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Introduction

To date, more than 120 types of human papillomavirus 
(HPV) have been characterized1. HPV exclusively infects 
epithelial cells and is associated with a broad spectrum 

of clinical manifestations that range from self-limiting 
lesions to life-threatening diseases2–13.

With the advances in molecular techniques over the 
last decade, our understanding of this family of ubiquitous 
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Abstract
Human papillomavirus (HPV) infection is associated with a wide spectrum of disease that ranges from self-limited 
skin warts to life-threatening cancers. Since HPV plays a necessary etiological role in cervical cancer, it is logical to 
use HPV as a marker for early detection of cervical cancer and precancer. Recent advances in technology enable 
the development of high-throughput HPV assays of different formats, including DNA-based, mRNA-based, high-risk 
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effectiveness of cervical screening programs. HPV testing has several potential advantages compared to cytology-
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test results are bound to have a low positive predictive value that may subject women to unnecessary follow-up 
investigations. The wide-spread administration of prophylactic HPV vaccine will substantially decrease the incidence 
of cancer and precancer. This poses a number of challenges to cytology-based screening, and the role of HPV testing 
is expected to increase. Finally, apart from technical and cost-effectiveness considerations, one should also keep in 
mind the psycho-social impact of using sexually-transmitted agents as a marker for cancer screening.
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viruses has improved tremendously, a number of previ-
ously unrecognized important disease associations have 
been confirmed, and detection assays for epidemiologi-
cal study and for confirming diagnosis to assist patient 
management have been developed. Vaccines targeting 
two HPV types that show the strongest association with 
cervical cancer have been developed14. Assessment 
of vaccine cost-effectiveness and priority becomes an 
important task for public health policy makers. To this 
end, HPV detection and typing assays are indispensable 
in defining the fraction of disease attributed to the types 
covered by current vaccines.

Disease spectrum

Benign lesions
Non-genital skin infections
With the improvement in the sensitivity of detection 
assays and coverage for a variety of HPV types, it is now 
recognized that asymptomatic carriage of HPV on healthy 
skin is common and can persist over several years15. 
Persistence of HPV infection on non-genital skin does 
not seem to be related to age, sex, immunosuppressive 
treatment or history of warts16,17. Clinical manifestations 
of these lesions are characteristic. In most situations, 
diagnosis can be made clinically without HPV testing18–19. 
Testing for HPV in these lesions is mainly for epidemio-
logical study or other research purposes.

HPV causes benign warts on the skin, which present 
as flat or firm non-itchy papules10. Commonly affected 
areas include hands (verrucae palmares) and feet (verru-
cae plantares), which are associated typically with HPV 
1, 2, and 4. Skin warts, except those growing over press 
areas, are non-painful. Verrucae planae are flat skin-
colour warts found on the face, hands and forearms, and 
are caused most commonly by HPV 3 and 7. Periungal 
warts found at the nail fold are often painful. Butcher’s 
warts are found rarely on the hands of butchers who 
have repeated trauma that predisposes them to infection 
with, most commonly, HPV 7; although it is a well-known 
occupational disease, there is no evidence that the source 
of infection is animal papillomaviruses20.

Genital infections
Genital tract HPV infection is the most common sexu-
ally-transmitted infection. Infections are often subclini-
cal. Clinical lesions (condylomata acuminata) are often 
multiple and appear as exophytic papillomas, flesh or 
brown in colour. HPV 6 and 11 are the types most com-
monly found in visible anogenital warts, but other types, 
including those typically found in non-genital skin, can 
also be detected, especially from anogenital areas with-
out visible lesions3,21–25.

Oral infections
The oral mucosa is also susceptible to HPV infection. 
Such infection involving the larynx represents a rare but 
severe disease3,7,26–28. Laryngeal papillomatosis has two 

age-related incidence peaks; those with early childhood 
onset are acquired vertically from maternal condyloma, 
whereas the adult onset group is presumably acquired 
via orogenital contact. In both groups, HPV 6 and 11 are 
the most commonly found HPV types. The lesions, which 
develop mainly over vocal cords and trachea, present as 
hoarseness of voice and stridor. Lesions may extend to 
lungs, nose and oral cavity. Treatment is difficult as the 
lesions often recur; thus it is also known as recurrent 
respiratory papillomatosis. Heck’s disease, another rare 
condition, presents as multiple papillomas over the lip 
and buccal mucosa29–31.

Malignant lesions
The hypothesis that HPV plays a role in the development 
of cervical cancer was proposed in the mid-1970s. Over 
the last 40 years, a strong body of evidence has accumu-
lated to prove the etiological association between HPV 
infection and a number of human cancers in addition to 
cervical cancer11,32,33.

Epidermodysplasia verruciformis
Epidermodysplasia verruciformis (EV), a genetically-
inherited chronic skin condition, presents as dissemi-
nated flat warts. Recent studies have shown that some 
EV patients have mutations in the EVER1 and EVER2 
genes34–36. Certain HPV types belonging to the beta genus 
(HPV 5, 8, 9, 12, 14, 15, 17, 19, 25, 36, 38, 47 and 50) are 
specifically linked to EV. These EV-associated HPV types 
are also commonly found in the general population. 
Some immunosuppressed individuals who do have EV 
may develop lesions caused by EV-associated HPV types. 
There is no evidence that EV patients are more suscep-
tible to infection or disease manifestations caused by 
the alpha genus of HPV. About half of the EV patients 
develop squamous cell carcinoma in sun-exposed areas. 
Most malignant lesions are associated with HPV 5 and 8, 
though the pathogenic mechanism of these HPV types is 
still not yet clear8,37,38.

Non-melanoma skin cancers
In recent years, some evidence suggests that non-
melanoma skin cancers including basal cell and squa-
mous cell carcinoma may be linked to cutaneous HPV 
infection. The suspicion of a viral cause for cutaneous 
squamous cell carcinoma is based on the observation 
that its incidence increases dramatically in solid organ 
transplant recipients receiving long-term immunosup-
pressive therapy. While sun-exposure is a recognized 
risk factor, infection with cutaneous HPV (mainly the 
beta genus) seems to play a role in the development of 
non-melanoma skin cancers, especially squamous cell 
carcinoma. HPV types belonging either to beta species 1 
or 2 have been detected from squamous cell carcinoma 
specimens, but unlike anogenital cancers, no predomi-
nant HPV types can be identified39,40. The etiological 
association between non-melanoma skin cancers and 
HPV infection is difficult to prove as the same spectrum 
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of HPV types is prevalent among healthy subjects9,41. 
Furthermore, HPV may not be required in maintaining 
the cancer phenotype and it may therefore escape detec-
tion in tumour specimens42.

The mucosal group of HPV is associated with several 
malignant conditions. Bowenoid papulosis presents as 
multiple small flat pigmented papules on the external 
genitalia. Histologically, it is a carcinoma-in-situ, it can 
evolve to invasive carcinoma, and it is often associated 
with HPV 16. A subset of intraepithelial neoplasia and 
carcinoma of the penis, vulva and vagina is also associ-
ated with HPV infection, mainly HPV 1643.

