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  Introduction 

 Multiple myeloma (MM) is a malignancy of plasma cells 
which accumulate in the bone marrow, causing clinical 
symptoms as a consequence of myelosuppression, osteoly-
sis and the production of monoclonal protein [1]. Although 
the advent of new agents during the last decade has made 
therapies in MM more diverse, high-dose therapy (HDT) 
followed by autologous stem cell transplant (ASCT) remains 
a standard treatment for newly diagnosed patients with 
myeloma who are considered to be able to tolerate the 
procedure. Compared to prior standard treatments it has 
been shown to increase the median overall survival (OS) by 

a year to 4 – 5 years [2,3]. Th e incorporation of novel agents as 
part of induction and maintenance has improved outcomes 
further [4 – 6]. However, virtually all patients with transplant 
eventually relapse, and the duration of remission is highly 
variable, ranging from a few months to more than 10 years. 
Th e diff erence in outcome is thought to be mediated via 
tumor acquired genetic diff erences [7]. A diagnostic test 
able to identify patients at high risk of early relapse based on 
such genetic diff erences would be of great clinical utility, as it 
would allow clinicians to design and implement trials inves-
tigating new therapeutic strategies in this high risk subset. 
Any test used in such a setting should have high specifi city 
for the correct identifi cation of high risk behavior as well as 
have good sensitivity to be able to identify such cases. 

 Until now a number of approaches have been used 
to determine risk status. Th e initial approach used  β  2 -
microglobulin ( β 2M) level, which was subsequently incor-
porated into the international staging system (ISS) [8]. 
While the ISS is generally applicable, it works best for clas-
sifying populations entered into clinical trials and lacks 
biological relevance. Genetic variables associated with poor 
outcome have been identifi ed, and fl uorescence  in situ  
hybridization (FISH) studies have identifi ed the presence 
of del(17p13), gain(1q21) and del(1p) as well as adverse 
translocations t(4;14), t(14;16) and t(14;20) as high risk fac-
tors [9 – 13]. However, despite the fact that this approach 
can identify distinct biological groups, the sensitivity and 
specifi city for identifying high risk behavior are too poor 
to be used as a diagnostic tool, and developing alterna-
tive approaches is a priority to reliably identify patients at 
high risk. 

 Gene expression profi ling (GEP) off ers a potential 
solution to identify high risk behavior, and gene signatures 
based on global GEP of presenting samples have been 
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explored [14 – 16]. However, they still have a number of 
drawbacks, including a failure to take account of known cyto-
genetic subgroups with distinct clinical behaviors. In order to 
develop a novel risk predictor for patients treated with HDT, 
we have utilized a series of uniformly treated patients with 
myeloma and driven the analysis using early relapse as the end-
point to develop a signature able to identify high risk cases.   

 Materials and methods  

 Patients 
 Th e Medical Research Council (MRC) Myeloma IX trial 
(ISRCTN68454111) enrolled 1960 patients with newly 
diagnosed symptomatic myeloma who were allocated to 
two main treatment pathways, intensive ( n     �    1111) or non-
intensive ( n     �    849), at the discretion of the treating physi-
cian, taking account of age and performance status [4]. For 
the purpose of reliably defi ning subjects with early relapse 
following the HDT procedure, cases used in this study were 
all based on per protocol rather than intention to treat. 
Of the 1111 patients in the intensive arm, 747 cases who 
actually received HDT were used for subsequent analyses 
[Supplementary Figure 1(A) available online at http://
informahealthcare. com/doi/abs/10.3109/10428194.2014.91
1863]. Early/late relapse subgroups were defi ned by calculat-
ing the duration from the time of HDT to subsequent relapse. 

