
ta

ry
w

h
ee

l
ru

n
n

in
g

N
o
v
el

en
v
ir

o
n

m
en

t

R
es

tr
a
in

t
st

re
ss

E
x
er

ci
si

n
g

m
ic

e
h
a
d

h
ig

h
er

p
la

sm
a

co
rt

ic
o
st

er
o
n

e
le

ve
ls

in
re

sp
o
n

se
to

re
st

ra
in

t
st

re
ss

co
m

p
a
re

d
w

it
h

se
d

en
ta

ry

ra
ts

E
x
er

ci
si

n
g

ra
ts

p
re

se
n

te
d

lo
w

er
p

la
sm

a
co

rt
ic

o
st

er
o
n

e

re
sp

o
n

se
to

a
n

o
v
el

en
v
ir

o
n

m
en

t
co

m
p
a
re

d
w

it
h

se
d

en
ta

ry
ra

ts

F
ed

iu
c

et
a
l.

(2
0
0
6
)

M
a
le

S
p
ra

g
u

e-
D

aw
le

y
ra

ts
V

o
lu

n
ta

ry
w

h
ee

l
ru

n
n

in
g

fo
r

5
w

ee
k
s

R
es

tr
a
in

t
st

re
ss

E
x
er

ci
si

n
g

ra
ts

sh
o
w

ed
n

o
rm

a
l

ci
rc

a
d

ia
n

co
rt

ic
o
st

er
o
id

se
cr

et
io

n
,

n
o
rm

a
l

n
eg

a
ti

ve
-f

ee
d

b
a
ck

in
h
ib

it
io

n
,

a
n

d
a
n

a
tt

en
u

a
te

d
in

cr
ea

se
in

p
la

sm
a

A
C

T
H

le
ve

ls
a
ft

er
a

n
o
v
el

st
re

ss
co

m
p

a
re

d
w

it
h

se
d

en
ta

ry
ra

ts

Exercise, HPA axis, and Alzheimer’s 251



T
A

B
L

E
II

–
co

n
ti
n
u
ed

A
u

th
o
r

(y
ea

r)
A

n
im

a
ls

T
y
p
e

o
f

P
A

T
y
p
e

o
f

st
re

ss
o
r

R
ep

o
rt

ed
o
u

tc
o
m

es

D
ro

st
e

et
a
l.

(2
0
0
7
)

M
a
le

S
p

ra
g
u

e-
D

aw
le

y
ra

ts
V

o
lu

n
ta

ry
w

h
ee

l
ru

n
n

in
g

fo
r

4
w

ee
k
s

F
o
rc

ed
sw

im
m

in
g

N
o
v
el

en
v
ir

o
n

m
en

t

E
x
er

ci
si

n
g

ra
ts

h
a
d

h
ig

h
er

co
rt

ic
o
st

er
o
n

e
le

ve
ls

in

re
sp

o
n

se
to

fo
rc

ed
sw

im
m

in
g

o
r

re
st

ra
in

t
st

re
ss

co
m

p
a
re

d
w

it
h

se
d

en
ta

ry
ra

ts

E
x
er

ci
si

n
g

ra
ts

p
re

se
n

te
d

lo
w

er
co

rt
ic

o
st

er
o
n

e
re

sp
o
n

se

to
a

n
o
v
el

en
v
ir

o
n

m
en

t
co

m
p
a
re

d
w

it
h

se
d

en
ta

ry
ra

ts

A
C

T
H

le
v
el

s
re

m
a
in

ed
si

m
il
a
r

fo
r

b
o
th

g
ro

u
p

s
in

b
o
th

ty
p

es
o
f

st
re

ss
o
rs

G
re

en
w

o
o
d

et
a
l.

(2
0
0
7
)

A
d

u
lt

m
a
le

F
is

ch
er

F
3
4
4

ra
ts

V
o
lu

n
ta

ry
w

h
ee

l
ru

n
n

in
g

fo
r

2
a
n

d
6

w
ee

k
s

S
h

u
tt

le
b

o
x

es
ca

p
e

a
ft

er

u
n

co
n

tr
o
ll
a
b
le

fo
o
ts

h
o
ck

V
o
lu

n
ta

ry
w

h
ee

l
ru

n
n

in
g

fo
r

6
w

ee
k
s,

in
it

ia
te

d
a
ft

er

st
re

ss
o
r

ex
p
o
su

re
,

re
d

u
ce

d
th

e
ex

p
re

ss
io

n
o
f

co
n

d
it

io
n

ed
fr

ee
zi

n
g

a
n

d
re

ve
rs

ed
th

e
es

ca
p
e

d
efi

ci
t

fr
o
m

th
e

sh
u

tt
le

b
o
x
.

