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Abstract

Lack of physical activity (PA) is a risk factor for Alzheimer’s disease (AD), and PA interventions are believed to provide an
effective non-pharmacological approach for attenuating the symptoms of this disease. However, the mechanism of action
of these positive effects is currently unknown. It is possible that the benefits may be at least partially mediated by the effects
on the neuroendocrine stress system. Chronic stress can lead to dysfunction of the hypothalamic—pituitary—adrenal (HPA)
axis, leading to aberrant basal and circadian patterns of cortisol secretion and a cascade of negative downstream events.
These factors have been linked not only to reduced cognitive function but also increased levels of amyloid-B plaques and
protein tau “tangles” (the neuropathological hallmarks of AD) in the non-demented mouse models of this disease. However,
there is evidence that PA can have restorative effects on the stress neuroendocrine system and related risk factors relevant
to AD. We explore the possibility that PA can positively impact upon AD by restoring normative HPA axis function, with
consequent downstream effects upon underlying neuropathology and associated cognitive function. We conclude with

suggestions for future research to test this hypothesis in patients with AD.
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Introduction

Alzheimer’s disease (AD) is a neurodegenerative
condition creating progressive deterioration of higher
cognitive functioning in the areas of memory, problem
solving, and thinking (Rimmer and Smith 2009).
AD is the most common form of dementia and its
pathological hallmarks in the brain are neuritic plaques
(composed predominantly of amyloid-f peptides) and
neurofibrillary tangles (formed by hyper-phosphory-
lated forms of tau protein; Cummings et al. 1998).
AD is characterized by an inability to carry out
everyday tasks or perform instrumental activities, and
may be accompanied by behavioral disorders such as
agitation, aggression, and wandering (Onor et al.
2007; Rimmer and Smith 2009). Mild cognitive
impairment (MCI) often represents a prodromal form
of dementia, conferring a 10—-15% annual risk of
converting to probable AD (Risacher et al. 2009).
As the world’s population ages the prevalence of this
debilitating disease is increasing, which is becoming

a social and economic concern important to families,
caregivers, professionals, and others in public health
systems (Haan and Wallace 2004). In 2006, the
prevalence of AD worldwide was reported to be 26.6
million, and by 2050 this number is estimated to
quadruple to 106.8 million (Brookmeyer et al. 2007).
The estimated worldwide societal cost of AD in 2005
was US$315.4 billion (Wimo et al. 2007). Given the
scale and impact of the problem, it is imperative that
acceptable and inexpensive intervention strategies are
identified in order to retard the onset or attenuate the
progression of the disease. It has been estimated that if
interventions could delay disease onset or progression
of AD by as little as 1 year, nearly 9.2 million fewer
patients would be expected by the year 2050
(Brookmeyer et al. 2007).

Risk factors for AD

Over 99% of AD cases are sporadic, not associated
with any known genetic mutation, although the
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presence of one or two alleles of apolipoprotein
(APOE) e4 as opposed to APOE e2 or APOE e3
increases disease risk by several fold (Corder et al.
1993). Aging is probably the biggest risk factor for
non-AD-associated dementia and AD (Querfurth and
LaFerla 2010). However, environmental, behavioral,
and social factors can increase the risk of developing
AD, indicating that disease progression is potentially
modifiable. Such risk factors include head trauma
(Rothman and Mattson 2010), alcohol abuse,
addictive smoking, diet filled with high fat content
(Gustaw-Rothenberg 2009), and lack of mental
stimulation (Wilson et al. 2007) through the life span.

Chronic stress is a major risk factor for the develop-
ment of AD, and there is evidence that it exacerbates
the cognitive deficits and the accompanying brain
pathological characteristics of the condition (see
Rothman and Mattson 2010, for a review). People
exposed to chronic stress have been estimated to be
2.7 times more likely to suffer from AD, and they are
also more likely to experience more rapid disease
progression (Wilson et al. 2006). Similarly, depression
is considered a risk factor for AD (Green et al. 2003)
since it may be strongly related to stress (Davidson
et al. 2002). As effective social support is known to be
a successful buffer to psychological stress (Cohen and
Wills 1985), it is not surprising that a lack of social
support and meaningful social networks may also
contribute to the development of AD (Fratiglioni et al.
2004; Solfrizzi et al. 2008).

Chronic stress is related to increased risk of
cardiovascular (CV) conditions (Bjorntorp 1997;
Rosmond et al. 1998) which are also risk factors for
AD, and play a role in the development of the disease
(Gustafson et al. 2003; Arvanitakis et al. 2004;
Kivipelto et al. 2005; Whitmer et al. 2005; Helzner
et al. 2009). Furthermore, type 2 diabetes is
associated with chronic stress (Nader et al. 2010)
and a risk factor for AD (Ott et al. 1999; Messier
2003; Arvanitakis et al. 2004; Strachan et al. 2008;
Maher and Schubert 2009). Indeed, type 2 diabetes
and/or elevated fasting glucose are reported in up to
80% of patients with AD (Janson et al. 2004). A later
systematic review of this literature found that
individuals with diabetes had a higher incidence of
AD in 8 of 13 studies (Biessels et al. 2006). Relevant
to this review, lack of PA (along with other detrimental
health behaviors such as smoking, poor diet, and
sleep disruption) can be a behavioral product of
chronic stress (Kyrou and Tsigos 2009), and is also
consistently identified as a risk factor for AD (Laurin
et al. 2001; Podewils et al. 2005; Rovio et al. 2005;
Karp et al. 2006; Larson et al. 2006; Simons et al.
2006; Taaffe et al. 2008). See Figure 1 for a summary
of the links between stress, risk factors for AD, and
disease progression.

