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Abstract

Stress modulates vital aspects of immune functioning in both human and non-human animals,
including tissue repair. For example, dermal wounds heal more slowly and are associated with
prolonged inflammation and increased bacterial load in mice that experience chronic physical
restraint. Social stressors also negatively affect healing; however, previous studies suggest that
the affected healing mechanisms may be stress model-specific. Here, the effects of either social
isolation or physical restraint on dermal wound healing (3.5 mm wounds on the dorsum) were
compared in hairless male mice. Social isolation beginning 3 weeks prior to wounding delayed
healing comparably to physical restraint (12 h/day for eight days), in spite of marked differences
in metabolic and hormonal consequences (i.e. body mass) between the two stress models.
Additionally, isolated mice exhibited reductions in wound bacterial load and inflammatory
gene expression (interleukin-1beta [IL-1�], monocyte chemoattractant protein [MCP]), whereas
restraint significantly increased both of these parameters relative to controls. Experimentally
augmenting bacterial concentrations in wounds of isolated mice did not ameliorate healing,
whereas this treatment accelerated healing in controls. This work indicates that social isolation
and restraint stressors comparably impair healing, but do so through disparate mechanisms
and at different phases of healing.
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Introduction

A growing body of basic and clinical research indicates that

social environment profoundly modulates mental and physical

health in social species (Cacioppo et al., 2011; Karelina &

DeVries, 2011). In general, social support or positive social

interactions improve health and mood outcomes, whereas

social isolation or negative social interactions lead to mental

and physical health impairments. In humans, perceived social

isolation (i.e. loneliness) is associated with a pro-inflamma-

tory phenotype (Cole et al., 2007), increased blood pressure

(Hawkley et al., 2010), and poor stroke outcomes (Boden-

Albala et al., 2005). The behavioral and physiological

consequences of social isolation in humans are remarkably

similar to those observed following social isolation (single-

housing) in laboratory rodents. For example, socially isolating

rodents precipitates depressive-like behavior (Martin &

Brown, 2010), autonomic and hypothalamic-pituitary-adrenal

(HPA) axis dysregulation (Grippo et al., 2007; Weiss et al.,

2004; Williams et al., 2009), and altered heart rate

(Grippo et al., 2007). These physiological effects translate

into negative stroke (Craft et al., 2005) and cardiac arrest

outcomes (Norman et al., 2011), and impaired dermal wound

healing (Detillion et al., 2004). How isolation alters the

kinetics of tissue repair was the focus of this study.

Wound healing is an intricately synchronized immune

process characterized by three overlapping phases: inflam-

mation, proliferation, and remodeling (Chen et al., 2010).

During dermal healing in mice, the inflammatory phase

(�first 3 days of healing) is characterized by neutrophil and

macrophage recruitment to the wound site for bacterial

clearance. The proliferative phase (�3–7 days post-wound-

ing) consists of re-epithelialization of the wound, collagen

formation, and angiogenesis. The final phase lasts weeks to

months and is characterized by scar formation and extracel-

lular matrix restructuring (Engeland & Marucha, 2009).

Many factors have been shown to modulate healing

in humans including: sex, age, metabolic disease, nutrition,
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and psychological stress (Engeland et al., 2006; Engeland &

Graham, 2011; Guo & Dipietro, 2010). For example, stress

associated with the responsibility of caring for loved ones

with Alzheimer’s disease prolongs dermal wound closure

by 24% compared to age-matched non-caregiver controls

(Kiecolt-Glaser et al., 1995). Such negative modulators

of healing can increase the risk of wound bacterial infection

and post-operative complications (Robson, 1997). In mice,

a repeated physical restraint stress paradigm similarly impairs

dermal healing. In-depth characterization of this model has

determined that restraint induces prolonged inflammation,

increases wound bacterial load and impairs bacterial clear-

ance (Mercado et al., 2002a; Padgett et al., 1998; Rojas

et al., 2002). This increase in wound bacterial load follow-

ing restraint is thought to be the primary mechanism by

which stress delays healing. Social isolation stress also

impairs dermal healing in rodents (Detillion et al., 2004;

Glasper & Devries, 2005; Levine et al., 2008), although

the healing mechanisms by which this less physical and

more psychosocial stressor exerts its effects remain unclear.