 Gene expression profi les from CD138-selected bone 
marrow plasma cells (to a purity of more than 90%) of 261 
patients from Myeloma IX (GSE15695) were collected as 
previously described [17]. In addition, two other similar pub-
licly available gene expression sets were used in this study for 
development of a GEP-based predictor. Ninety-seven evalu-
able cases from Myeloma IX and 82 evaluable cases from the 
Hemato-Oncology Foundation for Adults in the Netherlands 
(HOVON)-65 trial (GSE19784; ISRCTN64455289), 18 being 
treated with single HDT, were combined to form a train-
ing set of 179 samples, and batch eff ect was removed using 
Bioconductor package Combat 19. In general, cases who 
died from causes other than progressive myeloma (mostly 
other cancers, heart disease, stroke and infection) within 
1 year post-HDT were excluded, as the relapse status at 1 year 
post-HDT could not be assessed. As there was partial overlap 
of samples between HOVON-65 and GMMG-HD4 datasets, 
the subjects present in both datasets were excluded from 
the training set to ensure the independence of the test set. 
Following the same selection criteria, 155 patients from the 
German-Speaking Myeloma Multicenter Group (GMMG)-
HD3/HD4 trial (E-MTAB-362; ISRCTN06413384) [20], of 
whom 56% were treated with double HDT, were used as a 
validation set for the GEP-based predictor. A summary of 
samples used in this study, therapy schedule and analysis 
fl ow is outlined in Supplementary Figure 1(B) available 
online at http://informahealthcare. com/doi/abs/10.3109
/10428194.2014.911863. Th e detailed designs of these trials 
have been reported previously [4,6,21]. A further indepen-
dent dataset (GSE24080) was used to validate its eff ect on 
PFS and OS. 

 Genes identifi ed as being diff erentially expressed were cor-
related with matching SNP-based mapping ( n     �    99) and DNA 

methylation profi ling ( n     �    118) data from the Myeloma IX trial 
to explore possible mechanisms underlying deregulation.   

 Bioinformatics and statistical analysis 
 GEP of all samples from the training and test sets was 
carried out on the Aff ymetrix Human Genome U133 Plus 
2.0 platform, and gene expression signals were quantifi ed 
using robust multi-array average (RMA) normalization. 
All analyses were performed in R 2.10.1 and Bioconductor. 
Diff erentially expressed genes between patient groups were 
selected using signifi cance analysis of microarray (SAM) 
(Bioconductor package  samr ) with a 1000-permutation 
adjustment. Th e LASSO algorithm (Bioconductor package 
 glmnet ) was used to further refi ne the selection to a subset 
of non-correlated genes with strongest discriminative power 
for early relapse. Th e selected genes were fi tted in a logistic 
regression model to obtain an optimal model, and a risk 
score (z) for early relapse was calculated by a linear com-
bination of the expression levels of the 17 selected genes at 
presentation, weighted by their estimated regression coef-
fi cients; subsequently the probability for early relapse could 
be calculated accordingly (Table III). Th e predictive power 
(sensitivity/specifi city) of a model was tested using a receiver 
operating characteristic (ROC) method and the correspond-
ing area under the curve (AUC) was calculated, which can be 
interpreted as the chance of getting the prediction correct. 

 Th e associations between early and late relapse groups 
and various clinical parameters were investigated using 
Fisher ’ s exact test for categorical parameters and Wilcoxon 
test for continuous variables. Any parameters statistically 
associated with early relapse were combined in a multi-
variate logistic regression model to test their independence. 
Performance of the predictive models was compared using 
the likelihood-ratio test (R package  anova.glm ). Either 
Wilcoxon or Kruskal – Wallis test was used to correlate the 
gene expression level and single nucleotide polymorphism 
(SNP)-mapping as well as DNA methylation data where 
appropriate. As the impact of DNA methylation on gene 
expression is thought to result from a discrete methylation 
pattern (hyper- or hypo-methylation), we used the unsuper-
vised  k -means method to defi ne the high/low methylation 
groups for each gene. Th e binary distribution of promoter 
methylation of the genes was visualized by Kernal density 
plot. Th e distribution of OS and progression-free survival 
(PFS) between risk groups was estimated using the Kaplan – 
Meier method (log-rank test). Th e performance of the 
derived high-risk gene signature (REL-17) was compared 
with another gene signature using multivariate logistic/Cox 
regression analysis. Pathway analyses were performed using 
GeneGo ’ s MetaCore (www.genego.com).    