This wide range of risk factors is indicative of an
underlying system (or systems) that interacts with the
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Figure 1. Summary diagram: arrows indicate pathways between
psychosocial stress and AD (arrows indicate direction of causality).
PA = physical activity and is located on arrows where it has been
shown to attenuate that pathway (see text).

disease process to contribute to disease progression,
and points to a role for the stress neuroendocrine
system. We go on to explore the possible pathways by
which psychological stress can affect cognitive func-
tion and the neuropathological bases of AD.

Evidence that stress impacts on cognitive
function and AD

Chronic stress, allostatic overload, aging, and memory
function

Excessive and repeated responses to stress and/or the
inability to turn off the response when it is no longer
needed are associated with increased activity of the
sympathetic nervous system and a dysfunction of
the hypothalamic—pituitary—adrenal (HPA; McEwen
2008) axis. The latter causes, among other things,
aberrant patterns of cortisol secretion (Meerlo et al.
2002; Nader et al. 2010) and typically excessive levels
of basal circulating cortisol (Lupien and Lepage
2001), which over time produces accumulative wear
and tear on the body and brain (McEwen 2008).
Under these circumstances, the ability to achieve
stability through change (allostasis) fails, producing



a condition of allostatic overload (Seeman et al. 1997;
McEwen 1998; McEwen 2008).

Allostatic overload also has several behavioral
sequelae known to be risk factors for AD, including
disrupted sleep, unhealthy eating patterns, drinking
too much alcohol, smoking, and lack of physical
activity (PA; McEwen 2008; Kyrou and Tsigos 2009).
Increasing age (the major risk factor for cognitive
decline and AD) is associated with increases in the
HPA axis response to the challenge in some studies
[see Otte et al. (2005) for a meta-analysis of 45 stress
challenge studies of young vs. old healthy partici-
pants]. However, only four of these studies involved
psychosocial challenge, and thus the ability of acute
psychological stress changes to change the sensitivity
of the HPA axis which remains to be firmly
established. Furthermore, the finding that females
changed more in response to increasing age may be
more closely related to their known greater sensitivity
to pharmacological challenge than psychosocial-
related threat (Uhart et al. 2006). Other studies have
reported enhanced HPA responsivity to psychosocial
stress in older males and not older females (Kudielka
et al. 2004). Moreover, some studies have shown no
age-related effects on HPA axis reactivity; see
Kudielka et al. (2009) for a review of individual
differences in salivary cortisol responses to challenge.

Increasing age in healthy participants is also
associated with higher overall basal levels of cortisol
secretion and flatter circadian profiles (van Cauter
et al. 1996; Deuschle et al. 1997). However, some
have suggested that an association is apparent only in
depressed individuals (Kudielka et al. 2000). Other
studies report aberrant cycles in sub-populations of
the healthy old (Ice et al. 2004; Kumari et al. 2010).
Interactions between increasing age, chronic stress
exposure, and changing stress reactivity are a complex
area recently reviewed and discussed by Gruenewald
and Seeman (2010). They conclude that the biological
changes typically observed with advancing age may
render older adults more susceptible to negative
biological and health consequences of chronic stress.

Allostatic overload is consistently associated with
reduced memory function; for example, in a longi-
tudinal study of 194 participants aged 70—79 years,
increased urinary free cortisol excretion was corre-
lated with a decline in memory performance (Seeman
et al. 1997). This study showed significant differences
in memory decline only for females, while males
participating in the study did not present any
significant associations. However, in a different
longitudinal study of 154 healthy men and women
aged between 70 and 79 years, urinary excretion of
epinephrine predicted cognitive decline in men but
not in women (Karlamangla et al. 2005). Interestingly
enough, Seeman et al. (1997) found that the decline
in women’s memory was reversible: declines in
cortisol were associated with improvements in
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memory. These data are consistent with evidence
that elevated levels of cortisol are linked to impaired
memory in healthy participants (Wolf et al. 2002a,
2009) and in patients with MCI (Wolf et al. 2002b;
Arsenault-Lapierre et al. 2010).

Chronic stress and hippocampal function

Stress-associated decline in memory is attributed to
hippocampal atrophy and degeneration caused by
excessive levels of cortisol, as this area of the brain is
characterized by high glucocorticoid sensitivity as a
result of dense expression of glucocorticoid receptors
(McEwen 1994; de Kloet et al. 2005). Furthermore,
corticosteroids exert suppressive effects on cell
proliferation (neurogenesis) in the dentate gyrus of
the rat hippocampus (Cameron and Gould 1994).
Thus, the inability to cope with stress may lead to a
reduction in total hippocampal volume and loss of
neurons in this region (Lupien et al. 1999; Warner-
Schmidt and Duman 2006). The hippocampus is a
key area for memory storage and processing, being
one of the main areas affected by AD (Rothman and
Mattson 2010). In fact, hippocampal atrophy is found
in all stages of AD (Fox et al. 1996; Dickerson et al.
2001). Similar hippocampal atrophy is found in
stressed patients and MCI (Lupien et al. 1999), and
can be used as a predictor of conversion of MCI to AD
(Apostolova et al. 2006). However, as noted in the
recent review by Rothman and Mattson (2010), there
are still no studies reporting changes in hippocampal
plasticity in AD after chronic stress.