In addition, isolation of research animals is a standard

practice used in many biomedical studies; therefore it is

important to understand the consequences of isolation on

immunity.

In this study, the mechanisms by which social isolation

delays dermal wound healing in mice were examined and

compared to those of the well-established physical restraint

stress model. The influence of these stressors on wound

closure, gene expression for factors necessary for the

inflammatory (i.e. pro-inflammatory cytokines, chemokines)

or the proliferative (i.e. wound contraction, re-epithelializa-

tion, and angiogenesis) phases of tissue repair, and wound

bacterial load were determined. We predicted that social

isolation would impair dermal tissue repair, albeit more

modestly than physical restraint, through similar deficits in

healing mechanisms. In contrast, the results indicate that

social isolation impairs healing in mice to the same magni-

tude as a physical stressor (restraint) but through divergent

healing mechanisms.

Methods

Animals

Virus-antibody-free SKH-1 male mice (6–8 weeks of age)

were obtained from Charles River, Inc (Wilmington, MA).

SKH-1 mice were chosen because their skin is largely hairless

(similar to human skin) and their wound healing process has

been well-characterized (Eijkelkamp et al., 2007; Mercado

et al., 2002a, b; Padgett et al., 1998). Mice were housed in

polypropylene cages (27.8� 7.5� 13 cm) with corncob bed-

ding and microisolator lids in a vivarium at a temperature of

21 ± 1 �C under a 14:10 h light:dark cycle (lights off at 6 pm)

and had access to food (Harlan 7912 rodent chow) and water

ad libitum (unless otherwise noted). The vivarium is

accredited by The American Association for the

Accreditation of Laboratory Animal Care (AAALAC) and

all procedures were approved by the Office of Animal Care

and Institutional Biosafety at the University of Illinois at

Chicago (UIC) and conform to the NIH Guide for the Care

and Use of Laboratory Animals.

Experiment 1: Comparison between chronic social
isolation and restraint on physiology and behavior

Forty mice were used for this experiment to compare

the effects of social isolation and restraint on body mass,

HPA axis reactivity, and behavior. Mice were either

(1) isolated for three weeks before and throughout assess-

ments (ISOLATION); (2) group-housed controls (GROUP;

5/cage); (3) physically restrained (12 h/day) for three days

prior to the HPA axis assessment (RESTRAINT; see below);

or (4) respective controls which were food- and water-

deprived (but free to roam their cage) for the same 12-h

period (FWD). Body mass was recorded prior to isolation,

after three weeks of isolation (just before restraint for

RESTRAINT group), and 3 days later (after 3 days of

restraint for RESTRAINT group).

Chronic restraint group

Three days before HPA axis reactivity assessment,

RESTRAINT mice were placed in well-ventilated 50 ml

polypropylene tubes daily for 12–13 h per day within their

homecages (18:00–06:00 h) (Padgett et al., 1998).

HPA axis reactivity to acute stressor

Circulating corticosterone concentrations were determined

before and after an acute stressor (50-min bout of restraint) to

compare HPA axis feedback function among treatment

groups. Within two minutes of isoflurane anesthetization,

retro-orbital blood samples (100ml) were collected: (1) before

a 50-min bout of physical restraint (baseline), (2) immediately

after restraint (post-acute stressor), and (3) 55 minutes after

the end of restraint (recovery). All mice in a cage were

anesthetized simultaneously. Mice were returned to their

homecage between the collection of the post-stressor

and recovery blood samples. The acute stressor was the

same as that described for the chronic RESTRAINT group,

except the immobilized mice were placed on a counter under

standard ambient lighting for 50 min. Corticosterone was

measured in duplicate in all blood samples via EIA according

to the manufacturer’s instructions (Enzo Life Sciences,

Plymouth Meeting, PA) after 1:30 dilution. Intrassay vari-

ation was 9% and interassay variation for the three plates

was 2.4%.

Anxiety-like behavior

As a follow-up measure to the HPA assessment, total

locomotor activity was measured using an open field test

in isolated and group-housed mice. Increased total loco-

motor activity and velocity in an open field are indicative

of anxiety-like behavior (Crawley, 2000). One week after

HPA axis reactivity assessment and after 30 min of acclima-

tion to the dark testing room, mice were individually placed in

a clear 27� 27 cm acrylic box inside a ventilated cabinet

using dim red light (during active dark phase: 20:00–23:00 h).