 Results  

 Defi ning a patient group with high risk clinical 
behavior following HDT 
 In order to identify a group of patients who have poor out-
come post-HDT, 423 out of the 747 patients from Myeloma 
IX who relapsed after HDT were split into subgroups based 
on time to progression. Th e results showed that patients who 
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relapsed within 6 months and those who relapsed between 
6 months and 1 year had signifi cantly shorter post-relapse 
survival compared to the others [Figure 1(A)]. When 
combined, these cases had a median post-relapse survival of 
14.9 months, in contrast to 40 months for those who relapsed 
after 1 year [Figure 1(B), log-rank test  p     �    8.03    �    10  �    14 ], 
suggesting that they may represent two biologically distinct 
groups.   

 Clinical and FISH parameters associated with high 
risk behavior 
 Among the 747 patients treated with upfront HDT, relapse 
status at 1 year post-HDT was available in 718 cases, among 
whom 18.2% (131 out of 718) relapsed within 1 year post-
HDT. In order to compare the associated clinical and FISH 
parameters of this group with the rest of cases ( n     �    587), 
univariate logistic regression analyses were performed on 
parameters including gender, age, World Health Organiza-
tion (WHO) performance status, hemoglobin (Hb), platelets 
(Plt), albumin (Alb),  β  2 M, creatinine (Cr), calcium (Ca), 
lactate dehydrogenase (LDH) and C-reactive protein (CRP), 
paraprotein type (immunoglobulin A [IgA] vs. non-IgA), 
light chain type, duration from diagnosis to HDT, type of 
induction therapy, thalidomide maintenance, adverse 
immunoglobulin heavy chain (IgH) translocations [includ-
ing t(4;14), t(14;16) and t(14;20)], del(17p), gain(1q) and 
del(1p). Th e results show that only low Hb, low Plt, presence 
of adverse IgH translocations and gain(1q) at presentation 
were statistically associated with early relapse ( p     �    0.05). 
When tested together in a multivariate logistic regres-
sion model, only adverse IgH translocations and gain(1q) 
retained statistical signifi cance (Table I). A predictor for early 
relapse was developed based on these two FISH abnormali-
ties, but this only had modest predictive power (AUC 0.72 in 
the whole Myeloma IX dataset and 0.69 in both expression 
training and test datasets, Supplementary Figure 2 available 

online at http://informahealthcare. com/doi/abs/10.3109/
10428194.2014.911863), and therefore was discarded.   

 Development of a GEP-based predictor for early relapse 
 We investigated whether a GEP-derived predictor could 
improve or outperform the FISH-based predictor. Among 
the 179 patients in the training set, 22.3% (40 patients) 
relapsed within 1 year post-HDT, which is comparable to the 
complete dataset. Th e GEP of these two groups of patients 
was compared using signifi cance analysis of microarray 
(SAM) [22], and 207 genes were identifi ed as being diff er-
entially expressed at 5% false discovery rate (FDR), among 
which 173 were up-regulated in early relapsed patients and 
34 were down-regulated (Supplementary Table I available 
online at http://informahealthcare. com/doi/abs/10.3109/
10428194.2014.911863). Gene enrichment analysis by 
chromosome location showed that there was a signifi cant 
overrepresentation of genes from chromosomes 1 and X 
( p     �    0.001, Supplementary Table II available online at http://
informahealthcare. com/doi/abs/10.3109/10428194.2014.
911863). Fifteen of the 173 up-regulated genes span a 
region corresponding to 1q21-q23, which might refl ect the 

  Figure 1.     Impact of remission duration on post-relapse survival according to data from Myeloma IX. (A) Analyses on 423 relapsed cases show a 
cut-off  eff ect of relapsing within 1 year on post-relapse survival: median 4.1 months ( �    6 months), 16.1 months (6 months – 1 year), 40 months 
(1 year – 18 months), 33.4 months (18 months – 2 years) and not reached ( �    2 years). (B) When combined, patients who relapsed within 1 year post-HDT 
had median post-relapse survival of 14.9 months in contrast to 40 months with those who relapsed at later point (log-rank test  p     �    8.03    �    10  �    14 ).  