T
w

o
w

ee
k
s

o
f

w
h
ee

l
ru

n
n

in
g

d
id

n
o
t

p
ro

d
u

ce
a
n
y

ef
fe

ct
s

C
a
m

p
b

el
l

et
a
l.

(2
0
0
9
)

M
a
le

S
p

ra
g
u

e-
D

aw
le

y
ra

ts
V

o
lu

n
ta

ry
sh

o
rt

-t
er

m

(2
w

ee
k
s)

a
n

d
lo

n
g
-t

er
m

(8
w

ee
k
s)

w
h

ee
l

ru
n

n
in

g

R
es

tr
a
in

t
st

re
ss

a
n

d
A

C
T

H

ch
a
ll
en

g
e

T
w

o
w

ee
k
s

o
f
v
o
lu

n
ta

ry
w

h
ee

l
ru

n
n

in
g

in
it

ia
ll
y

p
ro

d
u

ce
s

h
y
p
er

a
ct

iv
it

y
o
f

H
P
A

a
x
is

th
ro

u
g
h

in
cr

ea
se

in
a
d

re
n

a
l

se
n

si
ti

v
it

y
to

A
C

T
H

,
b
u

t
lo

n
g
-t

er
m

tr
a
in

in
g

a
tt

en
u

a
te

s

th
is

ef
fe

ct

D
ro

st
e

et
a
l.

(2
0
0
9
)

M
a
le

S
p

ra
g
u

e-
D

aw
le

y
ra

ts
V

o
lu

n
ta

ry
w

h
ee

l
ru

n
n

in
g

fo
r

2
d

ay
s,

1
w

ee
k
,

a
n

d
4

w
ee

k
s

F
o
rc

ed
sw

im
m

in
g

N
o
v
el

en
v
ir

o
n

m
en

t

F
o
u

r
w

ee
k
s

o
f

vo
lu

n
ta

ry
w

h
ee

l
ru

n
n

in
g

p
ro

d
u

ce
d

n
o

d
if

fe
re

n
ce

s
in

h
ip

p
o
ca

m
p
a
l-

fr
ee

co
rt

ic
o
st

er
o
n

e

re
sp

o
n

se
s

to
st

re
ss

b
et

w
ee

n
ex

er
ci

se
d

a
n

d
se

d
en

ta
ry

ra
ts

H
il
l

et
a
l.

(2
0
1
0
)

M
a
le

S
p

ra
g
u

e-
D

aw
le

y
ra

ts
V

o
lu

n
ta

ry
w

h
ee

l
ru

n
n

in
g

fo
r

4
w

ee
k
s

W
h
ee

l
ru

n
n

in
g

R
eg

u
la

r
ex

er
ci

se
p
ro

d
u

ce
s

ex
te

n
si

v
e

ch
a
n

g
es

in
th

e

G
A

B
A

er
g
ic

sy
st

em
th

a
t

co
u

ld
ex

p
la

in
so

m
e

o
f

th
e

ch
a
n

g
es

o
b
se

rv
ed

in
st

re
ss

se
n

si
ti

v
it

y
a
n

d
em

o
ti

o
n

a
li
ty

w
it

h
ex

er
ci

se

K
a
n

n
a
n

g
a
ra

et
a
l.

(2
0
1
0
)

Y
o
u

n
g

a
n

d
a
g
ed

fe
m

a
le

m
ic

e
V

o
lu

n
ta

ry
w

h
ee

l
ru

n
n

in
g

fo
r

1
1

d
ay

s

W
h

ee
l

ru
n

n
in

g

Is
o
la

te
d

h
o
u

si
n

g

V
o
lu

n
ta

ry
ex

er
ci

se
re

d
u

ce
s

st
re

ss
a
n

d
in

cr
ea

se
s

h
ip

p
o
ca

m
p

a
l

ce
ll

p
ro

li
fe

ra
ti

o
n

in
a
g
ed

fe
m

a
le

m
ic

e

J. Tortosa-Martı́nez and A. Clow252



Moyna et al. 1999). However, trained men and elite

athletes are reported to have lower cortisol and

heart rate responses to an acute psychological stressor

than untrained men (Rimmele et al. 2007; Rimmele

et al. 2009). More work is required to clarify the

strength of these findings (for example, just how much

exercise is required to generate an advantageous

effect) and to examine the impact of potential

interacting factors such as age and gender.

