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Abstract

Hormesis is the process by which small stresses build resilience to large stresses. We pre-
exposed rats to various parameters of mild-to-moderate stress prior to traumatic stress in the
present experiments to assess the potential benefits of hormetic training on resilience to
traumatic, uncontrollable stress. Rats underwent varying stress pre-training parameters prior to
exposure to uncontrollable traumatic stress in the learned helplessness procedure. The ability
to prevent the exaggerated fear responding and escape deficits that normally follow
experience with traumatic stress were used as a measure of the benefits of hormetic training.
Four experiments examined the effects of number of training sessions, stressor severity and
pattern of rest between pre-training stress sessions. Repeated exposure to mild restraint stress
or moderate shock stress eliminated both the enhanced fear conditioning and shuttle-escape
deficits that result from exposure to traumatic, inescapable shock. The pattern of rest did not
contribute to resilience when the pre-exposure stressor was mild, but was vital when the pre-
exposure stressor was moderate, with an alternation of stress and rest being the most effective
procedure. The data also suggest that the level of resilience may increase with the number of
pre-exposure sessions.
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Introduction

Hormesis is the process by which small stresses build

resilience to large stresses. The pharmacologist Hugo

Schulz originally coined the term in 1888 in a discussion of

the immunity to poisoning that develops when an individual

ingests a small amount of the toxin over an extended period of

time (Calabrese et al., 2007; Southam & Erhlich, 1943). The

term has been used more recently to describe the benefits of

exercise and oxidative stress in preventing bodily disease and

improving emotional health (Li & He, 2009; Radak et al.,

2008). Hormesis is probably best conceptualized in modern

parlance as an increased capacity for allostasis – the process

of adapting to an environmental challenge – as the result of

repeated exposure to uncontrollable, but otherwise mild stress

(Sterling & Eyer, 1988). Allostatic load refers to the

cumulative damage that occurs as a consequence of allostasis

when recovery is inadequate or incomplete (McEwen &

Gianaros, 2011; McEwen & Stellar, 1993; Schulkin, 2003).

The present experiments examined the potential hormetic

benefits of stress pre-exposure in the learned helplessness

paradigm. This procedure is a traditional method for

analyzing the effects of acute, traumatic stress and modeling

related symptoms of post-traumatic stress disorder (PTSD)

and comorbid major depression in rats (Başoğlu et al., 1997;

Hammack et al., 2012; Minor et al., 1991, 2011). The

procedure consists of two phases. Rats initially are exposed to

a large number of unsignaled, inescapable tail shocks in tubes

over an extended period (2–4 h). A control group is simply

restrained in tubes for the same time period in the absence of

shock. All rats are tested for shuttle-escape performance 24 h

later. Rats pre-exposed to inescapable shock enter the test

situation in an anxious/agitated state and show exaggerated

fear responding during initial escape testing. Inescapably

shocked rats rapidly transition to an unresponsive, depression-

like state, termed conservation-withdrawal, as testing

progresses. The transition to conservation-withdrawal is

evidenced as a profound deficit in escape performance

(Minor et al., 1994a; Plumb et al., 2013). More generally,

experience with uncontrollable shock results in disturbances

in sleep (Kant et al., 1995), exaggerated startle (Servatius

et al., 1995), hypervigilance (McAuley et al., 2009), anorexia

(Dess et al., 1989), anhedonia (Zacharko & Anisman, 1991),

reinstatement of drug seeking (Figueroa-Guzman et al., 2011)

and attentional/cognitive deficits in rats (Jackson et al., 1980;

Minor et al., 1984; Shors, 2004).

We pre-exposed rats to various parameters of mild-

to-moderate stress prior to traumatic stress in the present

experiments to assess the potential benefits of pre-training

stress exposure. The most severe pre-training stressor used

in the present experiments (i.e. 25 shocks) is not sufficient to

induce the helplessness effect alone (Minor et al., 1994b).
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The enhanced fear conditioning (Maier, 1990; Minor, 1990)

and escape deficits (Maier et al., 1973) normally observed

24 h after experience with inescapable shock should be greatly

diminished by pre-exposure to comparatively mild stress.