  Table I. Associations of clinical and FISH parameters with early 
relapse were evaluated in 718 patients from Myeloma IX trial * .  

Predictive factors 
at diagnosis

Univariate Multivariate

Odds ratio  p -Value Odds ratio  p -Value

Hb    �    10 (g/dL) 2.2  �    0.001 0.6 0.43
Plt    �    133 (10 9 /L) 2.4 0.007 1.1 0.74
Adverse IgH 
translocations

6.7  �    0.001 4.4  �    0.001

Gain(1q) 4.1  �    0.001 2.8 0.001

      Hb, hemoglobin; Plt, platelets; IgH, immunoglobulin heavy chain. 
* Hb, Plt, adverse IgH translocations [including t(4;14), t(14;16) and t(14;20)] and 
gain(1q) were signifi cantly associated with early relapse in univariate analyses; 
however, only adverse IgH translocations and gain(1q) remained signifi cant in 
a multivariate analysis which was performed in 348 patients with completed 
dataset on these variables.     
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 Each gene ’ s expression values were dichotomized, using 
the 75th percentile as a threshold between high and low 
expression for the up-regulated genes and the 25th percen-
tile as a threshold for the down-regulated genes. Th ese genes 
underwent further shrinkage and selection using the LASSO 
algorithm [24], yielding 17 genes with the strongest discrimi-
native power for early relapse. Th e selected genes were fi tted 
in a logistic regression model to generate an optimal gene-
expression based predictor for likelihood of relapse within 1 
year post-HDT (Table III). 

 Th e 17-gene signature (REL-17) had an AUC of 0.917 
with an optimal sensitivity and specifi city of 87% and 83%, 
respectively [Supplementary Figure 3(A) available online at 
http://informahealthcare. com/doi/abs/10.3109/10428194.
2014.911863]. Its predictive capability was validated in an 
independent set of patients [AUC 0.804, Supplementary 
Figure 3(B) available online at http://informahealthcare. 
com/doi/abs/10.3109/10428194.2014.911863], which was 
a considerable improvement on the FISH-based predictor 
[AUC 0.69, Supplementary Figure 2(C) available online at 

poor outcome associated with gain(1q) by FISH. Notably 
 WHSC1 ,  FGFR3  and  MAF  were among the top diff eren-
tially expressed genes, known to be deregulated via t(4;14) 
translocation and t(14;16), respectively. 

 In order to develop a robust yet manageable GEP-based 
predictor for early relapse, we repeated the analysis with a 
more stringent FDR of 0% and obtained 37 diff erentially 
expressed genes, among which 30 were up-regulated in 
early relapsed patients while seven were down-regulated 
(Table II). Th e 37 genes still showed marked overrepresen-
tation of genes from chromosome X ( p     �    0.0001), while the 
overrepresentation of genes from chromosome 1 was no lon-
ger seen. Among these 37 genes, pathway analyses identifi ed 
signifi cant enrichment of epigenetic regulators, including 
genes involved in histone modifi cation ( WHSC1 ,  HIST1H4H ) 
as well as other chromatin modifi cators  NAP1L3  and  
HMGN5 (p     �    0.05, adjusted for Benjamini – Hochberg mul-
tiple testing). Notably, six of the top deregulated genes 
( NUDT11 ,  PKP2 ,  ROBO1 ,  AGAP1 ,  NAP1L3  and  EPDR1 ) were 
recently identifi ed as  “ stem cell ”  genes in myeloma [23]. 

  Table II. Top 37 deregulated genes at FDR 0, among which 30 were up-regulated (A) while seven were down-regulated (B) in early relapse cases in 
training set * .  