Cardiovascular factors

Chronic stress is related to increased risk of CV
conditions (Bjorntorp 1997; Rosmond et al. 1998)
that are implicated in cognitive decline (Gustafson
et al. 2003; Arvanitakis et al. 2004; Kivipelto et al.
2005; Whitmer et al. 2005; Helzner et al. 2009).
Indeed, cerebrovascular disease is the second most
common cause of acquired cognitive impairment and
dementia, and contributes to cognitive decline in the
neurodegenerative dementias (O’Brien et al. 2003).
For example, higher pre-diagnosis total cholesterol
and low-density lipoprotein concentrations (and
history of diabetes, see below) were associated with
faster cognitive decline in patients with AD (Helzner
et al. 2009). There is accumulating evidence that
increased plasma homocysteine level (an amino acid
linked to CV disease) may play a role in cognitive
decline and the onset of AD (Seshadri et al. 2002;
Zhuo et al. in press). A recent study has found a link
between elevated levels of homocysteine in non-
demented patients with type 2 diabetes and hippo-
campal atrophy (Shimomura et al. 2011). The
mechanism by which elevated homocysteine may
affect cognitive function is still under investigation,
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but implicated pathways include increased oxidative
stress, excitotoxic damage, and direct effects on
amyloid-3 and tau phosphorylation in the brain (see
Zhuo et al. in press, for a summary).

Type 2 diabetes and the role of brain insulin

Chronic stress and allostatic overload are associated
with a group of related disorders, including type 2
diabetes (Chrousos 2009; Kyrou and Tsigos 2009).
For example, the prevalence of newly diagnosed type 2
diabetes is related to a high number of relatively
common major life events during the preceding 5-year
period (Mooy et al. 2000). This is relevant here,
as type 2 diabetes is associated with cognitive decline
(Wrighten et al. 2009). These deficits are reported
to be more selective for hippocampal-related memory
performance (Gold et al. 2007), and in animal
models these deficits are attributed to deficiencies in
the regulation of insulin within the hippocampus
(Moosavi et al. 2007). Insulin mediates several brain
functions including cognition and memory (Craft
et al. 1996; Craft and Watson 2004), which may
be associated with a high concentration of insulin
receptors in the hippocampus (Craft et al. 1996;
Craft and Watson 2004; Craft 2009). In the
hippocampus, insulin appears to have some neuro-
protective effects against memory loss in animal and
human studies (Moosavi et al. 2007; Reagan 2007).

Insulin and insulin receptors are reduced in animal
models of AD, suggesting that insulin-signaling
pathways might be impaired (Takeda et al. 2010;
Wang et al. 2010). Increased plasma insulin admin-
istration through intravenous infusion improved
memory in AD patients (Craft et al. 1996).
Furthermore, Wang et al. (2010) demonstrated that
diabetes induced by streptozotocin increased the
amyloid load in a transgenic mouse model of AD.
Another study using a mouse model of AD with
diabetes indicates that the diabetic condition increases
cognitive dysfunction, along with vascular inflam-
mation and increased amyloid burden (Takeda et al.
2010). These changes were mediated by impaired
brain insulin signaling. Furthermore, in this study,
amyloid pathology seemed to negatively impact
diabetes pathogenesis, once again pointing to the
presence of deteriorating cycles of negatively interact-
ing systems.

Brain-derived neurotrophic factor (BDNF)

Levels of BDNF are diminished in the hippocampus
of patients with AD (Podewils et al. 2005; Querfurth
and LaFerla 2010). There is compelling evidence
from mice experiments on the negative impact of
stress on BDNF production (reviewed in Duman and
Monteggia 2006). Stress may play a key role in the
growth factor’s cascade due to altered levels of cortisol

(Chao et al. 1998; Schaaf et al. 1998), serotonin
(Vaidya et al. 1997), or interleukin-13 (Barrientos
et al. 2003) in the hippocampus, interfering with
growth factor signaling, reducing the BDNF avail-
ability in the hippocampus, and resulting in a decrease
in neurogenesis and brain plasticity.

Inflammation

There is a strong correlation between inflammatory
responses and the early stages of AD in humans
(Parachikova et al. 2007). In rats, acute stress may
facilitate innate immunity, and PA enhances this
positive effect (Fleshner et al. 2002). However,
chronic stress results in excessive levels of inflamma-
tory markers (McEwen 2008). Furthermore, elevated
levels of pro-inflammatory factors may be responsible
for the decreased levels of growth factors, especially in
the hippocampus [see Cotman et al. (2007) for a
review of human and animal literature]. Inflammation
increases peripheral and central risk factors driving
cognitive decline and neurodegeneration in humans
and rodents (Yaffe et al. 2003; Cotman et al. 2007).

Melancholic depression

Hippocampus atrophy, insulin resistance, decreased
BNDF levels, and increased inflammation are also
shown in patients with melancholic depression
(Rothermundt and Arolt 2001; Duman 2005; Kyrou
and Tsigos 2009). In parallel, serotonin expression is
inhibited by depression and chronic stress (Cameron
and Gould 1994; Lopez et al. 1998). High corticos-
terone levels decrease the density of 5HT fibers or
5HT1A receptors in rat brain (Cameron and Gould
1994). Data derived from studies on postmortem
human brain tissue indicate that serotonin may play an
important role in learning and memory formation
(Elliot et al. 2009), possibly through enhancing
neurogenesis in the dentate gyrus via activation of
the 5SHT1A receptor (Gould 1999).