A frame at the base of the box consisting of 24 photobeams

in a 12� 12 arrangement detected the location of horizon-

tal movement (Med Associates Inc, St. Albans, VT). Total

locomotor activity and average velocity were tracked for

5 min.
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Experiment 2: Comparison between social isolation
and restraint on wound healing

Eighty mice were used for this experiment to determine the

effects of chronic social isolation on dermal wound healing

relative to group-housed controls and to compare these

findings to those of a well-established model of chronic

restraint stress. Mice were either (1) isolated for three weeks

before and throughout healing (ISOLATION); (2) group-

housed controls (GROUP; 5/cage); (3) physically restrained

three days prior to wounding and five days after wounding for

12 h/day (RESTRAINT); or (4) respective controls which

were food- and water-deprived (but free to roam their cage)

for the same 12-h period (FWD). Three days before wounding

and five days after wounding mice were restrained as

described in Experiment 1 for chronic restraint group.

Based on pilot studies in our lab, three weeks of isolation

prior to wounding was determined to exert significant and

repeatable healing impairments. In separate groups of mice,

wounds were biopsied prior to sacrifice on Days 1, 3, or 5

post-wounding to measure gene expression for factors

important for the inflammatory and proliferative phases of

healing, and to quantify bacterial load.

Dermal wounding

Mice (at 8–9 weeks of age) were anesthetized (100 mg/kg

ketamine and 10 mg/kg xylazine; i.p.), the skin was cleaned

with alcohol, and two full-thickness 3.5 mm excisional

wounds were placed on the dorsum using sterile biopsy

punches (Miltex Instrument Company, Plainsboro, NJ) just

caudal to the shoulder blades. In one cohort of mice, wound

closure was captured by daily photographs (through Day 5

post-wounding) and images were analyzed by a single

investigator blind to the treatments (L.Y.). Photographs of

the biopsy sites were taken with a 3.5 mm standard-sized

dot placed beside the wound to control for variations in

photograph angle and distance. Wound size was measured

using Canvas 9 software (ACD Systems, Seattle, WA; Horan

et al., 2005) and expressed as the ratio of the wound area to

the standard dot measurement, then as a ratio to the original

wound size on Day 0 (Horan et al., 2005). In separate cohorts

of mice, both wounds were harvested on Days 1, 3, or 5 post-

wounding by sterile 6.0 mm punch biopsies (Miltex

Instrument Company, Plainsboro, NJ) following deep anes-

thetization (ketamine/xylazine). One wound was used to

quantify bacteria (n¼ 4–5/group) and the other wound was

used for genomic comparison of factors known to regulate

wound healing using quantitative real-time PCR (qRT-PCR;

n¼ 9–12/group).

Bacterial quantification

Wounds harvested for bacterial quantification were weighed

and then homogenized on ice in 1 ml chilled PBS. The

homogenates were serially diluted 1:10 six times with PBS,

and 100 ml of each dilution was plated in duplicate on brain-

heart infusion agar (Becton Dickinson, Franklin Lakes, NJ).

Following overnight incubation at 37 �C with 5% CO2,

colonies were counted to determine initial colony forming

units (CFU) per gram of wound tissue (Rojas et al., 2002).

qRT-PCR

Gene expression for various factors involved in the inflam-

matory and proliferative phases of wound healing were

determined (see Table 1 for gene function and primer/probe

sequences). Wounds harvested for qRT-PCR were immedi-

ately placed in 1 ml Trizol (Invitrogen, Carlsbad, CA), flash

frozen in liquid nitrogen, and stored at �80 �C. Total RNA

was extracted from wound tissue, and reverse transcribed to

create cDNA, as previously described (Horan et al., 2005;

Table 1. Primer and TaqMan probe sequences for qRT-PCR.