Methods

Experiment 1

The majority of work on stress resilience has focused on

early-life experiences and the subsequent effect on stress

coping techniques as an adult. Exposure to intermittent mild

stress during infancy builds resilience during adulthood only

if the individual is allowed time to recover from the stressor

prior to the next stress experience (Boyce & Chesterman,

1990; Denenberg, 1967; Hunt, 1965; Khoshaba & Maddi,

1999; Levine, 1960). In addition, the more exposure to mild

stresses during infancy, the greater the protection against

stress as an adult (Denenberg & Haltmeyer, 1967). The

benefits of the previous stress, however, are overwhelmed

when the target challenge is too severe (Bateson et al., 2004;

Macrı̀ et al., 2011; Minor et al., 1994a).

Whereas the available evidence indicates that mild-

to-moderate stress early in life can benefit the individual in

adulthood, it is less clear that adults are equally malleable.

Adult resilience may be established during a critical devel-

opmental period (Denenberg, 1967; Denenberg & Haltmeyer,

1967) or may be subject to mother-offspring interactions that

are only available during infancy (Bateson et al., 2004; Macrı̀

& Wuerbel, 2006; Macrı̀ et al., 2011; Meaney et al., 1989).

Some evidence that resilience is enhanced in adults comes

from the classic work on ‘‘toughening-up’’ by Miller, Weiss

and their colleagues (Anisman 1978; Miller, 1976; Weiss

et al., 1976, 1981). Rats were exposed to an increasing

intensity of shock stress over a 2-week period in these

experiments. This initial training eliminated symptoms of

behavioral depression following exposure to uncontrollable

traumatic stress in the learned helplessness procedure. Even

though these data provide evidence that changes in resilience

can be achieved in adulthood, the paradigm has limited value

due to the severity of the pre-exposure stressor.

Experiment 1 examined whether pre-exposure to a number

of days (3 or 5) of simple restraint stress (30 min) mitigated

the exaggerated fear conditioning and shuttle-escape deficits

that are normally observed 24 h after exposure to traumatic,

uncontrollable shock.

Subjects

Forty-eight male Sprague–Dawley albino rats (290–320 g)

from Harlan Laboratories (Indianapolis, IN) were housed in

individual cages with free access to food and water in a room

maintained on a 12:12-h light/dark cycle for 1 week prior to

experimental treatment. Experimentation occurred during the

light portion of the cycle. All protocols in this article were

pre-approved by the UCLA IACUC.

Apparatus

Restraint and tail shock pre-treatments occurred in clear

Plexiglas restraining tubes, measuring 23 cm in length and

6 cm in diameter. Adjustable front walls prevented the rats

from moving forward in the tubes. A rat’s tail extended

through the rear door of each tube and was taped to a plastic

rod. Unscrambled electric shocks were delivered from one of

four constant-current shock generators (Lafayette Instrument

Co., Model 82400, Lafayette, IN) through electrodes attached

to the rat’s tail with electrode paste and tape. Each tube was

housed in a sound-attenuating enclosure containing an

exhaust fan that masked extraneous noises. A 7 W house

light located in the center of the rear wall of the attenuating

enclosure’s rear wall provided constant illumination.

Escape testing occurred in a (45 cm� 20 cm� 20 cm)

shuttle box (BRS-LVE model 146-40). The shuttle box was

divided into two equal compartments by a metal barrier that

had an 8� 7 cm center opening flush with the grid floor. The

floor consisted of 2-mm diameter stainless-steel rods spaced

1.1 cm apart center to center. Continuous scrambled shock

was delivered to the grid floor from a Grason-Stadler (Series

700, West Concord, MA) shock generator. The floor pivoted

in the center and a response was recorded when a 300 g rat’s

front paws touched the center grid in a compartment. Two

6 W lamps located in the center of each end wall provided

constant illumination. The shuttle box was housed in a sound-

attenuating chest, containing an exhaust fan that masked

extraneous noise.

Procedure

Rats were assigned randomly to one of six groups of eight rats

each. Two groups received no pre-training (Groups S and R).