Gene ID Gene symbol Score (d) Fold change Cytoband GO-term/description

A
    210546_x_at  CTAG1A /// CTAG1B   �    4.92  0.54  Xq28  Cancer testis antigen 1 
    223253_at  EPDR1   �    4.71  0.46  7p14.1  Cell-matrix adhesion 
     215733_x_at CTAG2  �    4.69 0.48 Xq28 Cancer testis antigen 2
    219895_at  FAM70A   �    4.17  0.31  Xq24   —  
    207717_s_at  PKP2   �    4.09  0.40  12p11  Cell adhesion 
     207307_at HTR2C  �    4.02 0.51 Xq24 cGMP biosynthetic process, signal transduction, 

response to drug
     217963_s_at NGFRAP1  �    3.82 0.41 Xq22.2 Apoptosis
     211596_s_at LRIG1  �    3.80 0.54 3p14 DNA replication, DNA repair
     201037_at PFKP  �    3.75 0.66 10p15.3-p15.2 Protein homotetramerization
    204379_s_at  FGFR3   �    3.75  0.22  4p16.3  Signal transduction, cell proliferation, cell 

diff erentiation 
     204749_at NAP1L3  �    3.68 0.58 Xq21.3-q22 Nucleosome assembly
     204066_s_at AGAP1  �    3.66 0.51 2q37 Signal transduction, protein transport
     217975_at WBP5  �    3.64 0.48 Xq22.2 Mediating protein – protein interactions
    213194_at  ROBO1   �    3.57  0.42  3p12  Cell migration/adhesion, cell diff erentiation, 

activation of caspase activity 
    226112_at  SGCB   �    3.51  0.56  4q12  Cytoskeleton organization 
     217901_at DSG2  �    3.51 0.38 18q12.1 Cell adhesion
     224955_at TEAD1  �    3.50 0.44 11p15.2 Regulation of transcription
    219855_at  NUDT11   �    3.50  0.63  Xp11.22  Vesicle traffi  cking, DNA repair 
     201387_s_at UCHL1  �    3.49 0.40 4p14 Protein deubiquitination /// negative regulation of 

MAP kinase activity
    224650_at  MAL2   �    3.48  0.54  8q23  Protein transport 
     222778_s_at WHSC1  �    3.46 0.54 4p16.3 Chromatin modifi cation /// regulation of transcription
    59697_at  RAB15   �    3.45  0.66  14q23.3  Protein transport, signal transduction 
     208180_s_at HIST1H4H  �    3.39 0.57 6p21.3 Nucleosome assembly
     202345_s_at FABP5  �    3.35 0.51 8q21.13 Lipid metabolic process /// transport
     224233_s_at MSTO1 /// MSTO2P  �    3.34 0.72 1q22 Mitochondrion organization, protein polymerization
    206218_at  MAGEB2   �    3.31  0.62  Xp21.3  Melanoma antigen family B2 
     221606_s_at HMGN5  �    3.28 0.59 Xq13.3 Regulation of transcription /// chromatin modifi cation
    206363_at  MAF   �    3.24  0.47  16q22-q23  Cytokine production /// regulation of transcription 
    218597_s_at  CISD1   �    3.23  0.70  10q21.1  Regulation of cellular respiration 
     219631_at LRP12  �    3.21 0.62 8q22.2 Signal transduction
B
    242388_x_at  TAGAP  3.99  1.90  6q25.3  Signal transduction 
    222790_s_at  RSBN1  3.81  1.51  1p13.2  Protein binding 
     228007_at C6orf204 3.75 1.63 6q22  — 
     225582_at ITPRIP 3.60 1.58 10q25.1  — 
    227708_at  EEF1A1  3.53  1.73  6q14.1  Protein biosynthesis 
     41220_at SEPT9 3.50 1.61 17q25 Cell cycle
    208873_s_at  REEP5  3.44  1.49  5q22-q23  Protein binding 

    FDR, false discovery rate.  
   * Seventeen of these genes were retained in the fi nal optimized predictor for early relapse (highlighted in bold).   
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http://informahealthcare. com/doi/abs/10.3109/10428194.
2014.911863]. When tested in the validation set, adding 
t(4;14) and gain(1q) status to this GEP model did not statisti-
cally improve the predictive capability (likelihood-ratio test 
 p     �    0.21). 