Cancer of vagina
This uncommon cancer in women has an age-standard-
ized rate of 0.3–0.7 per 100,000 worldwide44. The limited 
information about the role of HPV infection and occur-
rence of vaginal cancer is mostly based on analysis of 
a few HPV types using fixed tissues45. Epidemiological 
studies indicate that vaginal cancer resembles cervical 
cancer, and HPV DNA is detected in a majority of vaginal 
tumours and their precursor lesions. HPV is detected in 
82–100% of vaginal intraepithelial neoplasia grade III, 
and 64–91% of vaginal cancers; as in cervical cancer, 
HPV16 is the most prevalent type found45,46.

Cancer of vulva
The age-standardized incidence rates of vulvar cancer lie 
between 0.5 and 1.5 per 100,000. The geographical pat-
tern of vulvar cancer is different from cervical cancer and 
high rates are observed in several European populations 
(Scotland, Denmark, Spain, Italy), whereas the preva-
lence in sub-Saharan Africa, Southeast Asia, and Latin 
America is low. Distinct subtypes, such as the warty and 
basaloid types, have been recognized, but the majority 
of tumours are squamous cell carcinoma. Etiologically, 
because vulvar carcinomas are heterogeneous, the 
prevalence of HPV infection in invasive vulvar cancer 
cases varies47. Vulvar cancer with basaloid histopathol-
ogy in young women is often associated with HPV. HPV 
16, 31 and 33 are the most frequently-detected types in 
this type of vulvar cancer and its precursor lesions48. On 
the other hand, vulvar cancer with verrucus subtype and 
some cases of precancerous lesions of vulvar intraepithe-
lial neoplasia are not associated with HPV infection49. In 
general, the HPV-positive and -negative groups of vulvar 
squamous cell carcinoma share a similar prognosis50.

Cancer of anus
The vast majority of anal cancers is associated with HPV 
infection. Cancers arising in the anal canal and tumors of 
the external skin (anal margin) are classified as skin can-
cers. The canal is lined in its upper part by colorectal-type 
mucosa, and in its lower third by squamous epithelium, 
with a specialized transitional zone in between. Therefore, 
cancers are predominantly squamous cell carcinoma, 
adenocarcinoma, or basaloid and cloacogenic carcinoma. 
In most populations, squamous cell carcinoma is twice 

as common in females as males. However the incidence 
is particularly high among men who have sex with men 
and the risk is increased further by infection with human 
immunodeficiency virus, cigarette smoking, anal inter-
course, and more lifetime sexual partners51–53.

Cancer of penis
Globally, this rare cancer accounts for less than 0.5% of all 
cancers in men. The concordance of cervical and penile 
cancer in married couples and the geographical distribu-
tion of these cancers suggest that they share a common 
etiology54. Serological studies have confirmed the role of 
HPV 16 and HPV 18 in the etiology of penile cancer, and 
HPV DNA is detected in 40–50% of such cancers55–57.

Cervical cancer
Among the cancers for which a confirmed or probable 
etiological link with HPV infection has been established, 
cervical cancer has the strongest association and accounts 
for the largest share of disease burden2,12,58–60. In 2008, there 
were about 530,000 new cases of cervical cancer, and about 
half this number (275,000) died of the disease worldwide; 
the age-standardized incidences of new cases and mortal-
ity were 15 and 8 per 100,000, respectively61,62. Worldwide, 
cervical cancer ranked third among cancers in women, 
just following breast cancer (1.3 million new cases) and 
colorectal cancer (0.57 million new cases) in 2008. The 
incidence of cervical cancer varies widely and the develop-
ing world accounts for more than 85% of both incidence 
and mortality. The annual age-standardized incidence 
rates range from 56 per 100,000 (Guinea) to < 1 per 100,000, 
depending mainly on the availability of organized cervical 
screening programs. Overall, the lowest disease burden is 
recorded from Australia, New Zealand, North America and 
Western Europe, whereas highest burden is seen in Africa, 
South-Central Asia and South America62.

Oropharyngeal cancer
An increase in incidence of oropharyngeal squamous cell 
carcinoma, specifically those originated from the tonsil 
and tongue base, has been observed in some parts of the 
world63,64. A proportion of these lesions are associated 
with HPV infection65–68. The prevalence of HPV in these 
tumours varies geographically and reflects the varia-
tion in prevalence of oral HPV infection, which in turn 
mainly depends on the practice of oral sex. HPV-positive 
oropharnygeal squamous cell carcinomas differs from 
HPV-negative ones in several molecular aspects, reflect-
ing that they are distinct entities. The molecular features 
observed in HPV-positive oropharyngeal cancers are 
consistent with the notion that HPV plays a role in the 
development of these tumours5,6,65,69.

Clinically important basic virology

Viral genome and key proteins
Papillomaviruses have a small double-stranded DNA 
genome of about 8 kb in length. The key functions and 
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proteins encoded by different regions of the HPV genome 
that are relevant for designing detection assays are shown 
in Figure 1.70–72 The viral genome has eight open reading 
frames (ORF) encoding two structural (late) proteins L1 
and L2; these form the viral capsid that is about 55 nm 
in diameter and protects the viral genome inside. L1 is 
the major structural protein which is conserved within a 
given HPV type. The fact that L1 protein is immunogenic 
and conserved within a given type makes it a prime tar-
get as antigens for serological assay as well as prophylac-
tic vaccine development73. L1 proteins can reassemble 
themselves under appropriate in vitro conditions to form 
virus-like particles which are the main constituent of cur-
rent prophylactic vaccines14,53,74–77. L2 is the minor capsid 
protein which can potentially elicit a broader spectrum 
of neutralizing antibodies against different types of HPV. 
The potential of using L2 protein as an additional com-
ponent in future vaccines is being investigated78–81. The 
early proteins E5, E6 and E7 encoded by HPV contribute 
to tumour progression. The oncogenic activities of E6 and 
E7 are well-characterized. Both E6 and E7 have numerous 
cellular targets. E6 proteins encoded by high-risk HPV 
types primarily bind to the tumour suppressor protein p53, 
and the binding is mediated by the E6-associated proteins  
(E6-AP). Overexpression of E6, together with its interac-
tions with other cellular proteins, results in the degradation 

of p53, anti-apoptosis, chromosomal destabilization, 
enhancement of foreign DNA integration and activation 
of telomerase82–89. The E7 proteins encoded by high-risk 
HPV types also demonstrate an important role in tumouri-
genesis. E7 binds to a large number of cellular proteins, 
most importantly the retinoblastoma protein (Rb) and the 
Rb-related pocket proteins. Such binding results in inacti-
vation of Rb-related pocket proteins, activation of cyclins, 
inhibition of cyclin-dependent kinase inhibitors, and 
enhancement of foreign DNA integration and mutagen-
esis90–95. The expression of E6 and E7 is tightly controlled 
via a promoter located at the non-coding Long Control 
Region (LCR) of the viral genome. Other early proteins 
encoded by papillomaviruses are E1, E2 and E5. In con-
trast to E6 and E7, the oncogenic activities of E5 are much 
less well-defined. Recent studies indicate that E5 plays a 
role in escape from immune surveillance, upregulation of 
transcription factors and inhibition of apoptosis96–98. E2 is 
another important region of the papillomavirus genome99. 
E2 proteins form complexes with E1 to initiate viral repli-
cation. E2 also regulates the expression of E6 and E7, and 
can exert suppressive or activating effects depending on 
the abundance of E2. Disruption of E2 ORF as a result of 
integration of viral genome into the host genome allows an 
uncontrolled overexpression of viral oncoproteins E6 and 
E7, which is a hallmark in cervical cancer100–102.