Gene Function Sequence (forward, reverse, probe)

Interleukin-1 beta (IL-1b) Pro-inflammatory cytokine that recruits immune
cells and induces growth factor release

TCGCTCAGGGTCACAAGAAA,
CATCAGAGGCAAGGAGGAAAAC
CATGGCACATTCTGTTCAAAGAGAGCCTG

Tumor necrosis factor alpha
(TNF-a)

Pro-inflammatory cytokine that recruits immune
cells and induces growth factor release

CCCCAAAGGGATGAGAAGTTC,
TGTGAGGGTCTGGGCCATA
AAATGGCCTCCCTCTCATCAGTT

Interleukin-6 (IL-6) Pro-inflammatory cytokine that recruits immune
cells and induces growth factor release

GAGGATACCACTCCCAACAGACC,
AAGTGCATCATCGTTGTTCATACA
AAGTGCATCATCGTTGTTCATACA

Monocyte chemoattractant
protein-1 (MCP-1/CCL2)

Macrophage chemoattractant CCACTCACCTGCTGCTACTCAT,
TGGTGATCCTCTTGTAGCTCTCC
CACCAGCAAGATGATCCCAATGAGTAGGC

Macrophage inhibitory protein-
1 alpha (MIP-1a/CCL3)

Macrophage chemoattractant ACAAGCAGCAGCGAGTACCA,
TCATGATGTTGAGCAGGTGACA
CCCTTTTCTGTTCTGCTGACAAGCTCACC

Keratinocyte chemoattractant
(KC/CXCL1)

Neutrophil chemoattractant and stimulates kerati-
nocyte proliferation and migration

TCCCCAAGTAACGGAGAAAGAA,
TGTCAGAAGCCAGCGTTCAC
AGACTGCTCTGATGGCACCGTCT

Alpha-smooth muscle actin
(a -SMA)

Enhances wound contraction AAACGAACGCTTCCGCTG,
GATGCCCGCTGACTCCAT
CCAGAGACTCTCTTCCAGCCATCTTTCATTG

Keratinocyte growth factor
(KGF)

Stimulates keratinocyte migration and proliferation Assay ID Mm00433291_m1 (Applied Biosystems)

Glyceraldehyde 3-phosphate
dehydrogenase (GAPDH)

Housekeeping gene Cat# 4352339E (Applied Biosystems)
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Mercado et al., 2002a). All TaqMan primers and probes

(Biosearch Technologies, Navato, CA) were designed using

Primer Express software (Applied Biosystems, Carlsbad, CA)

with the exception of GAPDH and KGF (off-the-shelf primer/

probe sets, Applied Biosystems). Using a 7000 Sequence

Detection System (Applied Biosystems), relative gene expres-

sion of individual samples were calculated by the comparative

CT method (2�DCT) with GAPDH used as a housekeeping

gene.

Experiment 3: Effects of social isolation on
bacterial clearance

Based on the finding in Experiment 2, that wound bacterial

burden was significantly lower in isolated mice compared with

group-housed controls, 35 mice were used for a follow-up

experiment to determine whether supplementation of wound

bacteria would ameliorate healing in isolates. Appropriate skin

bacterial concentrations and species promote dermal healing

(Gutierrez-Garcia & Contreras, 2009; Hasen et al., 2010).

Bacteria were harvested from intact dorsal skin of group-

housed mice via skin swabs and grown in culture; such cultures

primarily consist of aerobic proteobacteria species (Bikowski,

1999; Grice et al., 2008). Mice were either isolated for three

weeks before and throughout wounding (n¼ 15) or group-

housed (5/cage; n¼ 10). 1.6� 108 bacteria (in 25 ml sterile

PBS) or PBS for controls (n¼ 5–10/group) were applied

topically once to freshly excised wounds and allowed to air-dry

while mice recovered from the anesthesia. This quantity of

bacteria corresponds to the average number of bacteria in

wounds of restrained mice on Day 5 post-wounding as

determined in Experiment 2. Wound size was recorded daily.

Statistical analysis

Differences in wound closure, bacterial quantification, and

mRNA expression were analyzed using repeated measures

and 2-way ANOVA using SPSS v.19.0 software (Chicago,

IL). PCR data were square-root transformed to achieve a

normal distribution. Data were determined to be statistically

significant when p50.05. Error bars represent standard error

of the mean (SEM).

Results

Experiment 1: Effects of social isolation and restraint
on physiology and behavior

Body mass

Three weeks of social isolation increased body mass relative

to group-housing (GROUP, RESTRAINT, and FWD were

combined because these three groups were treated identically

up to this point; t1,38¼ 2.7, p¼ 0.01; Figure 1A). Three days

of chronic restraint decreased body mass relative to all other

groups (F1,36¼ 28.8, p50.001; Figure 1A). Body mass of

isolated mice remained higher than group-housed controls

at this time (t1,18¼ 7.7, p50.001).