 Fifteen per cent of patients in the training set were identi-
fi ed as having a more than 60% chance of relapsing within 
1 year, and this group had signifi cantly worse PFS and OS 
[Figures 2(A) and 2(B)]. Th e signifi cant associations with 
PFS and OS were validated in the test set [Figures 2(C) and 
2(D)]. Th e risk groups derived from the REL-17 signature 

were also compared with those derived from the Erasmus 
University Medical Center (EMC)-92 signature [25] in mul-
tivariate analyses for their performance of predicting relapse 
within 1 year post-HDT, PFS and OS, respectively, in the 
independent test set. Th e results showed that the REL-17 
signature performed best for predicting relapse within 1 year 
and PFS (Table IV), although was also associated with OS 
[Figure 2(D)]. We applied the REL-17 signature to a further 
independent dataset (GSE24080), either as a whole ( p -value 
2.03    �    10  �    9  and 3.73    �    10  �    11  for PFS and OS respectively) or 
in two subsets from separate trials (Supplementary Figure 4 
available online at http://informahealthcare. com/doi/abs/1
0.3109/10428194.2014.911863), where its eff ects on PFS and 
OS were also validated.   

 Mechanisms of gene deregulation 
 We explored the possible mechanisms underlying the dereg-
ulation of the diff erentially expressed genes by carrying out 
integrative analyses of GEP, DNA methylation and SNP-map-
ping array data. Among the top 37 genes, expression levels of 
 MSTO1/MSTO2P  (on 1q22),  RSBN1  (on 1p13.2),  EEF1A1  (on 
6q14.1) and  REEP5  (on 5q22) were positively correlated with 
copy number changes (Supplementary Figure 5 available 

  Table III. Th e 17 selected genes were fi tted in a logistic regression 
model to generate an optimal GEP-based predictor for likelihood of 
early relapse post-HDT, and the probability for each case could be 
calculated accordingly.  

z    �     � 1.2153    � 210546_x_at(H) * 0.5535    �    223253_at(H) * 0.371 �    219895_at(H) * 1.588    �    

  207717_s_at(H) * 0.8155    �    204379_s_at(H) * 0.423    �    213194_at(H) * 0.835    �    

  226112_at(H) * 0.7029    �    219855_at(H) * 0.3427    �    224650_at(H) * 0.4121    �    

  59697_at(H) * 0.1446    �    206218_at(H) * 0.1698    �    206363_at (H) * 0.1265    �    

  218597_s_at(H) * 1.9405    �    242388_x_at(H) * 0.979    �    222790_s_at(H) * 0.8829    �    

  227708_at(H) * 0.8721    �    208873_s_at(H) * 1.3275

Probability (early relapse)    �    1/1    �    e  �    z 

    GEP, gene expression profi ling; HDT, high-dose therapy.   

  Figure 2.     Eff ect of risk groups derived from the REL-17 signature on PFS and OS. In the training set, 15.1% cases being identifi ed as having more 
than 60% chance to relapse within 1 year had signifi cantly shorter PFS (A; median 13.8 vs. 34.8 months,  p     �    10     �    16 ) and OS (B; median 29.9 vs. 88.1 
months,  p     �    2.39    �    10  �    14 ) in contrast to those at lower risk. Using the same criteria 12.3% patients being identifi ed at high risk in the test set also 
had signifi cantly shorter PFS (C; median 15.9 vs. 40.5 months,  p     �    10     �    7 ) and OS (D; median 53 months vs. not reached,  p     �    0.0003) compared to 
rest of the cases.  
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a clear diff erential eff ect on post-relapse survival between 
patients who relapse within 1 year in contrast to those 
relapsing later. We used this observation as a tool to derive 
a GEP-based predictor for outcome that eff ectively identifi es 
cases at high risk of early relapse. When tested in the training 
set, cases considered as being at high risk, having a    �    60% 
probability of early relapse, were shown to have signifi cantly 
shorter PFS and OS compared to the rest of the cases. Th e 
eff ects on both OS and PFS were validated in two indepen-
dent datasets; interestingly, the prognostic merit of this 
predictor was also seen in the Total Th erapy 3 (TT3) cohort, 
which comprises the most intensively treated cases so far 
(bortezomib/thalidomide-combined induction followed by 
double autograft with bortezomib/lenalidomide-combined 
maintenance) [26]. Th erefore this signature seems to be 
applicable for all cases receiving HDT-ASCT regardless of 
the type of induction and maintenance therapy received. 