In studies using mice and rats, results are also

inconsistent. However, in these studies, it is important

to distinguish forced exercise from voluntary exercise

(Droste et al. 2003; Dishman et al. 2006). Long-term

forced exercise produces negative adaptations associ-

ated with chronic stress such as increased adrenal

weight, thymic involution, and decreased serum

corticosteroid-binding globulin (Moraska et al. 2000;

Fediuc et al. 2006). However, long-term voluntary

exercise may positively impact HPA axis regulation

(Hill et al. 2010), contributing to a reversal of the

effects of uncontrolled stress (Greenwood et al. 2007)

and showing appropriate glucocorticoid responses

to stress in mice (Droste et al. 2003, 2006, 2007;

Kannangara et al. 2011).

Greenwood et al. (2007) demonstrated that 6 weeks

of voluntary wheel running after stressor exposure

can reverse the long-lasting behavioral consequences

of uncontrolled stress (shuttle box escape) in rats

(although 2 weeks of exercise was not sufficient to

show positive results). Four weeks of voluntary

running increases the glucocorticoid response to a

novel physical stress (potentially life-threatening

challenge, such as forced swimming), but decreases

by 50% the glucocorticoid response to a mild

psychological stressor such as a novel environment

(Droste et al. 2007). In this study, plasma ACTH

levels remained unchanged in both exercising and

control mice, suggesting adaptive changes at the level

of the adrenal cortex, for example, changes in

sympathoadrenomedullary input (Droste et al. 2007).

These studies suggest that in young animals, the

response to psychological stress is different after

voluntary, as opposed to forced, physical training, and

is dependent on the duration of the training regime.

The benefits of PA for stress in aged animals and

humans have received less attention. Traustadóttir

et al. (2004) found that older women had a higher

HPA axis reactivity to a psychological stressor than

younger women, but this age-related change was

attenuated by physical fitness. Consistent with this

finding, 11 days of voluntary running significantly

lowered plasma corticosterone levels in socially

housed aged mice, when measured at the onset of

the mouse active cycle (Kannangara et al. 2011).

However, more research is required to establish the

benefits of PA upon the aging HPA axis and its

responses to psychological stress. These studies are

needed to inform the development of intervention

strategies relevant to the aging population, as well as

enhance the theoretical understanding of “cross-stress

adaptation.”

PA and corticosterone levels in the hippocampus

Rodent studies have shown that peripheral corticos-

terone levels do not necessarily predict corticosterone

levels in the hippocampus (Droste et al. 2007, 2009),

the brain area of interest for this review. Indeed,

corticosteroid levels were not attenuated in the

hippocampus after 4 weeks of voluntary running

(Droste et al. 2009). The results need to be replicated

and extended in healthy and AD mouse models and

also in human populations to explore whether longer

periods of exercise are needed to reduce corticosteroid

levels in the hippocampus. Furthermore, due to the

many pathways and interconnections existing between

PA, stress, and AD, it is important to determine

whether hippocampal amyloid load, BDNF, oxidative

stress, CV factors, depression, and inflammatory

processes (as described below) are beneficially

affected by PA.

PA, AD, and stress: pathways and

interconnections

PA and cognitive function

There is compelling evidence from longitudinal

studies in humans to show that PA is protective

against MCI, dementia, and AD (Laurin et al. 2001;

Abbott et al. 2004; Podewils et al. 2004; Rovio et al.

2005; Karp et al. 2006; Larson et al. 2006; Simons

et al. 2006; Taaffe et al. 2008; Rovio et al. 2010).

Exercise seems to improve cognitive function,

especially in older adults (Colcombe and Kramer

2003; Heyn et al. 2004; Weuve et al. 2004), and

enhance learning and memory in mice (van Praag et al.

1999, 2005).