Figure 1.  Key targets of human papillomavirus genome for detection.
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Concept of HPV type
HPV are classified under the family Papillomaviridae 
which comprises members infecting humans, non-
human primates, birds, and reptiles1,103–105. Unlike many 
other viruses, the concept of “strain” is not used for papil-
lomaviruses as they cannot be grown by conventional cell 
culture methods. “Serotype” cannot be applied because 
of the lack of a robust antibody response following natu-
ral infection. Thus, HPV types refer to “genotypes”, which 
are classified based on sequence similarity. To date, more 
than 120 HPV types have been well-characterized1. The 
L1 ORF is a key region for classification of HPV types  
(Figure 1). Technically-speaking, the DNA sequence of the 
L1 region of an HPV type differs from all other types by 
more than 10%. When the differences in L1 ORF nucleo-
tide sequences between two isolates are within 2–5%, 
they are regarded as subtypes; differences below 2% are 
referred as variants. The findings that sequence diver-
gence of a given HPV type is limited and subtypes are rare 
indicate that HPV has probably gone through genetic drift 
that became amplified by founder effects and bottlenecks 
of evolution106–111. While the classification of HPV “types” is 
based on genome sequence, it has strong clinical implica-
tions112,113. Firstly, the phylogenetic grouping of HPV types 
reflects tissue tropism observed in clinical infections. HPV 
types belonging to the alpha genus (also known as super-
group A) mainly infect the mucosal areas, whereas types in 
the beta genus (also known as supergroup B) mainly infect 
the cutaneous areas. Secondly, the protective immune 
response elicited by HPV infection is mainly type-specific. 
Similarly, the protection induced by the currently avail-
able prophylactic vaccines (Gardasil® quadrivalent with 
HPV 6, 11, 16, 18 from Merck & Co.; Cervarix® bivalent 
with HPV 16, 18 from GlaxoSmithKline Biologicals) is 
also mainly type-specific, although some degree of cross-
protection, especially for the bivalent vaccine, has been 
observed114–118. The ability of HPV to induce cancer is also 
type-related. HPV types can be grouped into high-risk and 
low-risk based on their association with the development 
of cervical cancer. The risk associations identified by epi-
demiological and biochemical studies are similar. There is 
no dispute in grouping the commonly-found HPV types, 
but classification of rare types is still not clear119. In view 
of the current epidemiological, biochemical and phylo-
genetic data, the mucosal/anogenital HPV types can be 
grouped as “high-risk” (HPV 16, 18, 31, 33, 35, 39, 45, 51, 
52, 56, 58 and 59), “probable high-risk” (HPV 68), “pos-
sible high-risk”(HPV 26 and 73), and “low- or unknown 
risk” (HPV 6, 11, 30, 34, 40, 42, 43, 44, 53, 54, 55, 57, 61, 62, 
66, 67, 69, 70, 82, 85 and 97)2,105,112,119,120.

Virus detection approaches

Because the replication cycle of papillomaviruses can be 
completed only in differentiated epithelial cells, isolation 
of viruses from clinical samples is difficult72. Growth of 
papillomaviruses has been accomplished only in a spe-
cialized primary human keratinocyte-derived cell culture 

system, organotypic “raft” culture, where epithelial cells 
are grown on semi-solid agar to allow differentiation of 
epithelial cells and hence productive replication of pap-
illomaviruses121–123. Even with this technique, only a few 
types (mainly HPV 11 and 31) have been replicated suc-
cessfully in laboratory conditions.

HPV is equipped with several immune evasion mecha-
nisms. It multiplies in keratinocytes that have a short-life 
span, and thus the progeny viruses can be released in a nat-
ural way without inducing cell lysis that is seen with other 
non-enveloped viruses. This avoids triggering of inflamma-
tion and immune responses associated with cellular dam-
age. The lack of a viremic phase also minimizes stimulation 
to the systemic immune system. Furthermore, the virus 
actively downregulates the synthesis of interferon. As a 
result, although the immune system plays an important 
role in clearing infection and it is associated with a strong 
localized cellular immune response, natural infection 
with papillomaviruses does not result in a robust antibody 
response124–130. For this reason, serological diagnosis has 
limited clinical and epidemiological value. For instance, 
only about 50–70% of women with persistent cervical HPV 
infection mount a detectable antibody response, and most 
women with transient infection do not have detectable 
antibodies or have them only for a short time131–135. Thus, 
the detection of HPV infection relies mainly on a molecu-
lar approach that amplifies the viral genome or mRNA, or 
detection of viral protein using immunoassays.

DNA-based assays
Because HPV cannot be cultured, all HPV assays cur-
rently in use rely on the detection of viral nucleic acids. 
They can be divided into: 1) target-amplification meth-
ods (PCR [polymerace chain reaction] with consensus 
or type-specific primers, and HPV mRNA amplification), 
and 2) signal amplification methods (liquid-phase or  
in situ hybridization). It is necessary to distinguish ana-
lytical sensitivity (minimum number of HPV genomes to 
be present in a sample to generate a positive test result) 
from clinical sensitivity (proportion of women with dis-
ease who test positive) (Table 1).

The choice of the HPV test depends on the applica-
tion (Table 1). Assays with high analytical sensitivity 
are crucial for molecular epidemiological studies and 
for evaluating vaccine efficacy. HPV typing assays with 
high analytical sensitivity and specificity are the key in 
virological surveillance, including the evaluation of vac-
cination impact on the prevalence of vaccine-covered 
types, identification of new types, discrimination of types 
in multiple infection, and monitoring of potential type 
replacement in the post-vaccine era.