Oxtidative stress

Oxidative stress, the imbalance in production of
reactive oxygen species (ROS) and antioxidative
defense (Gella and Durani 2009), is associated with
both psychological stress and experimental models of
AD (Rothman and Mattson 2010). ROS are
physiological products of aerobic metabolism involved
in cellular repair and adaptation. However, ROS
overproduction is strongly implicated as a causal
factor in the aging process, and occurs in neurode-
generative diseases such as Parkinson’s and AD
(Radak et al. 2005, 2008) and correlated with
cognitive decline (Gella and Durani 2009). In
experimental animal models of AD, oxidative damage
precedes pathological changes in AD (Querfurth and



LaFerla 2010), implicating ROS in disease onset.
B-amyloid peptide (ARB) is a potent generator of ROS,
making it a prime generator of this damage and AP
accumulation and a possible etiological factor in AD
(Querfurth and LaFerla 2010; Wan et al. 2011).
Experiments with male Wistar rats have shown that
social stress (isolation) increases oxidative stress
(Pajovic et al. 2006). Moreover, other stressors (such
as restraint or immobilization) increase the production
of ROS (Kovacs et al. 1996; Zaidi and Banu 2004).
Not surprisingly, direct administration of corticoster-
one in rats promotes oxidative stress in the brain,
suggesting that the stress neuroendocrine system plays
a causal role in the oxidative stress process (Zafir and
Banu 2009). At the same time, rats subjected to
oxidative stress display serious damage to hippocam-
pal pyramidal cells that is linked to impaired cognitive
function (Sato et al. 2010).

Summary

Evidence from animal and human studies indicates
that chronic psychological stress can impact upon a
number of different interconnected routes relevant
to cognition. It is also worth emphasizing that
the hippocampus is involved in the regulation of the
HPA axis (Jacobson and Sapolsky 1991; Lupien et al.
1998; Lupien and Lepage 2001). The hippocampus is
rich in glucocorticoid receptors and many studies have
demonstrated their role in HPA feedback regulation.
In general, animal studies have shown that lesions to
the hippocampus result in elevated corticosterone
levels under basal and post-stress conditions (Wilson
et al. 1980; Sapolsky et al. 1984). Stress-induced
atrophy in this region can lead to further loss of the
feedback inhibition of this system and a consequent
reciprocal cycle of deterioration (Warner-Schmidt and
Duman 2006).

The HPA axis in AD

HPA axis dysfunction is found in the early stages of
patients with AD (Csernansky and Dong 2006), with
reports of elevated basal levels of circulating cortisol
(Swanwick et al. 1998; Wahbeh et al. 2008) and the
inability to suppress cortisol after a dexamethasone
(DEX) challenge (Hatzinger et al. 1995; Ndsman et al.
1995). Furthermore, there is a relationship between
hypercortisolemia and progression of the disease in
humans (Weiner et al. 1993, 1997). In both of these
studies, higher values of midday serum cortisol
concentrations were associated with a more rapid
cognitive decline. However, the sample size in these
studies was small: just 12 patients followed up for
12 months in the first study, and 9 patients followed
longitudinally for 2—3 years in the second study.
Consistent with these findings, higher baseline
morning cortisol levels are associated with a greater
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level of cognitive impairment in 27 patients diagnosed
with AD (Miller et al. 1998). Similarly, higher
morning levels of plasma cortisol are linked to rapid
disease progression and decreased performance in
neuropsychological tests in patients with mild or very
mild AD (Csernansky and Dong 2006). This latter
study was a longitudinal design, in which 33
community-dwelling participants with very mild and
mild Alzheimer-type dementia [scores of 0.5 and 1 on
the five-point Clinical Dementia Rating Scale
(CDRS)] and 21 participants without dementia
provided plasma for determination of morning cortisol
concentration at the start of the study. Subsequently,
they performed a battery of neuropsychological tests
and the CDRS annually for up to 4 years. In both
groups of dementia participants combined, but not in
those without dementia; higher plasma cortisol levels
were associated with more rapidly increasing symp-
toms and more rapidly decreasing performance on
neuropsychological tests. The results support the idea
of a negative impact of elevated cortisol levels on
cognitive performance and thus on the progression
of AD. However, this small study was not able to
distinguish very mild from no dementia in terms of
morning plasma cortisol levels at the start of the study.

Some of the most persuasive data linking psycho-
logical stress and AD are evidence of increased
formation of amyloid-B plaques and protein tau
“tangles,” alongside a decrease in their degradation,
following stress exposure in mice models of AD
(Green et al. 2006; Jeong et al. 2006; Dong et al.
2008; Lee et al. 2009). These neuropathological
features are considered the two main hallmarks of
AD and implicate stress in the disease process, rather
than just cognitive function. However, it is also
possible that elevated levels of amyloid-B plaques in
the hippocampus may precede elevations in basal
levels of plasma corticosterone, which could imply
that the observed alteration in the HPA axis in AD
may be subsequent to neuropathology (Green et al.
2006; Nuntagij et al. 2009; Rothman and Mattson
2010). Further work is required to elucidate the extent
to which these pathways are causally associated in AD.

Converging evidence from human and animal
studies indicates that chronic stress and AD cause
similar cognitive impairments and pathological hall-
marks, specifically in the hippocampus, and that
stress may both increase the risk of developing AD and
cause a more rapid disease progression (Rothman and
Mattson 2010; see Figure 1).

The stress—AD link implies that stress management
could be a key component of AD prevention and
treatment. Within non-pharmacological approaches,
PA could be an inexpensive option for reducing the
effects of stress, with many proven health benefits
and very little or no side effects. However, to our
knowledge, the mechanism of the effect of PA on
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disease progression in AD patients has not been
explored.