They received either exposure to 100, 1.0 mA variable-

duration (mean¼ 8.0 s; range: 3–15 s) inescapable tail shocks

on a variable-time 60 s schedule (range: 20–150 s) in

restraining tubes over 1.83 h (Group S) or simple restraint

in restraining tubes with no tail shock for the same amount of

time (Group R) during the stress treatment session. These

groups served to define the boundaries of the learned

helplessness effect. Two other groups received either three

or five 30-min sessions of restraint stress in tubes with a day

of interpolated rest occurring after each of these sessions.

These groups then were exposed to the traumatic shock

stressor during the treatment session (Groups r-r-r-S and r-r-r-

r-r-S). Two other groups (Groups r-r-r-R and r-r-r-r-r-R) also

received either three or five 30-min sessions of restraint stress

in tubes with a day of interpolated rest occurring between

each of these sessions. These groups received simple restraint

during the treatment session.

Shuttle-escape testing occurred 24 h later. The test con-

sisted of five trials during which a rat had to cross from one

side of the central barrier to the other to terminate shock (FR-

1 trials). These trials occurred on a fixed-time 60-s schedule.

A trained observer scored defensive freezing, defined as the

absence of all bodily and vibrissae movement except for that

related to respiration, during each inter-trial interval using a

time-sampling procedure every 5 s. FR-1 trials were followed

by 25 FR-2 trials during which a rat had to cross from one

side of the central barrier and then return to terminate shock.

Shock terminated automatically if the appropriate response

contingency was not met within 40 s of shock onset on a

given trial. Escape latencies were recorded on each trial.

Shock intensity was set at 0.6 mA with FR-2 trials occurring
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on a variable time 60-s schedule (range: 20–230 s); however,

3 min intervened between FR-1 and FR-2 trials (Minor &

LoLordo, 1984).

Experiment 2

McEwen and his colleagues (McEwen & Gianaros, 2011;

McEwen & Stellar, 1993) argue that rest is important in

repairing the damaging effects of stress and building resili-

ence. The rationale for this proposal is that tissue damage

associated with a rise in catabolic hormones is repaired by a

nocturnal rise in anabolic hormones. Failure to achieve

adequate rest (or sleep) following stress results in an

accumulation of stress-related damage (allostatic load) and

impedes the ability to respond adaptively to future stressors.

Whether rest is necessary or sufficient for resilience is not

clear. Experiment 1 clearly demonstrated that as few as 3 d of

restraint stress with interpolated rest has hormetic benefits.

This experiment examined whether rest and the pattern of rest

influence that outcome.

Subjects and apparatus

Forty male Sprague–Dawley albino rats (290–320 g) were

housed as in Experiment 1. The apparatus was the same as

described above.

Procedure

Rats were randomly assigned to one of five groups of eight

rats each. Two groups received no pre-training prior to

exposure to traumatic shock (Group S) or simple restraint

(Group R) during the stress treatment session. The other three

groups received three sessions of 30-min restraint in tubes

prior to exposure to traumatic stress. These groups differed

with respect to the pattern of restraint and rest: Group rrr—S

received 3 consecutive days of restraint stress followed by 3

consecutive days of rest; Group —rrrS received 3 d of rest

followed by 3 consecutive days of restraint stress; and Group

r-r-r-S received 3 d of restraint stress with 3 d of interpolated

rest. Shuttle-escape testing occurred 24 h after the stress

treatment session.

Experiment 3

Experiment 3 determined whether pattern of rest is critical

when the pre-training stressor is more severe. This experiment

utilized the same general design as Experiment 2; however,

the pre-training stressor was 25 inescapable tail shocks rather

than restraint.

Subjects and apparatus

Forty male Sprague–Dawley albino rats (290–320 g) were

housed as in Experiment 1. The apparatus was the same as

above.

Procedure

Rats were randomly assigned to one of five groups of eight

rats each. Two groups received no pre-training prior to

exposure to traumatic shock (Group S) or simple restraint

(Group R) during the stress treatment session. The other three

groups received three 30-min sessions of 25, 1.0 mA variable-

duration (mean¼ 8.0 s; range: 3–15 s) inescapable tail shocks

on a variable-time 60-s schedule (range: 20–150 s) in

restraining tubes prior to exposure to traumatic stress. These

groups differed with respect to the pattern of shock and rest:

Group sss—S received 3 consecutive days of shock followed

by 3 consecutive days of rest; Group —sssS received 3 d

of rest followed by 3 consecutive days of shock; and Group

s-s-s-S received 3 d of shock with 3 d of interpolated rest.