Voluntary exercise enhances memory in transgenic

mouse models of AD (Adlard et al. 2005; Parachikova

et al. 2008; Nichol et al. 2009), suggesting that PA

may inhibit the normal progression of the disease.

Equivalent evidence is currently scarce in humans,

although studies show that AD patients’ health and

functioning are positively influenced by participating

in a variety of physical activities (Palleschi et al. 1996;

Arkin 2003; Teri et al. 2003; Rolland et al. 2007;

Williams and Tappen 2007). However, the mechan-

isms of the benefits of PA on cognition in healthy and

AD populations remain unclear. Interestingly enough,

most accepted theories such as reduction in amyloid

load (Adlard et al. 2005), reduction in peripheral risk

factors (Kramer and Erickson 2007), increased

neurotrophic factors (Cotman and Berchtold 2002;

Cotman and Engesser-Cesar 2002; Garza et al.

2004; Berchtold et al. 2005; Vaynman et al. 2006;
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Kramer and Erickson 2007), reduction in the negative

effects of inflammation (Cotman et al. 2007),

improved depression symptoms (Blumenthal et al.

1999; De Moor et al. 2006; Zheng et al. 2006;

Blumenthal et al. 2007), increased serotonin

expression (Ivy et al. 2003; Greenwood et al. 2005),

and a protective effect against oxidative stress

(Vaynman et al. 2006; Radak et al. 2008) may be

linked to stress reduction (Cameron and Gould 1994;

Björntorp 1997; Lopez et al. 1998; Traustadóttir et al.

2005; Duman and Monteggia 2006; Green et al.

2006; Jeong et al. 2006; Dong et al. 2008; McEwen

2008; Chrousos 2009; Kyrou and Tsigos 2009;

Lee et al. 2009; Zafir and Banu 2009), suggesting

that stress reduction could mediate some of the

benefits attributed to PA for AD.

PA and amyloid-b plaques

PA has direct effects on the neuropathological signs

of AD in animal models. Voluntary wheel running

for 5 months, in the TgCRND8 mouse model of AD,

produced an improvement in cognition and a

reduction in the amyloid load in both cortical and

hippocampal regions of the brain (Adlard et al. 2005).

The mechanisms involved may be related to a change

in the processing of the amyloid precursor protein

(APP) seen after 1 month of exercise, with a decrease

in the proteolytic fragments of APP. The reduction

in the amyloid load was considered to be responsible

for the improvement in learning and memory shown

in Morris water maze.

Again, duration of the exercise appears to be a key

factor. In another study, a short-term voluntary wheel

running intervention (3weeks, asopposed to5months)

was not able to reduce the amyloid load, although it

did improve cognition, of a Tg2576 mouse model of

AD (Parachikova et al. 2008). Again, more studies

into the links between PA and the neuropathological

underpinnings of AD, exploring the causal mechan-

isms, are warranted.

PA and CV factors

There is compelling evidence that PA attenuates CV

risk factors and vascular chronic diseases in humans

(Blair and Connelly 1996; Dela et al. 1999; Ivy et al.

1999; Thomas et al. 2006; Mora et al. 2007; Mueller

2007), especially if we substitute sedentary time by

light PA (Healy et al. 2008). This evidence could

partially explain the preventive effects of PA on

cognitive dysfunction, as cerebral CV events can be

one cause of dementia. Another possible mechanism

underlying this protective effect could be increased

cerebral flow with exercise, resulting in the develop-

ment of new capillaries (angiogenesis) in the

hippocampus (see Kramer and Erickson 2007).

In addition, the reduction in sympathetic outflow

shown with exercise training may be important,

as stress and CV diseases are both associated

with overactivity of the sympathetic nervous system

(Dishman et al. 2002; Mueller 2007). Increased

activity of the SNS might also increase glucocorticoid

secretion (Droste et al. 2007). However, it seems that

the positive effects of PA on CV disease are not

mediated through reductions in plasma homocysteine

levels in humans (Mora et al. 2007). Thus, PA has

direct effects on a key AD risk factor, one that is

exacerbated by chronic psychological stress, providing

the opportunity for interacting loops and pathways

and a rationale for the development and testing of

PA intervention strategies.