On the other hand, when applied in the clinical situ-
ation for cervical cancer screening and post-treatment 
follow-up, assays with lower analytical sensitivity may 
produce a better positive predictive value136–138. It is 
important that HPV tests are clinically validated under 
context-specific conditions, especially in the target 
population.
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Hybrid capture HPV DNA assay
Hybrid capture (HC2) is based on liquid phase hybridiza-
tion using long synthetic RNA probes complementary to 
the genomic sequences of 13 high-risk types (HPV 16, 18, 
31, 33, 35, 39, 45, 51, 52, 56, 58, 59 and 68) and five low-
risk types (6, 11, 42, 43 and 44); these are used to prepare 
high-risk (B) and low-risk (A) probe cocktails that are 
used in two separate reactions139. In practice, often only 
the high-risk probes are used. DNA present in the biolog-
ical specimen is hybridized in solution phase with each 
of the probe cocktails and forms specific HPV DNA-RNA 
hybrids. These hybrids are then captured by antibodies 
bound to the wells of microtiter plates that recognize 
specific RNA-DNA hybrids. After removal of excess anti-
bodies and non-hybridized probes, the immobilized 
hybrids are detected by a series of reactions that give rise 
to a luminescent product that is detected by a luminom-
eter. The intensity of emitted light, expressed as relative 
light units, is proportional to the amount of target DNA 
present in the specimen, and provides a semiquantita-
tive measure of the viral load. The HC2 is currently avail-
able in a 96-well microplate format with automation that 
is easy to use in clinical settings. An automated robotic 
platform that allows handling of 96-well microplates has 
been developed for high-volume testing.

HC2 does not require special facilities to avoid cross-
contamination because it does not rely on target ampli-
fication to achieve high sensitivity, as do PCR protocols. 
The recommended cut-off value for test-positive results 
is 1.0 relative light unit (equivalent to 1 pg HPV DNA per 
1 mL of sampling buffer). Several studies have noted that 
the high-risk probe cocktail in HC2 cross-reacts with 
HPV types that are not represented in the probe mix. It 
has been reported that HC2 using the high-risk probe at 

a 1.0-pg/mL cut-off detected HPV types 53, 66, 67, 73, as 
well as other undefined types, and raising the cut-off to 
10.0 pg/mL did not eliminate the cross reactivity to types 
53 and 67140. Cross-reactivity of HC2 high-risk probe to 
HPV types that have a significant risk for cervical cancer 
may be considered as beneficial, but cross-reaction with 
low-risk types causing false-positive results may decrease 
the specificity and positive predictive value141.

Consensus, group- or type-specific PCR
Currently, the most important clinical application of 
HPV detection is to identify women with a higher risk of 
developing cervical intraepithelial neoplasia or invasive 
cervical cancer (Figure 2). HPV DNA detection systems 
that are designed to catch all the mucosal or anogenital 
HPV types are referred as “consensus”, those detecting 
high-risk or low-risk HPV types as a group are referred as 
“group-specific”, and those identify individual HPV types 
are referred as “type-specific”. A variety of commercial 
assays belonging to each category are available (Table 2).

Target regions
L1: The L1 region is the most frequently-used target 
for amplifying HPV genome from clinical samples  
(Figure 1). L1, on the one hand, is conserved enough for 
the design of consensus primers to amplify a broad spec-
trum of HPV types by using a single set of degenerated 
primers or a cocktail of primers142–149. The commonly-
used primer sets are shown in Table 3. On the other hand, 
the L1 region also has sufficient sequence diversity to 
allow the identification of individual HPV types based on 
further analysis of the amplified products. Given the defi-
nition that L1 sequences of different HPV types should 
differ by more than 10%, type differentiation is achievable 

Table 1.  Parameters for assessing the clinical performance of HPV tests in cervical cancer screening.
Terminology Characteristics to measure
Sensitivity1 The proportion (expressed as percent) of patients with a certain disease (e.g. CIN III or invasive cervical 

cancer) who have a POSITIVE HPV test. E.g., a sensitivity of 95% for CIN III means that 5 of 100 CIN III cases 
will be NEGATIVE (false-negative) and will be missed by this test. Sensitivity is affected mainly by the test 
itself and to some extent by the nature of samples submitted for testing.

Specificity2 The proportion of subjects (expressed as percent) without a certain disease (e.g. CIN II or higher severity) 
who have a NEGATIVE HPV test. E.g., a specificity of 70% means that if 100 women without CIN II or higher 
severity participate in the screening, 30 will be POSITIVE (false-positive) by the test. Specificity is affected 
mainly by the test itself and to some extent by the nature of samples submitted for testing.

Positive predictive value The chance (expressed as percent) that a POSITIVE HPV test result indicates the presence of a certain disease 
(e.g. invasive cervical cancer). In the context of cervical screening, this predictive value can be further divided 
into predictive value for the current situation or in the next 5 or 10 years. The positive predictive value of a test 
depends mainly on the prevalence of the disease in the target population. Cancer screening tests, including 
HPV, are bound to have low positive predictive value when applied to the general population.

Negative predictive value The chance (expressed as percent) that a NEGATIVE HPV test result excludes the presence of a certain 
disease (e.g. CIN II or higher severity).
Under the context of cervical screening, this predictive value can be further divided into predictive value for 
current situation or in the next 5 or 10 years. The negative predictive value of a test depends mainly on the 
prevalence of the disease in the target population.

1�The definition presented here refers to “clinical” sensitivity. From the laboratory performance point of view, the concept of analytical  
sensitivity is often used, which means the lowest amount of analyte required in the specimen to generate a positive result, (also referred to 
as detection limit, e.g. 100 copies of viral DNA). For the HPV test, increasing the analytical sensitivity may not always increase the clinical 
sensitivity, but usually specificity is lost.

2�From the laboratory performance point of view, “specificity” means cross-reaction with similar targets. This is more relevant for assays 
intended for HPV typing. e.g. an assay with poor specificity may misidentify an HPV 58–positive sample as HPV 33.
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even based on a short fragment, less than 100-bp, of L1. 
HPV type can be identified by a few approaches. Type-
specific restriction fragment length polymorphisms can 
be generated by using two restriction endonucleases Rsa 
I and Dde150,151. This method was more popular when 
sequencing was still expensive and labour intensive. 
The main disadvantage of restriction fragment length 
polymorphisms is the ambiguous restriction fragment 
patterns generated from co-infection with multiple 
types, especially when three or more types are present in 
a sample. This approach has gradually been replaced by 
sequencing because the cost for the latter has fallen sub-
stantially in recent years. However, sequencing of PCR 
product can reveal only the HPV type that predominates 
in a co-infection. Today, the best approach to identify 
multiple HPV types simultaneously from a sample is to 
perform hybridization with multiple HPV type-specific 
probes immobilized on strips, membranes or array slides 
(Table 2).

While L1 is regarded as the best target for HPV genome 
detection, it is absent from a small proportion of invasive 
cervical cancer samples, probably due to disruption 
resulting from viral genome integration152. When such a 
situation is suspected, the constitutively retained genes, 
E6 or E7, can be amplified to verify the presence of HPV 
infection. Furthermore, consensus primer sets may have 
different analytical sensitivities for different HPV types 

or variants147. When adopting assays developed else-
where, evaluation based on samples collected from the 
local population is necessary before the assays are used 
clinically.