PA and stress: current evidence of interactions
and mechanisms

In the UK, it is recommended that adults should
participate in a minimum of 30min of at least
moderate intensity activity (such as brisk walking,
cycling, or climbing the stairs) on 5 or more days of
the week (Department of Health 2004) to maintain
health and well-being. However, only 39% of men and
29% of women in England meet this recommended
level (Craig et al. 2008). PA participation has
remained low despite its benefits being widely
publicized. Guidelines for older adults are provided
by the World Health Organisation (2010). It is
recommended that older adults (65 years plus) should
do at least 150 min of moderate intensity, or 75 min of
vigorous intensity, aerobic PA throughout a typical
week or do an equivalent combination of moderate-
and vigorous-intensity activity. Promoting PA for
older adults is deemed especially important because
this population is the least physically active of any
age group.

Evidence of the effects of PA on stress response
systems is complicated by the wide array of PA and
stressors investigated. For ease of reference, relevant
studies are summarized in Tables I (for evidence in
humans) and II (for evidence from rodent studies).

The tables indicate that there is increasing evidence
of the benefits of PA to cope with psychological/
exercise stress from both human (for example, Sinyor
et al. 1983; Holmes and McGilley 1987; Deuster et al.
1989; Brown 1991; Korkushko et al. 1995; Unger et al.
1997; Broocks et al. 2001; Salmon 2001; Traustadottir
et al. 2004; Rimmele et al. 2007; Rimmele et al. 2009)
and animal studies (for example, Watanabe et al. 1991;
Droste et al. 2003, 2006, 2007; Greenwood et al. 2007;
Hill et al. 2010; Kannangara et al. 2011). However,
there are significant inconsistencies in both literatures
(humans: de Geus et al. 1993, see meta-analysis
by Jackson and Dishman 2006; Heiden et al. 2007;
rodents: Moraska et al. 2000; Fediuc et al. 2006).

There are several potential reasons for identified
inconsistencies, including the use of different PA
training protocols and different stressors (Rimmele
et al. 2007). It seems that the effects of PA may vary
depending on factors such as intensity, type, and the
duration of the exercise. In human studies, population
characteristics, such as age and gender, are also
important, as these factors are associated with activity
of the stress neuroendocrine system and may interact
with the effects of PA. Another factor that needs to be
taken into consideration, for both human and rodent
studies, is whether the interaction being studied is
between PA and a physical exercise stressor (which
may or may not be novel) or psychological stressor,

which is typically novel (see Dickerson and Kemeny
2004). Considering all these possibly interacting
variables, it is not surprising that, alongside the
controversy about the interaction of PA with
psychological stress, the underlying mechanisms that
mediate the claimed effects remain unclear.

The effects of PA on responses to physical exercise stress

It is clear that the effects of a single bout of PA are
different than those seen with regular PA. Acute bursts
of PA induce a strong neuroendocrine stress response
in rodents (Timofeeva et al. 2003; Campbell et al.
2009). Similarly, short bursts of PA increase levels of
adrenocorticotrophic hormone (ACTH) and gluco-
corticoids in humans (Kiive et al. 2004), especially
if the exercise is of high intensity (Viru et al. 1992).
In rodents, these changes are attenuated after long-
term adaptation to exercise [Campbell et al. 2009;
unless absolute intensity is gradually increased (Park
et al. 2005)]. In humans, if the intensity of the exercise
is moderate or light, acute exercise may not increase
cortisol secretion (Nieman et al. 2005).

Long-term regular physical training in rodents may
reduce or enhance the stress response, depending on
whether exposure is to a familiar physical stressor, a
novel physical stressor, or a psychological stressor
(Droste et al. 2003, 2006, 2007). There is evidence
from both human and rodent studies that exercise
training produces adaptations in HPA axis reactivity to
familiar acute exercise stress. This includes evidence
from rodents of higher threshold of activation and
attenuated ACTH and corticosterone responses
(Watanabe et al. 1991; White-Welkley et al. 1995;
Dishman et al. 2000). Greater maximal capacity of the
adrenal glands is reported in both human (Luger et al.
1987; Kjeer 1992; Deuster et al. 1998) and rodent
studies (Watanabe et al. 1991). Similar adaptations
are also reported in older humans (Korkushko et al.
1995). However, in rats, physical training increases
HPA axis reactivity to a novel physical stressor (White-
Welkley et al. 1996; Droste et al. 2007). The higher
cortisol responses after a novel physical stress may be
adaptive, as novel physical stressors can be seen as
life-threatening challenges, requiring increased gluco-
corticoid levels to successfully respond to the physical
challenge (Droste et al. 2007).

The effects of PA on responses to psychological stress

The interaction between PA training and psychologi-
cal stress is called “cross-stress adaptation.” Studies
have reported inconsistent findings, especially in
human populations, with most of them focusing on
CV changes (Rimmele et al. 2007). Some studies
focusing on HPA axis reactivity did not show lower
levels of cortisol after a psychological stress for aero-
bically fit human participants (Sinyor et al. 1983;
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Moyna et al. 1999). However, trained men and elite
athletes are reported to have lower cortisol and
heart rate responses to an acute psychological stressor
than untrained men (Rimmele et al. 2007; Rimmele
et al. 2009). More work is required to clarify the
strength of these findings (for example, just how much
exercise is required to generate an advantageous
effect) and to examine the impact of potential
interacting factors such as age and gender.