Shuttle-escape testing occurred 24 h after the stress treatment

session.

Experiment 4

Experiment 1 provided some evidence that more stress pre-

training yields greater resilience against traumatic stress.

In Experiment 4, we used the same general design as in

Experiment 1, but tried to amplify the benefits of stress pre-

training by increasing the severity of the stressor.

Subjects and apparatus

Thirty-two male Sprague–Dawley albino rats (290–320 g)

were housed as in Experiment 1. The apparatus was the same

as above.

Procedure

Rats were randomly assigned to one of four groups of eight

rats each. Two groups received no pre-training prior to

exposure to traumatic shock (Group S) or simple restraint

(Group R) during the stress treatment session. Two other

groups received either three or five 30-min sessions of 25

inescapable tail shocks with interpolated days of rest prior to

exposure to traumatic shock (Group s-s-s-S and Group s-s-s-s-

s-S). Shuttle-escape testing occurred 24 h after the stress

treatment session.

Results

Experiment 1

The left panel of Figure 1 shows mean percent post-trial

freezing in each group. Rats exposed to inescapable shock

without prior training (Group S) showed substantial higher

levels of freezing from the outset of training and generally

increased over trials relative to the restrained control

(Group R). All pre-training groups performed similarly to

the restraint control, with some indication that a greater

amount of pre-training yielded lower freezing levels.

A mixed-design analysis of variance (ANOVA: Stress

Condition�Pre-training Condition�Trial) yielded sig-

nificant main effects of stress, F(1, 42)¼ 17.87, p50.001,

Pre-training, F(2, 42)¼ 23.49, p50.001, and Trial, F(4,

168)¼ 24.23, p50.001 and significant interactions of

Stress� Pre-training, F(2, 42)¼ 10.95, p50.001, and

Stress� Pre-training�Trial, F(8, 168)¼ 2.02, p¼ 0.05. The

interactions between Stress�Trial and Pre-training�Trial

were not statistically significant. Newman–Keuls post-hoc

contrasts (�¼ 0.05) on grand mean freezing suggested the

following ordered relation among group means: S4R¼ r-r-r-

S¼ r-r-r-R¼ r-r-r-r-r-S¼ r-r-r-r-r-R.
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The right panel of Figure 1 shows mean escape latencies

across blocks of five trials in each group. FR-1 escape

latencies did not differ among groups, F51. The standard

helplessness effect is defined by the difference between FR-2

escape latencies of Groups S and R. All pre-training groups

performed similarly to the restraint control, with some

indication that a greater amount of pre-training afforded

slightly greater protection.

A mixed-design ANOVA (Stress Condition� Pre-training

Condition�Trial Block) on FR-2 escape latencies yielded

significant main effects of Stress, F(1, 42)¼ 6.89, p¼ 0.012,

and Pre-training, F(2, 42)¼ 10.18, p50.001, and significant

interactions of Stress� Pre-training, F(2, 42)¼ 7.75,

p¼ 0.002, and Pre-training�Trial Block, F(8, 168)¼ 4.48,

p50.001. The main effect of Trial Block and the other

potential interactions were not statistically significant.

Newman–Keuls post-hoc contrasts (a¼ 0.05) on grand

mean FR-2 escape latencies suggested the following ordered

relation among group means: S4R¼ r-r-r-S¼ r-r-r-R¼ r-r-r-

r-r-S¼ r-r-r-r-r-R.

Experiment 2

The left panel of Figure 2 shows mean percent post-trial

freezing in each of the five groups in Experiment 2. Group S

showed excessive levels of freezing from the outset of testing

relative to the restrained control (Group R). Stress training

prior to traumatic stress mitigated fearfulness at the time of

testing, regardless of the pattern of rest.

A mixed-design ANOVA (Group x Trial) yielded signifi-

cant main effects of Group, F(4, 35)¼ 7.44, p50.001, and

Trial, F(4, 140)¼ 23.32, p50.001, and a significant Group�
Trial interaction, F(16, 140)¼ 1.93, p50.03. Newman–Keuls

post-hoc contrasts (a¼ 0.05) on grand mean freezing sug-

gested the following ordered relation among group means:

S4R¼ r-r-r-S¼ rrr—S¼—rrrS.