E6, E7: The E6 and E7 regions are good alternative 
targets for amplifying HPV genome from clinical speci-
mens. Firstly, the nucleotide sequence diversity of E6 
and E7 between HPV types allows the design of type-
specific primers. Secondly, E6 and E7 gene expression 
is required to maintain the transformed phenotype of 
infected cells153–159. Therefore, both E6 and E7 genes are 
expected to be retained regardless of the status of viral 
integration. The constitutional presence of E6 and E7 
genes makes them an appropriate target for viral load 
quantification160,161.

E2: Papillomavirus infection can exist in two forms. 
The vegetative phase, also known as the replicative or 
productive phase, is associated with a full episomal 
form of viral genome. This replicative phase is typically 
found in the upper layers of epithelium with differenti-
ated keratinocytes, or in benign condyloma where a large 
amount of virus is released32,162–164. In the integrated form, 
the viral genome is disrupted and therefore the viral rep-
lication cycle cannot be completed. It is widely accepted 
that HPV-mediated cervical carcinogenesis proceeds via 
the integration of viral genome and disruption of the E2 
ORF, thus releasing the suppressive control of E2 on the 

Figure 2.  Natural history and management of cervical HPV infection.



124  P. K. S. Chan et al.

 � Critical Reviews in Clinical Laboratory Sciences

expression of viral oncogenes E6 and E7. Thus, E2 is often 
used as a surrogate marker to indicate the status of viral 
integration. By measuring the ratio between E2 and E6 
(or E7) gene copy numbers, one can estimate the pro-
portion of integrated viral genome present in a clinical 
specimen.

E6/E7 mRNA-based assays
E6 and E7 are oncoproteins involved in carcinogenesis. 
Persistent expression of E6 and E7 could serve as an 
indicator of progression from intraepithelial neoplasia 
to invasive cancer165–167. Detecting the mRNA encoded 
by E6 or E7 may, therefore, provide a better predictive 
value for malignant or high-grade lesions168–171. A few 
commercial assays based on this approach have been 
developed recently (Table 2)172,173. The PreTect HPV-
Proofer (Norchip, Klokkarstua) and NucliSENS Easy Q 
HPV (BioMerieux, Marcy-l’Étoile) assays are based on 
the same technology, and are marketed under different 
brand names in different countries. PreTect Proofer and 
NucliSENS Easy Q detect E6/E7 mRNA from five high-
risk types (HPV 16, 18, 31, 33 and 45) commonly found in 
high-grade lesions and cancers. The APTIMA HPV Assay 

(Gen-Probe) provides a broader coverage and targets 
mRNA of 14 high-risk HPV types. In a review on 11 stud-
ies examining these three currently-available commer-
cial assays, the sensitivities for cervical intraepithelial 
neoplasia grade II and above (CIN [cervical intraepithe-
lial neoplasia] II+) lesions ranged from 41% to 86% for 
the PreTect Proofer/EasyQ assay and from 90% to 95%  
for the APTIMA assay, whereas the specificities ranged 
from 63% to 97% for the PreTect Proofer/Easy Q assay 
and from 42% to 61% for the APTIMA assay174.

E6/E7 protein-based assays
Similarly, measuring the E6 or E7 proteins may pro-
vide a better predictive value than detecting viral DNA 
alone175,176. However, E6 and E7 proteins are known to 
be produced in small amounts in transformed cells. The 
sensitivity of the E6/E7 protein-based assay is a concern 
that needs to be addressed. Data on clinical evaluation 
of the E6/E7 protein-based assay is not yet available.

Building quality control capacity
The need to monitor vaccine effectiveness by effective sur-
veillance programs and the increasing use of HPV assays 

Table 2.  Commercially available HPV tests.
Molecular target Type differentiation Test name Principle Manufacturer
HPV DNA (full genome) High-risk types as a group, 

not type-differentiating
Hybrid Capture 2 HPV 
DNA Test

Hybridization QIAGEN, Gaithersburg

CareHPV Test hybridization QIAGEN, Gaithersburg
HPV DNA (L1 ORF) High-risk types as a group, 

not type-differentiating
Amplicor HPV Test PCR Roche, Branchburg
Cervista HPV HR Test1 Hybridization (Invader)2 Hologic, Madison

HPV DNA (L1 ORF) Differentiate 13 or more 
high-risk types

CLART Reverse line-blot Hybridization 
on PCR products

Genomica, Coslada

INNO-LiPa HPV 
Genotyping

Reverse line-blot Hybridization 
on PCR products

Innogenetics, Gent

Linear Array HPV 
Genotyping Test

Reverse line-blot Hybridization 
on PCR products

Roche, Branchburg

Digene HPV Genotyping 
RH Test (RUO)

Reverse line-blot Hybridization 
on PCR products

Digene, Hilden

HPV DNA (E1 ORF) Differentiate 13 or more 
high-risk types

Infiniti HPV-HR QUAD 
Assay

Microarray on PCR products Autogenomics, 
Carlsbad

PapilloCheck Microarray on PCR products Greiner Bio-one, 
Frickenhausen

HPV DNA (L1 ORF) Limited type  
differentiation – HPV 
16/18

Cervista HPV 16/18 Test1 Hybridization Hologic, Madison
CORBAS 4800 HPV Test Real-time PCR Roche, Pleasanton
Real Time High Risk (HR) 
HPV Test

Real-time PCR Abbott, Des Plaines

HPV E6/E7 mRNA 14 high-risk types 
as a group, not 
type-differentiating

APTIMA HPV Assay TMA GenProbe, San Diego

HPV E6/E7 mRNA Limited type  
differentiation – HPV 
16/18/31/33/45

NucliSENS EasyQ HPV3 NASBA BioMerieux, 
Marcy-l’Étoile

PreTect HPV-Proofer3 NASBA Norchip, Klokkarstua
NASBA = nucleic acid sequence-based amplification; TMA = transcription-mediated amplification.
1Also targets E6 and E7.
2�The “Invader” reaction involves two simultaneous isothermal reactions. A primary reaction is based on hybridization with two sequence-
specific oligos to the same target, creating a single-nucleotide overlap. The overlap together with its 5’ flap will be cleaved. In the second-
ary reaction, the cleaved flap combines with a fluorescence resonance energy transfer (FRET) probe that generates a fluorescent signal. 
As a result, each released 5’ flap from the primary reaction cycles on and off the FRET probes, enabling the secondary reaction to further 
amplify the target-specific signal to 1–10 million-fold.

3Same technology marketed under different brand names in different countries.
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in the field have stimuated the World Health Organiza
tion (WHO) to develop a structured Global Laboratory 
Network (WHO HPV LabNet). To date, this LabNet 
includes two Global Reference Laboratories (Sweden 
and USA) and eight Regional Reference Laboratories 
(Argentine, Australia, India, Japan, South Africa, 
Switzerland, Thailand and Tunisia). Work is currently 
being conducted in the areas of scientific and technical 
advice, quality assurance, training, and communi
cation (http://www.who.int/biologicals/areas/human_ 
papillomavirus/WHO_HPV_LabNet/en/index.html. 
Accessed on 9 July 2012). LabNet, with the collaboration of 
the National Institute of Biological Standards and Control 
(UK), is establishing international standards (IS) for HPV 
types, to harmonize HPV nucleic acid amplification 
technology-based assays. These efforts will be immensely 
helpful in monitoring the impact of HPV vaccination 
programs worldwide and in evaluating data on uniform 
platforms. One of the main aims is to harmonize various 
HPV detection assays and to minimize inter-laboratory 

variation by collectively establishing strong and effective 
quality control and quality assurance programs.