 We show that the presence of known FISH-based abnor-
malities, including adverse IgH translocations and gain(1q), 
are strongly associated with early relapse following HDT. 
However, in our analysis this FISH-based predictor only has 
a modest predictive performance, and therefore lacks the 
sensitivity and specifi city to be used as a prognostic test. 
Furthermore these FISH abnormalities do not statistically 
improve the predictive capability of the REL-17 signature 
for high risk clinical behavior. Th is is consistent with obser-
vations from the EMC-92 [25] and University of Arkansas for 
Medical Sciences (UAMS) [14] signatures, suggesting that 
additional biological features, defi ned by the GEP, interact 
with behavior induced by the FISH variables to determine 
high risk behavior. As the number of genes comprising this 
signature is low and the risk score is calculated based on the 
binary expression status of each gene (high/low), it could be 
transformed into a reverse transcription-polymerase chain 
reaction (RT-PCR)-based test. 

 Among the 37 genes most diff erentially expressed between 
the two risk groups, the expressions of  FGFR3 ,  WHSC1  
and  DSG2  are known to be deregulated via t(4;14). Th e 
association of t(4;14) myeloma with aggressive relapse has 
been reported in a number of studies [27,28]. Th ese genes, 
together with another fi ve signifi cantly deregulated genes, 
 NGFRAP1 ,  NAP1L3 ,  TEAD1 ,  LRP12 ,  AGAP1  ( CENTG2 ), are 
among the overexpressed genes previously seen within this 
molecular subgroup [23].  MAF , another gene associated with 
early relapse, is a transcriptional activator of key target genes 
and is mainly deregulated via t(14;16) [29]. 

 Gene enrichment analysis by chromosome location 
shows that the 207 deregulated genes (FDR    �    0.05) were 
signifi cantly overrepresented on chromosome 1 and X; 
notably the overrepresentation of genes on chromosome 
1 was no longer seen among the top 37 deregulated genes 
(FDR    �    0). Th ese fi ndings support the importance of genes 
in the 1q12-q23 region as outcome predictors, but also that 
there are other genes playing more important roles in deter-
mining high risk behavior, which are not able to be identifi ed 
by the FISH approach. Despite the over-representation of 
genes from chromosome X, the risk of early relapse was not 
associated with gender (data not shown). Among the genes 
located on chromosome X,  CTAG1 ,  CTAG2  and  MAGEB2  

online at http://informahealthcare. com/doi/abs/10.3109/
10428194.2014.911863,  p     �    0.05). 

 We also looked at the correlation between the expression 
level of these top deregulated genes and the methylation 
status of their promoter, except for  NUDT11  and  MAL2 , for 
which there were no corresponding methylation probes. Th e 
methylation probes for these genes were all located in CpG 
dense areas and mapped to promoters or transcription start 
site, with their DNA methylation status following a binary 
distribution [Supplementary Figure 6(A) available online at 
http://informahealthcare. com/doi/abs/10.3109/10428194
.2014.911863]. Th e expression levels of nine genes ( CTAG1 , 
 EPDR1 ,  CTAG2 ,  PKP2 ,  NGFRAP1 ,  LRIG1 ,  NAP1L3 ,  MAF , 
 LRP12)  were statistically correlated with the methylation 
status ( p     �    0.05). Scatter plots for these genes show a typi-
cal  “ L ”  pattern, indicating that the hyper-methylation status 
prevents the genes being transcribed, which suggests that 
promoter DNA methylation is likely to make an important 
contribution to the transcription of these genes [Supplemen-
tary Figure 6(B) available online at http://informahealthcare. 
com/doi/abs/10.3109/10428194.2014.911863]. As  MAF  has 
been shown to be deregulated via t(14;16) and can also be 
induced via  WHSC1  translocation, the correlation for  
MAF  was only analyzed in cases negative for both t(14;16) 
and t(4;14) by FISH, and a correlation with methylation 
status was seen. For the genes located on chromosome X, 
the correlations were also confi rmed in each gender group 
separately (data not shown).    