PA and type 2 diabetes

Another possible mechanism that deserves further

attention is the role of PA in attenuating the onset of

yet another stress-related condition in humans: type 2

diabetes (Blair and Connelly 1996; Dela et al. 1999;

Ivy et al. 1999; Thomas et al. 2006). It is clear that

regular PA reduces dyslipidemia and insulin resistance

(Blair and Connelly 1996; Thomas et al. 2006)

enhancing glucose uptake into cells (Dela et al. 1999;

Ivy et al. 1999). Since insulin therapy slows cognitive

decline in patients with AD (Plastino et al. 2010), it is

predicted that PA may have a positive impact on AD

through reducing insulin resistance. Yet again, more

work in this area is warranted.

PA and neurotrophic factors

Rodent studies indicate that exercise increases (as

opposed to stress, which decreases) neurotrophic

factors in the hippocampus, which is associated with

neurogenesis and neuroprotection (Cotman and

Berchtold 2002; Cotman and Engesser-Cesar 2002;

Garza et al. 2004; Berchtold et al. 2005; Vaynman

et al. 2006; Kramer and Erickson 2007). Berchtold

et al. (2005) showed voluntary daily, and also inter-

mittent, exercise increased the expression of BDNF,

enhancing brain health and function in Sprague-

Dawley rats. Furthermore, BDNF levels remained

elevated for several days after cessation of exercise,

and a brief re-exposure to exercise rapidly re-induced

BDNF expression to levels that would normally take

weeks of exercise to achieve. Consistent with these

findings, Nichol et al. (2009) found that exercise

increased BDNF levels in the hippocampus of APOE3

and APOE4 transgenic mice. Cognitive function was

particularly improved in APOE4 carriers. Interest-

ingly, a 10-week strength training program (as opposed

to the aerobic exercise regimes used in the rodent

studies described above) in untrained human partici-

pants did not induce any changes in serum BDNF

(Goekint et al. 2010). Thus, the relationship between

different types and duration of exercise in human
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studies and availability of neurotropic factors is

another relevant candidate for the examination of

the interactive effects of stress and PA.

PA and inflammatory processes

Another possible mechanism underlying the effects of

PA on the brain and cognition is attenuation of the

negative effects of inflammation (see Cotman et al.

2007 for a review). Although exercise can produce a

short-term inflammatory response, moderate regular

exercise causes more sustained anti-inflammatory

effect (Kasapis and Thompson 2005). For example,

in a longitudinal study of 870 human participants aged

70–79 years, high levels of recreational PA were

related to lower levels of pro-inflammatory markers,

such as interleukin-6 (Il-6) and C-reactive protein

(Reuben et al. 2003). Voluntary PA for 6 weeks

attenuated the stress-induced suppression of natural

killer cell cytotoxicity in rats produced by a foot-shock

stress in rats (Dishman et al. 2000). Similarly, 4 weeks

of voluntary wheel running prevented the stress-

induced suppression of the antibody response in rats

(Moraska and Fleshner 2001).

It is proposed (Parachikova et al. 2008) that the

benefits of exercise on cognition in the Tg2576 mouse

model of AD were partially mediated by the alteration

of the expression of inflammatory molecules, includ-

ing increased levels of the chemokines CXCL1 (Groa)

and CXCL12 (SDF1), which are involved in cognitive

restoration (Watson and Fan 2005; Parachikova and

Cotman 2007; Parachikova et al. 2008).

PA and depression

Anti-depressant drug treatment may block or reverse

the effects of stress and depression on BDNF levels,

neurogenesis, and brain volume (see Warner-Schmidt

and Duman 2006 for a review). PA may have similar

effects as anti-depressive treatment, improving

depressive symptoms in humans (Blumenthal et al.

1999; De Moor et al. 2006; Zheng et al. 2006;

Blumenthal et al. 2007) and a range of indicators in

rats [for example, increasing expression of BDNF

(Russo-Neustadt et al. 1999), IGF-1 (Trejo et al.

2001), and serotonin expression (Ivy et al. 2003;

Greenwood et al. 2005)]. Furthermore, aerobic

exercise (of relatively low intensity and which depends

primarily on the aerobic energy system) in untrained

healthy participants is associated with an attenuated

cortisol response to the serotonergic agonist meta-

chlorophenylpiperazine (m-CPP), possibly reflecting

a downregulation of central 5-HT2C receptors

(Broocks et al. 2001). Animal studies implicate

serotonin in the mechanisms by which PA attenuates

memory loss (Ivy et al. 2003) and the consequences

of uncontrollable stress (Greenwood et al. 2005).