Clinical applications

HPV for primary screening
HPV infection progresses slowly to cervical cancer 
through stages of pathological changes that can be 
recognized from exfoliated cervical cells (Figure 2). 
Detection of lesions at the precancerous stage allows 
intervention by office-based local surgery. Until recently, 
cervical screening has been based solely on cytological 
examination of exfoliated cervical cells. The benefit of 
regular cervical cytology screening is undisputed177–181. 
Cervical cancer incidence decreases substantially after 
the introduction of cervical screening and there are 
consistent and marked differences in cervical cancer 
incidence rates between countries with and without 
organized screening programs61,182. While conventional 
Pap smear or liquid-based cytology is still the standard of 

Table 3.  Commonly used primers targeting the L1 region of HPV genome.
Primer name Primer sequences Remarks References
MY09/11 Forward (5’-GCMCAGGGWCATAAYAATGG-3’)  

Reverse (5’-CGTCCMARRGGAWACTGATC-3’)
One of the commonly used first generation primers.
Target a ~450-bp fragment which is usually too long 
for formalin-fixed tissues.
The amplified product allows type identification 
by restriction fragment length polymorphisms, 
hybridization with type-specific probes or by 
sequencing.

143

PGMY09/11 PGMY11-A (5’-GCA CAG GGA CAT AAC AAT GG-3’)
PGMY11-B (5’-GCG CAG GGC CAC AAT AAT GG-3’)
PGMY11-C (5’-GCA CAG GGA CAT AAT AAT GG-3’)
PGMY11-D (5’-GCC CAG GGC CAC AAC AAT GG-3’)
PGMY11-E (5’-GCT CAG GGT TTA AAC AAT GG-3’)
PGMY09-F (5’-CGT CCC AAA GGA AAC TGA TC-3’)
PGMY09-G (5’-CGA CCT AAA GGA AAC TGA TC-3’)
PGMY09-H (5’-CGT CCA AAA GGA AAC TGA TC-3’)
PGMY09-I (5’-GCC AAG GGG AAA CTG ATC-3’)
PGMY09-J (5’-CGT CCC AAA GGA TAC TGA TC-3’)
PGMY09-K (5’-CGT CCA AGG GGA TAC TGA TC-3’)
PGMY09-L (5’-CGA CCT AAA GGG AAT TGA TC-3’)
PGMY09-M (5’-CGA CCT AGT GGA AAT TGA TC-3’)
PGMY09-N (5’-CGA CCA AGG GGA TAT TGA TC-3’)
PGMY09-P (5’-GCC CAA CGG AAA CTG ATC-3’)
PGMY09-Q (5’-CGA CCC AAG GGA AAC TGG TC-3’)
PGMY09-R (5’-CGT CCT AAA GGA AAC TGG TC-3’)

An improved version of MY09/MY11 targeting the 
same 450-bp fragment.
Use in the Linear Array HPV Genotyping Test 
(Roche, Branchburg), where the HPV types are 
identified by hybridization with type-specific 
probes.

144

GP5+/6+ Forward (5’−TTT GTT ACT GTG GTA GAT ACT AC-3’) 
Reverse (5’−GAA AAA TAA ACT GTA AAT CAT ATT C-3’)

Targets a ~150-bp fragment suitable for formalin-
fixed tissues.
Commonly used in large-scale epidemiological 
studies.
Reported to have sub-optimal sensitivity for a vari-
ant of HPV 52 commonly found in East Asia due to 
mutation at the primer binding site.

145,153

SPF Forward primer (5’−GCI CAG GGI CAT AAC AAT GG-3’)
Two reverse primers:
(5’−GTI GTA TCI ACA ACA GTA ACA AA-3’) and (5’−GTI 
GTA TCI ACA TCA GTA ACA AA-3’)

Targets a short (~65-bp) fragment.
Good for samples with fragmented DNA such as 
formalin-fixed tissues.
Modified versions include SPF6 and SPF10 with the 
addition of more primers.
SPF10 primers are used in the INNO-LiPa HPV 
Genotyping assay, but sequences not disclosed.

146

L1F/L1R Forward (5’−CGT AAA CGT TTT CCC TAT TTT TTT-3’) 
Reverse (5’−TAC CCT AAA GAC CCT ATA CTG-3’)

Targets a ~255-bp fragment, a length that may not 
be retained in formalin-fixed tissues.

147
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care in many parts of the world, the intrinsic drawbacks 
of cytology-based screening call for replacement by HPV 
testing or the addition of adjunct markers183. Compared 
to molecular markers, cytology is more subjective and 
requires a stringent quality control and quality assurance 
program to maintain clinical performance. Cytology is 
relatively insensitive and is associated with an unavoid-
able portion of non-specific and self-limiting abnormal 
results. With the increased availability of high-through-
put screening platforms (Table 2)184, a large number of 
large-scale studies have been conducted to investigate 
the value of using HPV DNA detection (mainly based on 
hybridization (hybrid capture) or PCR amplification tar-
geting the L1 region) as a primary or supplementary tool 
for cervical screening.

Advantages
The overall advantages of HPV testing over cytology 
for screening of cervical cancer are: feasibility for high 
throughput, greater objectivity in result interpretation, 
high sensitivity, high negative predictive value, and ability 

to provide long-term risk stratification185–192. Furthermore, 
the performance of HPV assays is less subject to varia-
tion across centers. For instance, the reported sensitivity 
of cytology ranges from 33.8% to 94.0%, whereas that of 
the HPV assay (HC 2), used in the same series of stud-
ies across different continents, varies from 84.9% to 
97.6%193–199. However, HPV infections are transient in most 
women and the prevalence of high-grade intraepithelial 
neoplasia or cancer among infected women is low. The 
low specificity and low positive predictive value are the 
major drawbacks of applying HPV DNA testing in clini-
cal practice. A fine balance has to be established between 
the sensitivity and specificity of the HPV test to achieve a 
clinically-useful predictive value (Table 1).