Circulating corticosterone concentrations

Circulating corticosterone concentrations were higher in

RESTRAINT mice than all other groups at baseline

(F3,32¼ 5.8, p¼ 0.003), post-challenge (F3,34¼ 3.6,

p¼ 0.02), and recovery (F3,31¼ 2.2, p¼ 0.1; Figure 1B),

except compared with group-housed controls at recovery due

to high variability (p¼ 0.2). At recovery, isolated mice tended

to have higher circulating corticosterone concentrations

compared with group-housed controls (t1,16¼ 1.78, p¼ 0.09).

Anxiety-like behavior

Isolation increased locomotor velocity in an open field

relative to group-housing (t1,18¼ 3.2, p¼ 0.005; Figure 1C).

Similarly, total locomotor activity was increased in isolated

mice, although this difference was not statistically significant

(t1,18¼ 1.8, p¼ 0.08; Figure 1C). While data were not shown

for the restraint group because the daily restraint treatment

had ceased for one week by the time of the behavioral testing,

neither locomotor activity nor velocity was altered in this

group relative to controls (p50.05).

Experiment 2: Effects of social isolation and restraint
on wound healing

Both isolation and restraint delayed wound closure (Figure 2;

F1,28¼ 10.451, p50.01; F1,28¼ 30.590, p50.001, respect-

ively) and altered the pattern of healing over time (F4,112¼
40.446, p50.001; F4,112¼ 11.977, p50.001, respectively)

compared with respective controls. Specifically, isolation

delayed wound healing from Days 3 to 5 compared with

group-housed controls (p50.001 on each day) and restraint

delayed wound healing from Days 1 to 5 relative to food- and

water-deprived controls (FWD; p50.05 or better; Figure 2).

Wound closure did not differ between the two control groups

at any time point (group-housed and FWD; p40.05). Wounds

in restrained mice were significantly larger than those of

isolates on Day 1 post-wounding only (p50.05).

Bacterial quantification

Despite inducing comparable wound closure impairments,

social isolation decreased wound bacterial load whereas

restraint increased wound bacterial load relative to the

appropriate control groups on Days 1, 3, and 5 post-wounding

(Figure 3; p50.05 in all cases).

Wound gene expression of factors that regulate healing

Isolation decreased wound tissue gene expression of proin-

flammatory cytokine, interleukin-1b (IL-1b), and chemokine,

monocyte chemoattractant protein-1 (MCP-1/CCL2), on Day

1 post-wounding (Figures 4A and B; p50.05), whereas

restraint increased IL-1�, TNF-�, and MIP-1�/CCL3 mRNA

on Day 1 (Figure 4A; Table 2). Both social isolation and

restraint decreased gene expression for keratinocyte growth

factor (KGF) on Days 1 (isolation) and 3 (isolation and

restraint), as well as, a-smooth muscle actin (a-SMA)

on Days 3 (isolation and restraint) and 5 (restraint)

(Figures 4C and D; p50.05). Additionally, isolation reduced

keratinocyte chemoattractant (KC/CXCL1) on Day 3 post-

wounding (Figure 4D; p50.05), whereas restraint had no

effect on gene expression of this factor involved in both the

inflammatory and proliferative phase. Conversely, restraint

singularly decreased Day 5 mRNA expression of vascular

DOI: 10.3109/10253890.2014.910761 Stressors impair wound healing through varied mechanisms 259



endothelial growth factor (VEGF) relative to FWD controls

(Table 2; p50.05). No differences in IL-6 were observed

using either stress paradigm.

Experiment 3: Effects of social isolation on bacterial
clearance

Based on the findings in Experiment 1, that wound bacterial

burden was significantly lower in isolated mice compared

with controls while wound closure was impaired, this

experiment was designed to determine whether supplemen-

tation of wound bacteria would ameliorate healing in isolates,

given that appropriate skin bacterial concentrations and

species promote dermal healing by stimulating appropriate

macrophage recruitment (Gutierrez-Garcia & Contreras,

2009; Hasen et al., 2010).

Similar to the previous experiment, isolation alone

delayed wound closure (F4,32¼ 39.4, p50.001; Figure 5).