The right panel of Figure 2 shows mean escape latencies

across blocks of five trials in each group. FR-1 escape

latencies did not differ, F51. Escape latencies were similar to

freezing behavior. A large deficit in FR-2 escape performance

occurred in Group S relative to Group R. Stress pre-training

dramatically improved escape performance, regardless of the

pattern of rest.

A mixed-design ANOVA (Group�Trial Block) yielded a

significant main effect of Group, F(4, 35)¼ 22.15, p50.001,

and a significant Group�Trial Block interaction, F(16,

140)¼ 3.045, p50.001, indicating that escape latencies

increased in Group S as they decreased in all other groups

across trial blocks. The main effect of Trial Block was not

statistically significant. Newman–Keuls post-hoc contrasts

(a¼ 0.05) on grand mean FR-2 escape latencies suggested the

following ordered relation among group means: S4R¼ r-r-r-

S¼ rrr—S¼—rrrS.

Experiment 3

The left panel of Figure 3 shows mean percent post-trial

freezing in each of the groups in Experiment 3. There is

considerable overlap in freezing behavior among all groups.

A consistent pattern did not emerge among those that received

stress pre-training and those that did not.

A mixed-design ANOVA (Group�Trial) yielded signifi-

cant main effects of Group, F(4, 35)¼ 3.46, p50.02, and

Trial, F(4, 140)¼ 22.82, p50.001. The interaction of Group

and Trial was not statistically significant. Newman–Keuls

post-hoc contrasts (a¼ 0.05) on grand mean freezing

identified a marginally significant difference (a¼ 0.054)

between groups and suggested the following ordered relation

among group means: S¼—sssS4sss—S¼ s-s-s-S¼R.

The right panel of Figure 3 shows mean escape latencies

across blocks of five trials. FR-1 escape latencies did not

differ, F51. A large deficit in FR-2 escape performance

Figure 1. Percent freezing (left panel) and shuttle escape latencies (right panel) for 6 groups in Experiment 1. Two groups were exposed to traumatic
shock stress (Group S) or simple restraint (Group R). Two other groups were pre-exposed to 3 d of restraint with interpolated days of rest followed by
either restraint or traumatic shock (Groups r-r-r-R and r-r-r-S). Two other groups were pre-exposed to 5 d of restraint with interpolated days of rest
followed by either restraint or traumatic shock (Groups r-r-r-r-r-R and r-r-r-r-r-S). Shuttle-escape testing occurred 24 h later. Freezing was measured
over five trials (FR-1) at the start of the shuttle-escape test. Impaired escape performance was assessed over the next 25 trials (FR-2).
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occurred in Group S relative to Group R. The benefits of

stress pre-training clearly depended on the pattern of rest.

Three days of pre-training shock stress prior to traumatic

shock afforded no protection (Group —sssS). In contrast, 3 d

of shock stress with interpolated rest yielded the greatest

protection such that Group s-s-s-S performed similarly to the

restrained control. Three consecutive days of shock stress

followed by three days of rest yielded an intermediate amount

of resilience (Group sss—S).

A mixed-design ANOVA (Group�Trial Block) yielded

significant main effects of Group, F(4, 35)¼ 22.86, p50.000,

and Trial Block, F(4, 140)¼ 3.12, p50.02, and a significant

Group�Trial Block interaction, F(16, 140)¼ 2.49, p50.01.

Newman–Keuls post-hoc contrasts (a¼ 0.05) on grand mean

FR-2 escape latencies suggested the following ordered

relation among group means: S¼—sssS4sss—S4s-s-s-

S¼R.

Experiment 4

The left panel of Figure 4 shows mean percent post-trial

freezing as a function of trial. Group S showed excessive

Figure 3. Percent freezing (left panel) and shuttle escape latencies (right panel) for five groups in Experiment 3. Two groups were exposed to traumatic
shock stress (Group S) or simple restraint (Group R). Three other groups were pre-exposed to 3 d of 25 inescapable tail shocks followed by traumatic
shock. These three groups received 3 d of rest that either preceded training (Group —sssS), followed training (Group sss—S), or was interpolated with
training (Group s-s-s-S). Shuttle-escape testing occurred 24 h later. Freezing was measured over 5 trials (FR-1) at the start of the shuttle-escape test.
Impaired escape performance was assessed over the next 25 trials (FR-2).