Approaches to improve positive predictive value
Infection and disease prevalence: Several approaches can 
be considered to minimize the “background noise” and 
to improve the positive predictive value. The “background 
noise” depends on the prevalence of transient HPV infec-
tion among the target population for which the HPV test is 

Figure 3.  Improved positive predictive value of HPV test by refining the target population. Figure shows the age-specific prevalence of high-
risk HPV infection and age-specific distribution of cervical cancer cases in Hong Kong196. Restricting HPV test to women aged ≥ 35 years avoids 
the age-related infection peak, and covers women with higher incidence of cervical cancer. By setting the testing population to women aged ≥ 
35 years (in case of Hong Kong as used in this example) will therefore improve the positive predictive value of HPV testing for cervical cancer.
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being applied. Data on the age-specific prevalence of HPV 
infection and the age-specific incidence of CIN II/III and 
cervical cancer are essential to derive a cut-off for applying 
HPV testing (Figure 3)200. In general, HPV testing is not rec-
ommended for women below 30 years of age (or 35 in some 
countries) for whom transient infection is common187,201,202.

Super high-risk HPV types: At least 15 HPV types can 
be linked to cervical cancer with various degrees of risk 
association112. Initially, most HPV assays are designed 
to detect as many high-risk types as possible. In fact, the 
risk association among HPV types classified under this 
so-called “high-risk” group varies substantially. In recent 
years, it has been recognized that covering the HPV types 
with a small risk may jeopardize the overall positive pre-
dictive value of the assay. Thus type-specific assays, espe-
cially those targeting a group of HPV types with the highest 
risk association, have emerged. In this regard, HPV 16 and 
HPV 18 should be included as they are the two high-risk 
types most commonly found in cervical cancers across  
the world. HPV 31, 33 and 45 are the next group to be 
included, although their ranking showed some degrees of 
geographical variation203–207. HPV 52 and HPV 58 showed 
an even more skewed geographical distribution, and 
the clinical value of including these types into screening 
assays should be assessed based on the HPV type distri-
bution data derived from the target population152,204,207–215.

An HPV16/18-specific test is expected to provide the 
highest positive predictive value. In the most recent 
guidelines from the United States, HPV16/18 testing is 
one of the options to triage women found to be HPV-
positive but cytology-negative in primary screening 
using the co-test approach202.

Persistent infection: Since persistent infection is a pre-
requisite for the development of cervical precancer and 
cancer, one can improve the positive predictive value by 
considering HPV testing results performed on specimens 
collected more than 12 months apart. If HPV is detected 
in both instances, the chance that it is a persistent rather 
than transient infection is higher. In this regard, an HPV 
type-specific test is necessary to differentiate repeated 
infections with different HPV types from genuine persis-
tent infection with the same HPV type(s). It is only the 
latter that carries an increased risk of cancer develop-
ment216. However, the limitation of this approach is that a 
proportion of women may not come back for the second 
test and may become lost to follow-up.

Reflex follow-up test: Another approach to improve 
the positive predictive value of HPV testing as a primary 
screening tool is to carry out a “reflex” follow-up test for 
HPV-positive samples. The “reflex” approach can pre-
vent an extra visit and unnecessary anxiety while wait-
ing for the follow-up test results. Biomarkers indicating 
the transforming activity of HPV can potentially serve 
this purpose102,217,218. The first approach is to detect direct 
indicators of HPV oncogene expression. At present, this 
mainly refers to the detection of mRNA encoded by the 
viral oncogenes, E6 and E7. Among women with nor-
mal cytology, atypical squamous cells of undetermined 

significance (ASCUS) and low-grade squamous intraepi-
thelial lesions (LSIL), E6/E7 mRNA was detected in 30% 
of the HPV 16, 56% of the HPV 18 and 75% of the HPV 
31 DNA-positive women, respectively. The mRNA test 
therefore potentially has a higher specificity compared 
to the HPV DNA test, and thus fewer patients would be 
referred for further testing or close follow-up219. Assays 
for direct measurement of E6 and E7 proteins from clini-
cal specimens have been described and their clinical 
performance is being evaluated. The second approach 
is to detect biomarkers of increased cellular prolifera-
tion and chromosomal instability or those upregulated 
in response to HPV-encoded oncoproteins, including 
p16INK4a, Ki-67, topoisomerase IIA (TOP2), and mini-
chromosome maintenance proteins (MCMP). Among 
these, p16INK4a is the most promising220,221. In many 
non-HPV-associated tumours, p16INK4a is inactivated by 
genetic deletion or hypermethylation, which leads to an 
increase in cyclin-dependent kinase activity and inacti-
vation of Rb222. In contrast, in HPV-associated tumours, 
including cervical intraepithelial neoplasia and invasive 
cervical cancer, the inactivation of Rb by E7 leads to a 
marked overexpression of p16INK4a as a result of the lost of 
negative feedback regulation that depends on Rb activ-
ity223–225. It has been shown that, among 425 Pap-negative 
and HPV-positive women greater than 30 years of age, 
25.4% were positive for p16/ki67 dual staining. The dual 
staining gave a sensitivity of 91.9% for CIN II and 96.4% 
for CIN III+ after a mean follow-up of 13.8 months (1–27 
months)226. The result is encouraging but further studies 
are needed to support its clinical use.

Viral genome characterization: The patterns of viral 
integration at different stages of neoplastic progression 
have been investigated. Diverse, even conflicting, results 
have been reported. Some studies observed viral integra-
tion mainly from specimens of high-grade lesions227,228, 
whereas others found that viral integration takes place 
early during the course of infection and is detected in a 
substantial proportion of low-grade lesions229–232. It has 
been suggested that viral integration is a consequence 
rather than a cause of chromosomal instability233. Based 
on the available data, the main concern appears to be 
the lack of specificity. Basically, viral integration can be 
detected in normal and low-grade lesions, whereas cer-
vical samples from cases of invasive cancer can harbour 
purely the episomal form of viral genome234–237.

DNA methylation is an epigenetic event that is linked 
to cancer development. A number of studies have been 
conducted to examine the association between the viral 
DNA methylation pattern and lesion severity. However, 
as with viral integration, most of the available data sug-
gests that the patterns observed from low-grade and 
high-grade lesions are too diverse to achieve a clinically-
useful predictive value238–242. Nevertheless, a recent study 
using a newer approach, pyrosequencing, has produced 
some promising results243. Viral integration and methyla-
tion have a strong biological basis, and further studies to 
explore their clinical application are worthwhile.
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Co-test with cytology for primary screening
Co-test refers to the use of both HPV and cytology tests in 
parallel as first-line screening. The main advantage of co-
test is the improvement in sensitivity for CIN II+ lesions; 
women who are double negative will have an extremely 
low-risk for CIN II+. The potential gain in cost-effec-
tiveness from the expense of the extra test is the longer 
interval of safety supported by a double negative result. 
Data have suggested that the safety interval following an 
HPV-negative result could be as long as 5–7 years244–248. 
The most recent guidelines from the United Sates rec-
ommend HPV and cytology co-testing every 5 years for 
women aged 30–65 years201. However, the management of 
women with normal cytology but an HPV-positive result 
is an issue that is not yet completely resolved. The ques-
tion is what proportion of the HPV-positive, cytology- 
normal women have transient HPV infection, and how 
many of them will turn out to be HPV-negative when the 
co-test is repeated in 1 year. This is fundamentally the 
same question when HPV testing is applied alone as a 
primary screening tool, and the answer varies substan-
tially with the analytical sensitivity of the HPV assay and 
the prevalence of CIN II/III in the target population249. 
For patients with a normal Pap smear but an HPV-
positive test, their risk of developing abnormal cytology 
and CIN II+ lesions are significantly higher than those 
with a double negative result. The increased risk was 
found to be HPV type-dependent, and the cumulative 
risk of those infected with HPV 16 reached 26% after a 
13-year follow-up250. The United States Food and Drug 
Administration (US FDA) has approved the use of an 
HPV16/18 type-specific test in this particular clinical 
situation for women ≥ 30 years of age in order to identify 
individuals with a higher risk for developing disease in 
the future. According to the recent guidelines from the 
United States, women with HPV-positive and cytology-
negative screening results can be either followed with 
the co-test 12 months later or triaged with the HPV16/ 
18-specific test for referral to colposcopy201.

