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for oxidative catabolism could modulate metabolic profi le 
of mitochondria. Acetyl coenzyme-A is a key player in 
this modulated pathway, resulting further in Ca 2 �  -evoked 
exocytosis of insulin [4]. 

 Hitherto, it is established that chronic hyperglycemia 
and hyperlipidemia are deleterious to the function of 
 β -cells. Under glucose toxicity and lipotoxicity condi-
tions, the fi ne balance between pro-oxidants and antioxi-
dants in the cells is disturbed and leads to a chronic 
oxidative stress that subsequently contribute to impaired 
glucose-induced insulin release [5,6]. Indeed, elevated 
levels of pro-oxidants and various markers of oxidative 
tissue damage were found in diabetic patients, indicating 
important roles of oxidative stress in the pathogenesis of 
the disease [5] (Figure 1). Of interest are the fi ndings that 
oxidative stress and lipid peroxidation are crucial for 
inducing  β -cell dysfunction and death during the progres-
sion of DM [7]. This review discusses some aspects on 
the role of oxidative stress in the onset, progression, and 
complications of DM.   

 Susceptibility of  b -cells to oxidative stress 

 Pancreatic  β -cells are particularly vulnerable to endoge-
nous or exogenous oxidative stress, which contributes to 
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  Abstract 
 Elevated levels of pro-oxidants and various markers of oxidative tissue damage were found in diabetic patients, indicating involvement 
of oxidative stress in the pathogenesis of diabetes mellitus (DM). On one side, physiological levels of reactive oxygen species (ROS) 
play an important role in redox signaling of various cells, while on the other, excessive ROS production can jeopardize the integrity 
and physiological functions of cellular macromolecules, in particular proteins, thus contributing to the pathogenesis of DM. Reactive 
aldehydes, especially 4-hydroxynonenal (HNE), are considered as second messengers of free radicals that act both as signaling molecules 
and as cytotoxic products of lipid peroxidation causing long-lasting biological consequences, in particular by covalent modifi cation of 
macromolecules. Accordingly, the HNE and related reactive aldehydes may play important roles in the pathophysiology of DM, both in the 
development of the disease and in its progression and complications due to the following: (i) exposure of cells to supraphysiological levels 
of 4-hydroxyalkenals, (ii) persistent and sustained generation of 4-hydroxyalkenals that progressively aff ect vulnerable cells that lack an 
effi  cient bioactive aldehyde neutralization system, (iii) altered redox signaling infl uenced by reactive aldehydes, in particular by HNE, and 
(iv) induction of extracellular generation of similar aldehydes under secondary pathological conditions, such as low-grade infl ammation.  
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  Introduction 

 Millions of people worldwide suff er from  diabetes mel-
litus  (DM), a chronic metabolic disease that is character-
ized by hyperglycemia due to absolute or relative lack of 
insulin secretion and/or its metabolic activity. Pancreatic 
islets of Langerhans function as glucose sensors and are 
responsible for maintaining glucose homeostasis and 
metabolism. Among the three diff erent types of endocrine 
cells in these islets,  β -cells are responsible for insulin 
synthesis and secretion. Therefore, the integrity, mass, 
and function of  β -cells are critical to maintain normogly-
cemia. In response to hyperglycemia, the most important 
peptide hormone secreted from  β -cells is insulin and its 
exocytosis relies on optimal mitochondrial function [1]. 
Generally, glucose-stimulated insulin secretion involves 
entry of glucose to  β -cells by glucose transporter 2 
(GLUT2) across the membrane, followed by glucokinase-
mediated phosphorylation and initiation of glycolysis [2]. 
Subsequently, adenosine diphosphate (ADP) is converted 
into adenosine triphosphate (ATP), leading to the closure 
of ATP-sensitive K  �   channels, depolarization of the 
plasma membrane, and activation of voltage-gated Ca 2 �   
channels, while Ca 2 �   infl ux leads to the rise of cytosolic 
 Ca2   �    concentration  and triggers the exocytosis of insulin 
[3]. Relative contribution of glucose and lipid products 
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 β -cell dysfunction and death [8]. Mitochondria are the 
main source of intracellular reactive oxygen species (ROS). 
During the respiratory chain in the inner membrane of 
mitochondria, reactive superoxide anion (  •  O 

2
   �  ) is formed. 

This radical may be further converted in  β -cells into 
hydrogen peroxide (H 

2
 O 

2
 ) by the action of superoxide 

dismutase (SOD) [9]. Normally, catalase (CAT) and 
glutathione peroxidases (GPXs) can neutralize H 

2
 O 

2
 , 

However, since  β -cells express very low levels of Cu/Zn 
SOD, Mn SOD, CAT, and GPXs in comparison with the 
other cells in the body [10], they are more susceptible to 
oxidative stress. In addition, reactive aldehydes that have 
longer half-life than the abovementioned radicals are con-
sidered as  “ second messengers of free radicals ”  involved 
in  β -cell reaction to oxidative stress.   