Figure 2. Percent freezing (left panel) and shuttle escape latencies (right panel) for five groups in Experiment 2. Two groups were exposed to traumatic
shock stress (Group S) or simple restraint (Group R). Three other groups were pre-exposed to 3 d of restraint followed by traumatic shock. These
three groups received 3 d of rest that either preceded training (Group —rrrS), followed training (Group rrr—S), or was interpolated with training
(Group r-r-r-S). Shuttle-escape testing occurred 24 h later. Freezing was measured over five trials (FR-1) at the start of the shuttle-escape test. Impaired
escape performance was assessed over the next 25 trials (FR-2).
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levels of freezing from the outset of testing relative to the

restrained control (Group R). Both stress pre-training groups

performed similarly to the restraint control.

A mixed-design ANOVA (Group�Trial) yielded signifi-

cant main effects of Group, F(3, 28)¼ 6.72, p50.002, and

Trial, F(4, 112)¼ 22.35, p50.001. The interaction between

Group�Trial was not statistically significant. Newman–

Keuls post-hoc contrasts (a¼ 0.05) on grand mean freezing

suggested the following ordered relation among group means:

S4R¼ s-s-s-S¼ s-s-s-s-s-S.

The right panel of Figure 1 shows mean escape latencies

across blocks of five trials. FR-1 escape latencies did not

differ, F51. A large deficit in FR-2 escape performance

occurred in Group S relative to Group R. Both stress pre-

training groups performed similarly to the restrained control,

with evidence that 5 d of stress pre-training afforded slightly

greater protection than 3 d.

A mixed-design ANOVA (Group�Trial Block) yielded a

significant main effect of Group, F(3, 28)¼ 34.93, p50.001,

and Trial Block, F(4,112)¼ 3.13, p50.02. The interaction

between Group�Trial Block was not statistically significant.

Newman–Keuls post-hoc contrasts (a¼ 0.05) on grand mean

FR-2 escape latencies suggested the following ordered

relation among group means: S4R¼ s-s-s-S¼ s-s-s-s-s-S.

Discussion

The present experiments indicate that repeated exposure to

severe stress is not necessary to build resilience in adult rats.

Exposure to mild or moderate stress with interpolated rest is

sufficient to block the exaggerated fear conditioning and

shuttle escape deficits that normally follow experience with

traumatic, uncontrollable shock. The pattern of rest surround-

ing the mild pre-training stress sessions had no effect on

escape latencies; however, the pattern of rest becomes critical

when the initial stress sessions are more severe. When rest is

allowed between stress sessions, it allows the animal to

recover physically from the damaging effects of each

hormetic stress session (McEwen & Gianaros, 2011;

McEwen & Stellar, 1993). Exposure to 3 d of shock stress

immediately before traumatic stress did not provide adequate

recovery time following each stress session, resulting in no

benefit of stress pre-treatment and subsequent helplessness.

Allowing for 3 d of rest following pre-training stress provided

some benefit, but was less effective than if rest was allowed

after each session. There is also some evidence that an

increased number of pre-training stress sessions may be more

beneficial, though this needs to be explored in greater detail.

The helplessness effect has both associative and non-

associative mediators – both are necessary, neither is suffi-

cient (Minor et al., 1991; Weiss & Simson, 1985). One way

that pre-training stress sessions might impact the helplessness

effect is by impacting one or the other set of mediators. For

instance, repeated exposure to the treatment context prior to

traumatic stress might facilitate discrimination between

treatment and test contexts. This discrimination is severely

impaired following traumatic stress and leads to a limited

form of associative transfer based on common odors (Minor,

1990; Minor & LoLordo, 1984). Manipulations that limit

associative transfer across contexts eliminate the helplessness

effect.