HPV as a triage for abnormal cytology
The first clinical application of HPV testing was on the 
triage of patients presented with ASCUS on Pap smear. 
Patients who were HPV-positive would be referred for 
colposcopy whilst those who were HPV-negative could 
be followed by repeating the Pap smear 12 months 
later251–254. This is still the most common application of 
HPV testing, and a large body of evidence is available 
to support returning women with negative HPV DNA 
results to a normal screening schedule.

The cost-effectiveness of using HPV testing to triage 
women with LSIL depends mainly on the context. For 
instance, it has been shown that about 80% of patients 
presenting with LSIL were HPV-positive; thus triage of 
LSIL by HPV testing was not recommended255. On the 
other hand, the US FDA has approved the use of HPV 
testing in post-menopausal women presenting with LSIL 
since the prevalence rate of HPV is low in this subset of 

patients. Therefore, data generated from context-specific 
studies are very important. The main variable is again 
the prevalence of HPV infection among the population 
tested. Such an approach may be effective for women 
well beyond the peak of infection, so that a substantial 
proportion of women will have an HPV-negative result 
and can be reassured256,257.

The underlying risk of having CIN II+ lesions among 
women with high-grade squamous intraepithelial 
lesions (HSIL) or atypical squamous cells is high, but 
HSIL (ASC-H) cannot be excluded, and colposcopy may 
be indicated for CIN II+ even if the HPV test result is neg-
ative258,259. HPV testing is also not very useful for women 
with atypical glandular cells because the underlying 
pathology may reside in the uterus. Whilst a positive 
HPV test suggests a cervical lesion, a negative test does 
not rule out such conditions as endometrial hyperplasia 
or cancer that are not HPV-related, and the risk of these 
is substantial in post-menopausal women260.

HPV for post-treatment surveillance
CIN II is often regarded as a threshold for treatment 
(Figure 2). The predominant mode is excision of the 
transformation zone using the loop electrosurgical exci-
sion procedure (LEEP). Since about 5 to 10% of patients 
have persistent or recurrent CIN II+ after LEEP, continual 
surveillance after treatment is needed. When compared 
to conventional cytology, HPV testing is more sensitive, 
carries a higher negative predictive value for recurrent or 
residual lesions, and is recommended by the American 
Congress of Obstetricians and Gynecologists for post-
treatment follow-up261–263. In a cohort of 917 patients 
treated by LEEP, 81% were double-negative at 6 months 
after treatment and their risk of being diagnosed with 
CIN III+ was low. It has been suggested that patients 
with both negative cytology and negative HPV DNA can 
return to the 3-year screening program264.

Future challenges

The currently available prophylactic HPV vaccines are 
highly effective for the prevention of HPV16/18-related 
cervical neoplasia and offer some degree of cross-
protection for lesions caused by related HPV types. A 
number of countries have implemented vaccination 
programs for adolescents and the coverage is expected to 
increase in the coming years265. These countries are also 
likely to be those running organized cervical screening 
programs265–268.

In the coming decades, several issues regarding cervi-
cal screening will need to be addressed269,270. The decrease 
in absolute incidence of cervical intraepithelial neo-
plasia and cervical cancer among those vaccinated will 
jeopardize the positive predictive value of any screening 
test. To achieve maximum cost-effectiveness, the screen-
ing strategy for those who have received the vaccine 
before their sexual debut should be different from those 
who have not271. These two populations will co-exist for 
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a few decades and it will be a challenge to public health 
professionals to organize two systems in parallel for the 
same disease. Among those vaccinated, the chance of 
detecting a genuine abnormal signal (abnormal cytology 
results representing cervical precancer or cancer) will 
decrease, whereas the proportion of samples showing 
“noise” (abnormal cytology results due to inflammation 
and reactive changes that are self-limiting) will increase. 
The positive predictive value of minor cytological abnor-
malities will be even lower because of the reduced preva-
lence of CIN. As a result, because of its subjective nature, 
the reading and interpreting cytology results will be even 
more prone to human error. For these reasons, assays 
based on objective methods such as the detection of HPV 
and biomarkers will be advantageous.

Since HPV is a sexually-transmitted infection, using 
HPV testing for cervical screening may lead to anxiety 
and concerns about sexual relationships, and may have 
an emotional impact on the quality of life and a negative 
impact on mental health272.

Other practical challenges are the diversion of 
resources towards vaccination, and the resulting 
pressure for less frequent screening. At present, the 
recommended frequency in most countries is not less 
than once every 2–3 years. To lengthen the screening 
interval means getting closer to the interval required 
for advancing from low-grade to high-grade intraepi-
thelial lesions or even to the development of invasive 
cancer. In other words, there may be just one chance 
to pick up at-risk women before the full development 
of invasive cancer. This will require a test with extreme 
sensitivity that is subject to a low positive predictive 
value, especially in the vaccinated population with a 
low incidence of disease. Lengthening of the interval 
for cytological examination is not advisable because 
the sensitivity of the test is low and repeated negative 
cytological tests are required to ensure no underlying 
precancerous or cancerous lesions. The high sensitivity 
of HPV testing, on the other hand, is more reassuring 
and allows lengthening of the screening interval. To 
overcome the low positive predictive value of highly-
sensitive HPV testing in the vaccinated population with 
a low incidence of disease, a supplementary test for 
other biomarkers or co-testing with cytology is the way 
to move forward.

Conclusions

Technically speaking, HPV testing has several advan-
tages over cytology-based screening, particularly in 
the situation where the incidence of cervical cancer 
and precancer decreases substantially following the 
widespread use of vaccination. However, although it 
is beyond the scope of this review, the psycho-social 
stigma associated with testing for a sexually-transmit-
ted infection needs to be addressed. It has been shown 
that, even among well-educated women, most have 
not heard of HPV and do not know its association with 

cervical cancer273–276. Public education should go in 
parallel with the technical development in HPV testing. 
Moreover, whatever technology is used for screening, 
it is important to point out that the key for success is 
to reach a high coverage. Screening for cancer is like 
looking for a needle in a haystack, which is always 
challenging.
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