The addition of indigenous skin bacteria to wounds improved

healing rates in group-housed control mice compared with

PBS-treated group-housed controls (F4,32¼ 12.6, p50.001),

driven primarily by the immediate reduction in wound size

on Day 1 post-wounding (p50.05). In contrast, bacterial

supplementation did not affect healing rates in isolated mice

(F4,52¼ 1.6, p40.05). As such, the wound sizes of isolated

mice with bacterial treatment remained larger than those of

bacteria-treated group-housed mice (F4,52¼ 33.8, p50.001)

on Days 1–5 post-wounding and non-treated group-housed

mice on Days 1 and 3–5 (p50.05 for each day).

Discussion

Previous studies demonstrate that both models of stress, social

isolation (Detillion et al., 2004; Glasper & Devries, 2005;

Levine et al., 2008) and restraint (Mercado et al., 2002a;

Padgett et al., 1998; Tymen et al., 2013), independently

impair healing, findings which were corroborated by the

present experiments. However, different types of stressors

(e.g. psychosocial versus physical) can have varied effects on

physiological processes (Gutierrez-Garcia & Contreras, 2009;

Santha et al., 2013). This is the first study to directly

compare the magnitude of the healing impairment and the
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Figure 1. Effects of social isolation and chronic restraint on physiology and behavior. (A) Three weeks of social isolation (ISOLATION) increased
body mass compared with group-housed controls (GROUP), whereas daily 12–13-h restraint for three days (RESTRAINT) decreased body mass
relative to controls that were food- and water-deprived during the same time period (FWD). *p50.05 compared with all other groups; &p50.05
between group and isolation treatments. (B) Three days of chronic restraint (12 h/day) increased circulating corticosterone at rest (baseline),
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*p50.05. n¼ 10/group.
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underlying healing mechanisms affected by these two stres-

sor paradigms. In contrast to our prediction, that isolation

would have a more modest effect on wound closure than

restraint, we observed that three weeks of social isolation was

sufficient to induce healing deficits of a similar magnitude as

those reported following eight daily sessions of 12-h restraint

in mice. Thus the physiological consequences of social

isolation on wound healing appear comparable to that of a

more physical stressor.

The temporal dynamics of the observed healing deficits

differed between the two stressors. Wound closure impair-

ments began on Day 1 (inflammatory phase) in restrained

mice and on Day 3 (proliferative phase) in isolated mice,

relative to controls. This timing discrepancy suggests that the

early differences in wound closure of restrained mice were

initially driven by changes in bacterial/inflammatory mech-

anisms and later by effects on proliferative phase mechanisms,

whereas the relatively later healing impairment observed

in isolated mice were driven by effects on proliferative

phase mechanisms only. In support of this, social isolation

decreased gene expression for factors important in the

proliferative phase of healing: keratinocyte growth factor

(KGF) and a-smooth muscle actin (a-SMA). These decreases

in KGF and a-SMA suggest that re-epithelialization (Raja

et al., 2007) and wound contraction (Desmouliere et al., 2005)

are negatively affected by isolation. Similar results were

seen during restraint, and indeed wound contraction is

impaired in restrained mice (Horan et al., 2005). Isolation

also decreased keratinocyte chemoattractant (KC) gene

expression (important for re-epithelialization), whereas

restraint had no such effect. Conversely, gene expression

for VEGF (critical for angiogenesis) was reduced with

restraint but not with isolation. Taken together, these data

suggest that isolation and restraint affect different phases

of wound healing. A more detailed examination of the

influence of isolation on tissue repair mechanisms through

the later remodeling phase of healing is warranted.

Based on previous studies using the restraint stress model,

high bacterial load has been hypothesized to mediate stress-

impaired healing in rodents (Rojas et al., 2002). However,

the present results in male mice support recent findings in

female mice (Pyter et al., 2014) indicating that while the

healing rates of isolated and restrained mice were similar,

wounds from isolated mice had very low bacterial counts,

whereas those of restrained mice were high compared to

controls. This difference likely reflects, in part, the relatively

higher frequency with which wounds from group-housed

mice came into direct contact with surfaces containing

microbes (e.g. littermates or restraint tubes). Isolated mice,

in contrast, were not exposed to bacteria from the skin or

feces of other mice. Alternatively, such differences in

microbiology may be due to differences in the physiological

consequences of these two stressors, with physical restraint

causing the skin to be more amenable to bacterial growth.