 Dual signaling roles of ROS in  b -cells 

 As in the case of other cell types, dynamic changes in the 
ATP levels and ROS generation by glycolytic and respira-
tory metabolism represent the key energetic metabolism 
that makes the fundaments also in the  β -cell signaling 
[11]. At fi rst, ROS were thought to be the by-products of 
respiratory mitochondria metabolism; however, ROS are 
currently considered as important players in numerous 

signaling pathways that regulate a variety of cellular 
responses [12,13]. For instance, H 

2
 O 

2
  is recognized a 

ubiquitous intracellular messenger and numerous signal-
ing molecules involved in insulin secretion in  β -cells have 
been recognized as its downstream targets. Hence, H 

2
 O 

2
  

derived from glucose metabolism represents one of the 
metabolic signals for insulin secretion [11]. 

 Nevertheless, excessive and/or sustained ROS produc-
tion can jeopardize the integrity and physiological func-
tions of macromolecules and contribute to pathogenesis 
of DM [14]. High levels of H 

2
 O 

2
  have been shown to 

inactivate mitochondria and alter mitochondria signals 
for insulin secretion [15]. Indeed, Li and colleagues 
showed that transient oxidative stress, induced by 200  μ M 
H 

2
 O 

2
  for 10 min, induces  β -cells dysfunction lasting over 

days [16]. The main component in cellular defense 
against ROS toxicity is the transcription factor NF-E2-
related factor 2 (Nrf2) that in response to elevated ROS 
levels induces the transcription of numerous antioxidant 
enzymes [17]. Although the Nrf2 action is necessary for 
a proper redox homeostasis, it could also blunt normal 
ROS signals [17]. Interestingly, excessive activity of 
antioxidants in  β -cells deregulates insulin secretion [18]. 
Therefore, it is necessary to elucidate the eff ects of cel-
lular adaptive responses to disturbed redox homeostasis 
in pathophysiology of DM. 

  Figure 1.      The role of oxidative stress in diabetes pathogenesis.  Decreased antioxidant defense, hyperglycemia, infl ammation, and obesity 
contribute to the ROS increase in the body. Elevated levels of ROS can damage carbohydrates, amino acids, and lipids leading to the 
formation of RCC. RCC can further react with macromolecules yielding advanced glycation or lipoxidation end products, AGE or ALE, 
respectively. Both AGE and ALE have important role in the onset and progression of diabetes.  
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 Furthermore, an essential role in the  β -cell prolifera-
tion, survival, and function has been assigned to the 
transcriptional factors pancreatic duodenal homeobox 1 
(PDX1), forkhead box O (FOXO) and to the uncoupling 
protein 2 (UCP2) (Figure 2). The function of these pro-
teins is sensitive to elevated levels of ROS [18]. For 
example, increasing the levels of ROS accelerates the 
degradation of PDX1 due to targeted phosphorylation 
on Ser61 and Ser66 [19]. Oxidative stress also regulates 
FOXO activity through various post-translational modi-
fi cations (i.e., phosphorylation, acetylation, and ubiquit-
ination) [20]. It has been shown that elevated ROS 
levels lead to the activation of FOXO, which upregulates 
the transcription of antioxidant genes [21]. Similarly, 
UCP2, which functions as a molecular sensor and sup-
pressor of mitochondria-derived   •  O 

2
   �  , is also consid-

ered to be a negative regulator of insulin release [22,23]. 
Matsuoka and colleagues reported that ROS induced 
augmented expression of c-Jun in diabetic islets and 
decrease musculoaponeurotic fi brosarcoma oncogene 
homolog A (MafA) activity [24]. It has been shown that 
overexpression of GPX in  β -cells can prevent the loss 
of MafA and protect the cells from chronic hyperglyce-
mia-induced dysfunction [25]. ROS can interfere with 
this mechanism by inactivating MafA and thus compro-
mises this defense mechanism [26].   

 Hyperglycemia-induced oxidative stress 

 Elevated blood glucose levels contribute to the formation 
of ROS in various tissues and also contribute to the  ‘ hyper-
glycemic/glycemic memory ’ . The  ‘ glycemic memory ’  is a 
term coined for the continued progression of tissue dam-
age that persists after abolition of hyperglycemia and 
attainment of normoglycemia. This phenomenon was 
partly explained by the persistent epigenetic changes 
caused by mitochondria-induced ROS production during 
hyperglycemia. It has been shown that ROS induce long-
lasting monomethylation of histone lysine residue H3K4 
in the proximal promoter of the nuclear factor kappaB 
(NF- κ B) subunit p65, which consequently leads to sus-
tained increase in p65 gene expression and further in the 
expression of p65-dependent pro-infl ammatory genes. 
Conversely, hyperglycemia-induced overproduction of 
ROS can cause demethylation of H3K9, thus reducing the 
inhibition of p65 gene expression and acting synergisti-
cally with other epigenetic changes that might contribute 
to the onset of diabetes [27,28]. 