 Discussion 

 MM therapeutic schemes are changing rapidly with the 
constant introduction of new drugs. Although regimens 
containing novel agents may produce comparable response 
rates to those of HDT, prospective data based on a head-to-
head comparison are limited, especially for the long-term 
eff ect. Th erefore these agents are currently incorporated 
prior to and following the HDT rather than replacing the 
procedure as fi rst-line regimen. Th e GEP signature in this 
study was developed and validated in a series of datasets 
using novel agents as induction and maintenance, which 
refl ects the current treatment settings. 

 In this study we show that one of the most signifi cant 
predictors for long-term survival following HDT-ASCT at 
presentation is the time to fi rst relapse. Our analyses show 

  Table IV. Risk groups derived from 17-gene early relapse signature 
(REL-17) were compared with those derived from EMC-92 signature 
in multivariate analyses for their performance predicting relapse 
within 1 year, PFS and OS in the test set ( n     �    155).  

OR/HR 95% CI  p -Value

Relapse    �    1 year
   REL-17 9.69 2.99 – 31.38 0.0002
   EMC-92 1.57 0.51 – 4.80 0.43
PFS
   REL-17 3.21 1.71 – 6.02 0.0003
   EMC-92 1.26 0.72 – 2.21 0.41
OS
   REL-17 1.75 0.76 – 4.02 0.18
   EMC-92 3.25 1.57 – 6.70 0.001

 PFS, progression-free survival; OS, overall survival.   
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belong to the cancer testis gene family (CTAGs), which have 
been previously demonstrated to have prognostic value in 
patients with myeloma [30]. It is also noteworthy that the 
37 top deregulated genes were enriched for the myeloma 
 “ stem cell ”  gene set [23], including  NUDT11 ,  PKP2 ,  ROBO1 , 
 AGAP1 ,  NAP1L3  and  EPDR1 , indicating that  “ stemness ”  may 
play an important role in determining high risk behavior. It 
is interesting that one of these genes,  ROBO1 , together with 
another deregulated gene,  HMGN5,  is also present in the 
UAMS-70 gene signature [14]. 

 Integrative analysis of GEP and SNP-mapping array data 
shows that only four of the 37 top diff erentially expressed 
genes are possibly deregulated via copy number variation. 
Two of them are located on 1q22 and 1p13.2, respectively, 
which may refl ect the association of gain(1q) and del(1p) 
with inferior outcome. Th e majority of the top diff eren-
tially expressed genes do not appear to be deregulated via 
mechanisms which could be detected by FISH, such as 
translocations or gains/losses. Th e exploratory analysis 
integrating GEP and DNA-methylation profi ling shows that 
nine of these genes were statistically associated with the 
DNA methylation level at the promoter, suggesting an epi-
genetic mechanism being involved in their transcription, 
among which CTAG genes have been previously shown to 
be silenced by DNA methylation during normal cellular 
diff erentiation [31]. We also found signifi cant evidence 
showing that three  “ stem cell ”  genes,  PKP2 ,  NAP1L3  
and  EPDR1 , might be modulated via DNA methylation. 
Although  MAF  is normally deregulated via t(14;16) and 
t(4;14) in MM, there are still cases that express this gene 
while lacking these translocations, consistent with addi-
tional unknown mechanisms driving its transcription. In 
this analysis the association between  MAF  expression and 
the promoter methylation status suggests a possible epige-
netic mechanism in its transcription, as is frequently seen in 
diff use large B-cell lymphomas [32]. 

 In conclusion, in this work we have developed a GEP-
based predictor for high risk myeloma treated with HDT-
ASCT. Th e signature is biologically relevant and can identify 
individuals, who constitute up to 20% of newly diagnosed 
patients with myeloma, whose remission is not sustain-
able, with a high risk of relapsing within 1 year post-HDT. 
Patients identifi ed via such an approach could have their 
treatment modifi ed to improve outcomes. Th e future 
development of predictive signatures is likely to focus on the 
use of biologically relevant genes which are deregulated via 
specifi c mechanisms.                    
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