A definitive understanding of the causes underlying the

disparate wound microbiology between these two stressors

remains to be determined.

Predictably, inflammatory gene expression in the wound

corresponded with the aforementioned wound bacterial

burden. Compared to controls, wounds of restrained mice

(high bacterial load) displayed increased proinflammatory

gene expression (IL-1b, TNFa, MIP-1a), whereas wounds

of isolated mice (low bacterial load) displayed decreased

proinflammatory expression (IL-1b, MCP-1). This is consist-

ent with previously reported increases in neutrophil activity

and proinflammatory cytokine production in wounds

of restrained mice (Mercado et al., 2002a; Rojas et al.,

2002; Tymen et al., 2013). The combination of elevated

proinflammatory responses and circulating glucocorticoid
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concentrations in restrained mice may reflect glucocorticoid

insensitivity of immune cells, as is observed in other chronic

stress models (O’Connor et al., 2003; Sheridan et al., 2000).

To determine the relevance of the reduced bacterial load

observed in isolated mice on wound closure, wounds were

supplemented with bacteria in a subset of isolated and

control mice. The beneficial effects of bacteria on wound

closure have been shown previously in unmanipulated mice

(Levenson et al., 1983; Tenorio et al., 1976). In the present

study, supplementing bacteria onto wounds resulted in

healing improvements for group-housed control mice only.

In contrast, isolated mice that had wounds treated with

bacteria healed just as slowly as non-treated isolates,

suggesting that lowered bacterial burden is not the primary

mechanism by which slower healing occurs during isolation.

Rather, increased wound bacteria may be responsible for the

relatively earlier wound healing impairments observed

in restrained mice, but is not seemingly related to the later

healing impairments in isolated mice. This is consistent with

findings in restrained mice, whose healing rates also remain

unchanged when supplemented with bacteria (Mercado

et al., 2002a; Padgett et al., 1998; Rojas et al., 2002).

Together, these results indicate that bacterial load and wound

closure rates can be dissociated.

Some potential confounding factors inherent to group-

housing (e.g. grooming, huddling) that might modulate

wound repair are lacking in social isolation paradigms.

While grooming was not directly assessed in this study,

previous work (Vegas et al., 2012) and our observations

(unpublished) indicate that group-housed mice do not groom
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Table 2. Effects of social isolation and restraint stress on wound gene expression for factors that regulate healing.

Gene Group Isolation FWD Restraint Group Isolation FWD Restraint

Day Post-Wounding: 1 3

IL-6 0.063 ± 0.01 0.040 ± 0.00 0.037 ± 0.01 0.027 ± 0.00 0.025 ± 0.00 0.017 ± 0.00 0.025 ± 0.01 0.023 ± 0.00
TNF-a 0.046 ± 0.01 0.043 ± 0.01 0.036 ± 0.01 0.134 ± 0.02* 0.054 ± 0.00 0.057 ± 0.01 0.056 ± 0.00 0.054 ± 0.01
MIP-la/CCL3 0.300 ± 0.03 0.315 ± 0.02 0.353 ± 0.03 0.690 ± 0.08* 0.339 ± 0.04 0.331 ± 0.02 0.409 ± 0.01 0.413 ± 0.02

Day Post-Wounding: 3 5

VEGF 0.108 ± 0.01 0.094 ± 0.01 0.142 ± 0.02 0.119 ± 0.01 0.132 ± 0.02 0.099 ± 0.02 0.155 ± 0.02 0.096 ± 0.01*

*p50.05 between restraint and FWD
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the wounds of cagemates. Single-housed mice also display

compensatory thermoregulatory mechanisms (Himms-Hagen

& Villemure, 1992) which make potential differences in body

temperature unlikely to contribute to the observed effects

on tissue repair. This work supports previous studies

that demonstrate the negative effects of social isolation

in rodents on other physical health outcomes (Advani

et al., 2007; Hasen et al., 2010; Norman et al., 2011). The

potential impact of isolation on immune processes, such as

tissue repair, reinforces the need for thoughtful consideration

and reporting of social housing conditions in biomedical

studies.