In studies using mice and rats, results are also
inconsistent. However, in these studies, it is important
to distinguish forced exercise from wvoluntary exercise
(Droste et al. 2003; Dishman et al. 2006). Long-term
forced exercise produces negative adaptations associ-
ated with chronic stress such as increased adrenal
weight, thymic involution, and decreased serum
corticosteroid-binding globulin (Moraska et al. 2000;
Fediuc et al. 2006). However, long-term voluntary
exercise may positively impact HPA axis regulation
(Hill et al. 2010), contributing to a reversal of the
effects of uncontrolled stress (Greenwood et al. 2007)
and showing appropriate glucocorticoid responses
to stress in mice (Droste et al. 2003, 2006, 2007;
Kannangara et al. 2011).

Greenwood et al. (2007) demonstrated that 6 weeks
of voluntary wheel running after stressor exposure
can reverse the long-lasting behavioral consequences
of uncontrolled stress (shuttle box escape) in rats
(although 2 weeks of exercise was not sufficient to
show positive results). Four weeks of voluntary
running increases the glucocorticoid response to a
novel physical stress (potentially life-threatening
challenge, such as forced swimming), but decreases
by 50% the glucocorticoid response to a mild
psychological stressor such as a novel environment
(Droste et al. 2007). In this study, plasma ACTH
levels remained unchanged in both exercising and
control mice, suggesting adaptive changes at the level
of the adrenal cortex, for example, changes in
sympathoadrenomedullary input (Droste et al. 2007).

These studies suggest that in young animals, the
response to psychological stress is different after
voluntary, as opposed to forced, physical training, and
is dependent on the duration of the training regime.
The benefits of PA for stress in aged animals and
humans have received less attention. Traustadottir
et al. (2004) found that older women had a higher
HPA axis reactivity to a psychological stressor than
younger women, but this age-related change was
attenuated by physical fitness. Consistent with this
finding, 11 days of voluntary running significantly
lowered plasma corticosterone levels in socially
housed aged mice, when measured at the onset of
the mouse active cycle (Kannangara et al. 2011).
However, more research is required to establish the
benefits of PA upon the aging HPA axis and its
responses to psychological stress. These studies are
needed to inform the development of intervention
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strategies relevant to the aging population, as well as
enhance the theoretical understanding of “cross-stress
adaptation.”

PA and corticosterone levels in the hippocampus

Rodent studies have shown that peripheral corticos-
terone levels do not necessarily predict corticosterone
levels in the hippocampus (Droste et al. 2007, 2009),
the brain area of interest for this review. Indeed,
corticosteroid levels were not attenuated in the
hippocampus after 4 weeks of voluntary running
(Droste et al. 2009). The results need to be replicated
and extended in healthy and AD mouse models and
also in human populations to explore whether longer
periods of exercise are needed to reduce corticosteroid
levels in the hippocampus. Furthermore, due to the
many pathways and interconnections existing between
PA, stress, and AD, it is important to determine
whether hippocampal amyloid load, BDNF, oxidative
stress, CV factors, depression, and inflammatory
processes (as described below) are beneficially
affected by PA.

PA, AD, and stress: pathways and
interconnections

PA and cognitive function

There is compelling evidence from longitudinal
studies in humans to show that PA is protective
against MCI, dementia, and AD (Laurin et al. 2001;
Abbott et al. 2004; Podewils et al. 2004; Rovio et al.
2005; Karp et al. 2006; Larson et al. 2006; Simons
et al. 2006; Taaffe et al. 2008; Rovio et al. 2010).
Exercise seems to improve cognitive function,
especially in older adults (Colcombe and Kramer
2003; Heyn et al. 2004; Weuve et al. 2004), and
enhance learning and memory in mice (van Praag et al.
1999, 2005).

Voluntary exercise enhances memory in transgenic
mouse models of AD (Adlard et al. 2005; Parachikova
et al. 2008; Nichol et al. 2009), suggesting that PA
may inhibit the normal progression of the disease.
Equivalent evidence is currently scarce in humans,
although studies show that AD patients’ health and
functioning are positively influenced by participating
in a variety of physical activities (Palleschi et al. 1996;
Arkin 2003; Teri et al. 2003; Rolland et al. 2007;
Williams and Tappen 2007). However, the mechan-
isms of the benefits of PA on cognition in healthy and
AD populations remain unclear. Interestingly enough,
most accepted theories such as reduction in amyloid
load (Adlard et al. 2005), reduction in peripheral risk
factors (Kramer and Erickson 2007), increased
neurotrophic factors (Cotman and Berchtold 2002;
Cotman and Engesser-Cesar 2002; Garza et al.
2004; Berchtold et al. 2005; Vaynman et al. 2006;
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Kramer and Erickson 2007), reduction in the negative
effects of inflammation (Cotman et al. 2007),
improved depression symptoms (Blumenthal et al.
1999; De Moor et al. 2006; Zheng et al. 2006;
Blumenthal et al. 2007), increased serotonin
expression (Ivy et al. 2003; Greenwood et al. 2005),
and a protective effect against oxidative stress
(Vaynman et al. 2006; Radak et al. 2008) may be
linked to stress reduction (Cameron and Gould 1994;
Bjorntorp 1997; Lopez et al. 1998; Traustadottir et al.
2005; Duman and Monteggia 2006; Green et al.
2006; Jeong et al. 2006; Dong et al. 2008; McEwen
2008; Chrousos 2009; Kyrou and Tsigos 2009;
Lee et al. 2009; Zafir and Banu 2009), suggesting
that stress reduction could mediate some of the
benefits attributed to PA for AD.