Pre-training stress sessions also might impact a non-

associative mediator. An early example was provided by

Weiss et al. (1976) in their studies of ‘‘toughening-up’’. These

researchers attributed the helplessness effect to a depletion of

brain catecholamines following traumatic stress. Repeated

exposure to the traumatic stressor eventually upregulated the

synthesis of tyrosine hydroxylase, the rate-limiting enzyme

for catecholamine synthesis. The upregulation prevented

catecholamine depletion and therefore behavioral impairment.

A more recent example of a potential non-associative

mediator involves brain metabolic regulation via adenosine

Figure 4. Percent freezing (left panel) and shuttle escape latencies (right panel) for four groups in Experiment 4. Two groups were exposed to traumatic
shock stress (Group S) or simple restraint (Group R). Two other groups were trained with 3 or 5 d of 25 inescapable tail shocks with interpolated days
of rest followed by traumatic shock (Groups s-s-s-S and s-s-s-s-s-S). Shuttle-escape testing occurred 24 h later. Freezing was measured over five trials
(FR-1) at the start of the shuttle-escape test. Impaired escape performance was assessed over the next 25 trials (FR-2).
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signaling (Plumb et al. 2013). We have linked the onset of

escape deficits in this paradigm to an increase in adenosine

signaling in the nucleus accumbens. Adenosine is a critical

modulator of neural activation that links cellular excitability

to energy availability. The effect of enhanced adenosine

signaling in this region is to uncouple dopamine from its

receptor and undermine the motivation for ongoing behavior.

Performance deficits ensue.

This hypothesis suggests that one way to mitigate the

impact of traumatic stress is to increase metabolic capacity.

Pre-exposure to mild or moderate stress may have such a

function. In support of this, manipulations like exercise

(Greenwood & Fleshner, 2008) or treatment with methylene

blue (Gonzalez-Lima & Bruchey, 2004) increase metabolic

capacity and eliminate the helplessness effect.

Stress pre-training also might impact processes that are

orthogonal to the immediate causes of impairment. There is

considerable interest in neuropeptide Y (NPY) as a potent

antagonist of both the hypothalamic–pituitary–adrenocortical

axis (HPA) and sympathoadrenomedullary (SAM) axis

(Heilig, 2004). Stress pre-exposure might upregulate brain

and peripheral concentrations of NPY, thereby reducing the

overall impact of the traumatic stress session. Other mech-

anisms could have a similar impact. Repeated exposure to the

pre-training stressor could result in habituation to shock and

the resulting fear response, in which case the traumatic stress

would be perceived as less severe and thereby eliminate the

helplessness effect (Drugan et al., 1984; Jackson & Minor,

1988; Mineka et al., 1984; Minor et al., 1990 1991).

Helplessness is usually observed only when the stressor is

exceptionally severe (Minor et al., 1994b).

Exposure to traumatic stress can be detrimental to one’s

physical and mental health, often resulting in psychological

disorders such as post-traumatic stress disorder (PTSD) and

major depression (refer Minor et al., 2011; Plumb et al., 2013

for reviews). These disorders are often accompanied by the

inability to effectively cope with subsequent stress. The

learned helplessness procedure is an effective tool to study the

deleterious effects of traumatic stress as the resulting behavior

mimics a number of symptoms of PTSD and major depres-

sion, including anhedonia, insomnia, psychomotor retard-

ation, fatigue and anorexia or hyperphagia (Minor et al., 2011;

Plumb et al., 2013). With this procedure, we have been able to

show that repeated exposure to mild or moderate stress with

interpolated rest builds resilience to traumatic stress and

reduces the subsequent symptoms of PTSD and comorbid

depression in rats.

Conclusion

The present experiments provide evidence that stress resili-

ence can be accomplished in adulthood without repeated

exposure to severe stress (Weiss et al., 1976) – mild to

moderate stress is sufficient to produce hormesis. Repeated

exposure to mild restraint stress or moderate shock stress

eliminates both the enhanced fear conditioning and shuttle-

escape deficits otherwise produced by traumatic, inescapable

shock. There is a tendency for resilience to increase as

the number of pre-exposure sessions increases, although the

difference failed to achieve statistical significance in

two experiments. Importantly, interpolated rest between pre-

exposure stress sessions is not only a critical factor when the

stressor is mild, but also is critical as the stressor becomes

more severe.
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