 There are four main pathways aff ected by hyperglyce-
mia-induced overproduction of ROS: (i) activation of iso-
forms of protein kinase C (PKC), (ii) increased hexosamine 
pathway fl ux and augmented fl ux of glucose and other 
sugars through polyol pathway, (iii) increased formation 

  Figure 2.      Oxidative stress and HNE impair insulin signaling.  Hyperglycemia and hyperlipidemia induce ROS generation, which in turn promote 
lipid peroxidation and formation of reactive aldehydes (e.g. HNE) that can further bind to IRS and impair IRS function. Elevated intracellular 
ROS can damage DNA and lead to the formation of 8OHG. In addition, ROS can induce UCP2 in mitochondria or inactivate PDX1. Furthermore, 
activation of IRS1 leads to phosphorylation of FOXO1 transcription factor and FOXO1 nuclear export. However, ROS can either directly induce 
acetylation of FOXO1 or through JNK phosphorylate FOXO1 at diff erent residues and thus promote FOXO1 nuclear translocation. FOXO1 
also competes for the PDX1 promoter and represses the expression of PDX1 that is responsible for  β -cell proliferation.  
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of advanced glycation end products (AGEs), and (iv) 
increased expression of receptor for AGEs (RAGE) and 
its activating ligands [27,29]. 

 In addition to the above-mentioned direct eff ects of 
ROS, equally important are the indirect eff ects caused by 
covalent modifi cations of proteins by reactive carbonyl 
compounds (RCC). Namely, in contrast to the very short 
half-life of ROS, which is in the range of nanoseconds 
and milliseconds, RCC are more stable and with the aver-
age half-life of minutes to hours [30]. Due to their higher 
stability, the non-charged RCC may escape the cells and 
react with extracellular targets and therefore become more 
deleterious than ROS. RCC can modify macromolecules 
and alter cellular signaling pathways (Figure 3). The RCC 
are formed by auto-oxidation of carbohydrates, lipids, or 
amino acids. Some of the RCC that can modify proteins 
or lipids yielding AGEs are formed by auto-oxidation of 
carbohydrates and include glyoxal, methylglyoxal, and 
glycoaldehyde [31]. The crucial mechanism for the role of 
AGE in altered gene expression was described well before 
[32]. AGEs bind to the cell surface receptor RAGE, and 
induce phosphorylation of PKC, with subsequent NADPH 
oxidase activation that yields to an excessive intracellular 

ROS formation [33] and activation of key transcription 
factors, such as NF κ B and AP1 that cause multiple path-
ological changes in gene expression [34,35]. Furthermore, 
it has been suggested that AGEs might deteriorate  β -cell 
function in patients with long-term hyperglycemia [36]. 
RAGE signaling pathway has also been implicated in the 
upregulation of heat shock factor-1 (HSF1) [37], which 
regulates the transcription of heat shock proteins (HSP) 
that protect the proteins exposed to non-enzymatic pro-
tein modifi cations. Therefore, available data suggest that 
HSP might be the essential in preventing insulin resis-
tance in obesity [38]. 

 The RCC formed by lipid peroxidation of polyunsatu-
rated fatty acids (PUFAs) are hydroperoxides and endoper-
oxides that further undergo fragmentation and produce a 
variety of RCC intermediates [30]. The most reactive 
PUFA-derived RCC are  α , β -unsaturated aldehydes, like 
4-hydroxyl-trans-2-nonenal (HNE) and acrolein, followed 
by dialdehydes such as malondialdehyde (MDA) and 
fi nally ketoaldehydes such as 4-oxo-trans-2-nonenal 
(ONE) [39]. Some of these, in particular HNE, can be 
retained in the membranes due to their lipophilic property; 
yet, they can also move within the cell and between the 