PA and amyloid-3 plaques

PA has direct effects on the neuropathological signs
of AD in animal models. Voluntary wheel running
for 5 months, in the TgCRNDS8 mouse model of AD,
produced an improvement in cognition and a
reduction in the amyloid load in both cortical and
hippocampal regions of the brain (Adlard et al. 2005).
The mechanisms involved may be related to a change
in the processing of the amyloid precursor protein
(APP) seen after 1 month of exercise, with a decrease
in the proteolytic fragments of APP. The reduction
in the amyloid load was considered to be responsible
for the improvement in learning and memory shown
in Morris water maze.

Again, duration of the exercise appears to be a key
factor. In another study, a short-term voluntary wheel
running intervention (3 weeks, as opposed to 5 months)
was not able to reduce the amyloid load, although it
did improve cognition, of a Tg2576 mouse model of
AD (Parachikova et al. 2008). Again, more studies
into the links between PA and the neuropathological
underpinnings of AD, exploring the causal mechan-
isms, are warranted.

PA and CV factors

There is compelling evidence that PA attenuates CV
risk factors and vascular chronic diseases in humans
(Blair and Connelly 1996; Dela et al. 1999; Ivy et al.
1999; Thomas et al. 2006; Mora et al. 2007; Mueller
2007), especially if we substitute sedentary time by
light PA (Healy et al. 2008). This evidence could
partially explain the preventive effects of PA on
cognitive dysfunction, as cerebral CV events can be
one cause of dementia. Another possible mechanism
underlying this protective effect could be increased
cerebral flow with exercise, resulting in the develop-
ment of new capillaries (angiogenesis) in the
hippocampus (see Kramer and Erickson 2007).
In addition, the reduction in sympathetic outflow

shown with exercise training may be important,
as stress and CV diseases are both associated
with overactivity of the sympathetic nervous system
(Dishman et al. 2002; Mueller 2007). Increased
activity of the SNS might also increase glucocorticoid
secretion (Droste et al. 2007). However, it seems that
the positive effects of PA on CV disease are not
mediated through reductions in plasma homocysteine
levels in humans (Mora et al. 2007). Thus, PA has
direct effects on a key AD risk factor, one that is
exacerbated by chronic psychological stress, providing
the opportunity for interacting loops and pathways
and a rationale for the development and testing of
PA intervention strategies.

PA and type 2 diabetes

Another possible mechanism that deserves further
attention is the role of PA in attenuating the onset of
yet another stress-related condition in humans: type 2
diabetes (Blair and Connelly 1996; Dela et al. 1999;
Ivy et al. 1999; Thomas et al. 2006). It is clear that
regular PA reduces dyslipidemia and insulin resistance
(Blair and Connelly 1996; Thomas et al. 2006)
enhancing glucose uptake into cells (Dela et al. 1999;
Ivy et al. 1999). Since insulin therapy slows cognitive
decline in patients with AD (Plastino et al. 2010), it is
predicted that PA may have a positive impact on AD
through reducing insulin resistance. Yet again, more
work in this area is warranted.

PA and neurotrophic factors

Rodent studies indicate that exercise increases (as
opposed to stress, which decreases) neurotrophic
factors in the hippocampus, which is associated with
neurogenesis and neuroprotection (Cotman and
Berchtold 2002; Cotman and Engesser-Cesar 2002;
Garza et al. 2004; Berchtold et al. 2005; Vaynman
et al. 2006; Kramer and Erickson 2007). Berchtold
et al. (2005) showed voluntary daily, and also inter-
mittent, exercise increased the expression of BDNF,
enhancing brain health and function in Sprague-
Dawley rats. Furthermore, BDNF levels remained
elevated for several days after cessation of exercise,
and a brief re-exposure to exercise rapidly re-induced
BDNF expression to levels that would normally take
weeks of exercise to achieve. Consistent with these
findings, Nichol et al. (2009) found that exercise
increased BDNF levels in the hippocampus of APOE3
and APOE4 transgenic mice. Cognitive function was
particularly improved in APOE4 carriers. Interest-
ingly, a 10-week strength training program (as opposed
to the aerobic exercise regimes used in the rodent
studies described above) in untrained human partici-
pants did not induce any changes in serum BDNF
(Goekint et al. 2010). Thus, the relationship between
different types and duration of exercise in human



studies and availability of neurotropic factors is
another relevant candidate for the examination of
the interactive effects of stress and PA.

PA and inflammatory processes

Another possible mechanism underlying the effects of
PA on the brain and cognition is attenuation of the
negative effects of inflammation (see Cotman et al.
2007 for a review). Although exercise can produce a
short-term inflammatory response, moderate regular
exercise causes more sustained anti-inflammatory
effect (Kasapis and Thompson 2005). For example,
in a longitudinal study of 870 human participants aged
70-79 vyears, high levels of recreational PA were
related to lower levels of pro-inflammatory markers,
such as interleukin-6 (II-6) and C-reactive protein
(Reuben et al. 2003). Voluntary PA for 6 weeks
attenuated the stress-induced suppression of natural
killer cell cytotoxicity in rats produced by a foot-shock
stress in rats (Dishman et al. 2000). Similarly, 4 weeks
of voluntary wheel running prevented the stress-
induced suppression of the antibody response in rats
(Moraska and Fleshner 2001).

It is proposed (Parachikova et al. 2008) that the
benefits of exercise on cognition in the Tg2576 mouse
model of AD were partially mediated by the alteration
of the expression of inflammatory molecules, includ-
ing increased levels of the chemokines CXCL1 (Groa)
and CXCL12 (SDF1), which are involved in cognitive
restoration (Watson and Fan 2005; Parachikova and
Cotman 2007; Parachikova et al. 2008).