The effects of two common rodent models of stress on

wound healing were compared in this study. Stressors are

generally validated by the physiological (e.g. HPA axis

response), behavioral (e.g. anxiety-like behavior), and/or

neurobiological (e.g. hippocampal damage) effects they

elicit. For example, restraint is characterized as a physical

stressor and reliably elicits elevated HPA axis output (gluco-

corticoid release) (Barlow et al., 1975; Glavin et al., 1994),

whereas isolation is considered more of a psychological

stressor and mixed results have been reported on HPA axis

output following chronic isolation (Sanchez et al., 1998;

Scaccianoce et al., 2006; Vegas et al., 2012). Using the

present restraint and isolation paradigms, several physio-

logical and behavioral effects were observed. Body mass

decreased in restrained mice and increased in isolated mice as

previously reported by our lab and others’ (Hotchkiss et al.,

2004; Jeong et al., 2013; Martin & Brown, 2010; Pyter et al.,

2014). The reduction in body mass of restrained mice was

presumably independent of food and water deprivation, as

food- and water-deprived controls maintained their body

mass.

Three days of chronic restraint resulted in consistently

elevated circulating corticosterone concentrations over

an assessment of HPA axis reactivity to an acute stressor.

These elevations appear to conflict with other reports

in which chronic restraint renders the HPA axis less sensitive

to subsequent novel stressors (Buwalda et al., 1999;

Deak et al., 1999). However, in the present study, they

likely reflect (1) a sustained corticosterone release for several

hours following this prolonged restraint paradigm (12–13 h)

and (2) a corroboration of previous observations that mice

do not habituate to repeated exposure to the same stressor

(e.g. restraint) (Hotchkiss et al., 2004; Tuli et al., 1995).

Elevated corticosterone has been associated with impaired

wound healing in rodents and humans (Glaser et al., 1999;

Padgett et al., 1998), although other stress-induced changes

likely contribute as well (Eijkelkamp et al., 2007; Padgett

et al., 1998).

In contrast, isolation had little influence on circulating

corticosterone concentrations and responses to an acute

stressor. Isolation has been reported to have mixed effects

on HPA axis output ranging from corticosterone increases

(Vegas et al., 2012), to corticosterone decreases (Boggiano

et al., 2008; Martin & Brown, 2010), to eliciting no change

(Arndt et al., 2009; Scaccianoce et al., 2006). These mixed

results are likely due to differences in housing conditions,

strain, sex and circadian timing of blood sampling. Based on

a previous study from our lab, females of this same strain

(SKH-1) exhibit decreased corticosterone concentrations both

at baseline and during recovery from a similar acute stressor

(Pyter et al., 2014). Although corticosterone has been shown

to be partially responsible for restraint stress-induced delays

in wound closure (Detillion et al., 2004; Mercado et al.,

2002a; Padgett et al., 1998; Rojas et al., 2002) this is unlikely

to be relevant to isolation-induced healing impairments in

males given the observed lack of changes in corticosterone

following isolation. Alternatively, endogenous oxytocin may

play a key role in isolation-impaired healing, as central

oxytocin levels are reduced during social isolation (Karelina

& DeVries, 2011) and central treatment with an oxytocin

agonist ameliorates wound healing in socially-isolated

animals (shown in hamsters; Detillion et al., 2004).

To assess potential behavioral consequences of isolation,

total locomotor activity was determined one week after HPA

axis responses were measured. Isolation increased overall

activity and speed, which are suggestive of altered psycho-

motor systems or a deficit in locomotor habituation, and is

consistent with other studies of isolated rodents (Naert et al.,

2011; Rilke et al., 1998; Voikar et al., 2005). Taken together,

both restraint and isolation distinctly disrupted various

physiological and behavioral processes.

Conclusions

These data are consistent with the growing evidence that

social interactions garner significant health benefits for social

animals, whereas social isolation is consistently detrimental

(Karelina & DeVries, 2011). How social environment affects

health has potential implications for decisions about standard

rodent housing conditions in research and the value of social

environment (e.g. social support) in the field of medicine.

In addition, this work indicates that tissue repair is an

excellent paradigm by which to understand how different

stressors can negatively affect immunity through potentially

disparate mechanisms. By identifying stressor-specific
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mechanisms, there is a better potential for individualizing

health treatments and thereby optimizing healing outcomes.
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