5-HT1A receptor activation seems to be especially

influential for PA-induced effects on cognition in one

region of the hippocampus, CA4 (Ivy et al. 2003).

PA and oxidative stress

In addition to the pathways described above, PA may

also have positive effects on oxidative stress. While low

concentrations of ROS are beneficial, excessive con-

centrations cause apoptosis and necrosis (see Radak

et al. 2008 for a review). PA induces an increase

in adenosine-50-triphosphate demands (indicating

increased intracellular energy transport) and increased

aerobic and/or anaerobic metabolic activity, resulting

in more ROS. However, regular PA is believed to

enhance the resistance to oxidative stress, providing

increased protection in rodent studies (Vaynman et al.

2006; Radak et al. 2008) by enhancing the antioxidant

defense mechanisms, including enzymes such as

superoxide dismutase, catalase, and glutathione

peroxidase (Ji 1999). This paradox could be explained

by the hormesis theory, which basically states that

small doses of toxic substances can enhance the body

and brain protection against larger doses of those same

substances (Radak et al. 2001, 2005, 2008). Animal

studies indicate that this adaptation may be due to

increased proteosome activity with PA (Ogonovsky

et al. 2005). The proteosome is primarily responsible

for disposing of oxidatively modified proteins (Grune

et al. 1997) and increasing protein breakdown

(Ogonovsky et al. 2005), both of which may

contribute to reduced amyloid load (Celsi et al.

2004; Adlard et al. 2005). Another possible expla-

nation is the increase in PA of the uncoupling protein 2

(UCP2), which is abundantly expressed in the

hippocampus and is related to calcium homeostasis,

ATP synthesis, and free radical management. UCP2

may also modulate BDNF production in the

hippocampus, improving memory and learning (Dish-

man et al. 2006). The effects of exercise on oxidative

stress depend on the intensity of the exercise, as

moderate intensity increases oxidative stress protec-

tion while high-intensity exercise possibly increases

oxidative stress (Goto et al. 2003). The duration of the

exercise program is also a factor that needs to be

considered, as an 8-week program of aerobic exercise

did not reduce oxidative stress in patients with type 2

diabetes (Mori et al. 1999), whereas 12 months of

endurance exercise was able to decrease oxidative

stress markers in another sample of type 2 diabetes

patients (Nojima and Watanabe 2008; Figure 1).

Conclusions

A range of physiological systems are activated by both

psychological stress and AD, and evidence suggests

their effects can be synergistic. The cascade of shared

events includes HPA axis dysfunction, hippocampal

atrophy, impaired memory, accumulation of amyloid
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load, increased inflammatory markers, increased

insulin resistance, decreased BDNF availability,

decreased serotonin expression, and excessive levels

of free radicals causing oxidative stress.

Evidence from animal and human studies suggests

that PA might play an important moderating role

in this cascade, as voluntary regular PA decreases

HPA axis responses to psychological stress, promotes

angiogenesis and neurogenesis within the hippo-

campus, improves cognitive function, reduces amyloid

load, inflammatory markers, insulin resistance, and

oxidative stress while increasing BDNF and serotonin

function (see Figure 1).

Although the evidence reviewed here suggests that

PA interventions might be a potentially useful strategy

to reduce risk factors for AD and even retard disease

progression, the evidence of the effects of PA on AD

itself is patchy. More research needs to be performed

to explore the multiple interacting factors. For

example, to our knowledge, the hypotheses that PA

influences HPA axis reactivity, reduces oxidative

stress, and/or reduces insulin resistance in AD patients

or mouse models of AD have yet to be directly tested.

Further work is required to tease apart the specific and

interacting effects of PA and psychological stress on a

range of biological pathways relevant to cognitive

function and AD (Iqbal and Grundke-Iqbal 2010).

Research is also urgently required to establish the

appropriate type, intensity, frequency, and duration of

PA that will be acceptable to, and achievable, by AD

patients. These preliminary studies should be followed

by clinical trials to evaluate their efficacy in terms

of disease progression so that policy guidelines can

be established and implemented. Given the scale of

the problem and the relative weight of the evidence

described here, we would propose that such investi-

gations are clearly justified.
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