PA and depression

Anti-depressant drug treatment may block or reverse
the effects of stress and depression on BDNF levels,
neurogenesis, and brain volume (see Warner-Schmidt
and Duman 2006 for a review). PA may have similar
effects as anti-depressive treatment, improving
depressive symptoms in humans (Blumenthal et al.
1999; De Moor et al. 2006; Zheng et al. 2006;
Blumenthal et al. 2007) and a range of indicators in
rats [for example, increasing expression of BDNF
(Russo-Neustadt et al. 1999), IGF-1 (Trejo et al.
2001), and serotonin expression (Ivy et al. 2003;
Greenwood et al. 2005)]. Furthermore, aerobic
exercise (of relatively low intensity and which depends
primarily on the aerobic energy system) in untrained
healthy participants is associated with an attenuated
cortisol response to the serotonergic agonist meta-
chlorophenylpiperazine (m-CPP), possibly reflecting
a downregulation of central 5-HT2C receptors
(Broocks et al. 2001). Animal studies implicate
serotonin in the mechanisms by which PA attenuates
memory loss (Ivy et al. 2003) and the consequences
of uncontrollable stress (Greenwood et al. 2005).
5-HT1A receptor activation seems to be especially
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influential for PA-induced effects on cognition in one
region of the hippocampus, CA4 (Ivy et al. 2003).

PA and oxidative stress

In addition to the pathways described above, PA may
also have positive effects on oxidative stress. While low
concentrations of ROS are beneficial, excessive con-
centrations cause apoptosis and necrosis (see Radak
et al. 2008 for a review). PA induces an increase
in adenosine-5'-triphosphate demands (indicating
increased intracellular energy transport) and increased
aerobic and/or anaerobic metabolic activity, resulting
in more ROS. However, regular PA is believed to
enhance the resistance to oxidative stress, providing
increased protection in rodent studies (Vaynman et al.
2006; Radak et al. 2008) by enhancing the antioxidant
defense mechanisms, including enzymes such as
superoxide dismutase, catalase, and glutathione
peroxidase (Ji 1999). This paradox could be explained
by the hormesis theory, which basically states that
small doses of toxic substances can enhance the body
and brain protection against larger doses of those same
substances (Radak et al. 2001, 2005, 2008). Animal
studies indicate that this adaptation may be due to
increased proteosome activity with PA (Ogonovsky
et al. 2005). The proteosome is primarily responsible
for disposing of oxidatively modified proteins (Grune
et al. 1997) and increasing protein breakdown
(Ogonovsky et al. 2005), both of which may
contribute to reduced amyloid load (Celsi et al.
2004; Adlard et al. 2005). Another possible expla-
nation is the increase in PA of the uncoupling protein 2
(UCP2), which is abundantly expressed in the
hippocampus and is related to calcium homeostasis,
ATP synthesis, and free radical management. UCP2
may also modulate BDNF production in the
hippocampus, improving memory and learning (Dish-
man et al. 2006). The effects of exercise on oxidative
stress depend on the intensity of the exercise, as
moderate intensity increases oxidative stress protec-
tion while high-intensity exercise possibly increases
oxidative stress (Goto et al. 2003). The duration of the
exercise program 1is also a factor that needs to be
considered, as an 8-week program of aerobic exercise
did not reduce oxidative stress in patients with type 2
diabetes (Mori et al. 1999), whereas 12 months of
endurance exercise was able to decrease oxidative
stress markers in another sample of type 2 diabetes
patients (Nojima and Watanabe 2008; Figure 1).

Conclusions

A range of physiological systems are activated by both
psychological stress and AD, and evidence suggests
their effects can be synergistic. The cascade of shared
events includes HPA axis dysfunction, hippocampal
atrophy, impaired memory, accumulation of amyloid
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load, increased inflammatory markers, increased
insulin resistance, decreased BDNF availability,
decreased serotonin expression, and excessive levels
of free radicals causing oxidative stress.

Evidence from animal and human studies suggests
that PA might play an important moderating role
in this cascade, as voluntary regular PA decreases
HPA axis responses to psychological stress, promotes
angiogenesis and neurogenesis within the hippo-
campus, improves cognitive function, reduces amyloid
load, inflammatory markers, insulin resistance, and
oxidative stress while increasing BDNF and serotonin
function (see Figure 1).

Although the evidence reviewed here suggests that
PA interventions might be a potentially useful strategy
to reduce risk factors for AD and even retard disease
progression, the evidence of the effects of PA on AD
itself is patchy. More research needs to be performed
to explore the multiple interacting factors. For
example, to our knowledge, the hypotheses that PA
influences HPA axis reactivity, reduces oxidative
stress, and/or reduces insulin resistance in AD patients
or mouse models of AD have yet to be directly tested.
Further work is required to tease apart the specific and
interacting effects of PA and psychological stress on a
range of biological pathways relevant to cognitive
function and AD (Igbal and Grundke-Igbal 2010).
Research is also urgently required to establish the
appropriate type, intensity, frequency, and duration of
PA that will be acceptable to, and achievable, by AD
patients. These preliminary studies should be followed
by clinical trials to evaluate their efficacy in terms
of disease progression so that policy guidelines can
be established and implemented. Given the scale of
the problem and the relative weight of the evidence
described here, we would propose that such investi-
gations are clearly justified.
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