  Figure 3.      The eff ect of RCC on transcription factors.  Under oxidative stress, RCC are formed by auto-oxidation of carbohydrates 
(e.g., glyoxal and methylglyoxal) or by lipid peroxidation (e.g., HNE and acrolein). LPO-derived RCC can react with NF κ B and suppress 
its action. Also, they can indirectly activate AP1 and Nrf2 by phosphorylation of c-Jun or alkylation of Keap1 in the Keap1 – Nrf2 complex, 
respectively. Moreover, they can aff ect transcription factors indirectly through ROS signal transduction pathways. The eff ect of RCC, derived 
from carbohydrate oxidation, on the transcription factors is either achieved through AGE or ROS transduction pathway. AGE can promote 
acetylation of FOXO1 that can inhibit proliferation of  β -cells and insulin gene expression. Also, binding of AGE to AGE receptor (RAGE) 
stimulates ROS production by PKC and NADPH oxidase. Furthermore, elevated ROS can activate AP1, NF κ B, and HSF1, and inhibit PDX1 
binding to DNA. Accordingly, they induce pro-infl ammatory gene expression, Hsp expression, and inhibit insulin gene expression and  β -cell 
proliferation. Also, ROS can induce dissociation of Nrf2 from Keap1 – Nrf2 complex enabling Nrf2 translocation to the nucleus and activation 
of the expression of detoxifying genes.  
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cells, even if conjugated with proteins or peptides [40]. 
Growing evidence suggests that HNE can induce insulin 
resistance, thus eliciting its important role in DM patho-
genesis [41]. Nucleophilic groups in macromolecules, 
such as aminophospholipids or certain amino acid moi-
eties, are sensitive to RCC resulting in their modifi cation 
and formation of crosslinks and adducts, and are termed 
advanced lipoxidation end products (ALEs) [30]. Diff er-
ent ALE adducts like HNE-His and acrolein-Lys can be 
formed by RCC reaction with nucleophilic sites (i.e., 
His, Cys, Lys, or Agr) of proteins through Michael addi-
tion. 

 Hitherto, there is a growing body of evidence that 
PUFA-derived reactive aldehydes have also an important 
role in cellular signaling, both under physiological and 
under pathological circumstances [42 – 44]. PUFA-derived 
aldehydes can directly alter cellular signaling pathways by 
interfering with the function of various transcription fac-
tors. HNE and acrolein have been shown to inhibit NF κ B 
[45,46] while by phosphorylation of c-Jun they activate 
AP-1 [45,47]. Both NF κ B and AP1 are responsible for the 
expression of proinfl ammatory cytokines and contribute 
to the propagation of diabetic complications. In addition, 
HNE was shown to alkylate the Keap1, a cytoplasmic 
inhibitor of Nrf2, and leads to dissociation of Nrf2 from 
the Keap1 – Nrf2 complex, its translocation into the 
nucleus, and expression of detoxifying genes [48]. 

 Furthermore, PUFA-derived RCC, like MDA, HNE, 
and acrolein, can react with exocyclic groups of DNA 
bases yielding various alkylated products. The most com-
monly modifi ed DNA base is guanine that in the reaction 
with PUFA-derived RCC can yield eteno adducts such as 
MDA-dG [30]. 

 Demozay and colleagues showed that exogenously 
added HNE to 3T3-L1 murine adipocytes caused insulin 
resistance due to an enhanced degradation of the insulin 
receptor substrate (IRS)-1/IRS-2 proteins. They have 
also shown that neutralization of HNE, by expressing 
fatty aldehyde dehydrogenase in the cells, partially 
restores the insulin-induced IRS-1 tyrosine phosphoryla-
tion and the abnormal metabolic responses that were 
induced by HNE [49]. 

 Pathophysiological association of HNE with T2DM 
was also demonstrated by the recent clinical study of rela-
tionships among skeletal muscle lipid peroxidation, 
intramyocellular lipid content, and insulin sensitivity in 
nine insulin-sensitive and insulin-resistant subjects, as 
well as in T2DM patients [50]. Namely, HNE-protein 
adducts were elevated 1.6-fold in T2DM adults when com-
pared with insulin-sensitive adults, whereas insulin-resis-
tant adults showed intermediate levels. Moreover, 
intramyocellular lipid content was increased by 4.0- and 
1.9-fold in T2DM and insulin-resistant subjects, respec-
tively, when compared with insulin sensitive subjects. 
However, protein carbonyls were not diff erent among 
groups and did not correlate with other measured vari-
ables. Thus, the study has shown that skeletal muscle 
protein-HNE adducts are related to the severity of insulin 
resistance in humans and that muscle lipid peroxidation 

could be involved in the development of insulin resistance 
[50]. These fi ndings support the overall concepts of 
pathophysiology of lipid peroxidation based on the signal-
ing eff ects of HNE and its high affi  nity to bind to proteins 
and peptides causing their non-enzymatic modifi cations of 
structure and function [51]. 

 Diabetic ketoacidosis (DKA) is a dangerous complica-
tion of DM and is associated with decreased levels of 
serum SOD, in comparison with those of healthy indi-
viduals [52]. Furthermore, DKA is also involved in 
chronic complications of diabetic encephalopathy, which 
might be related to the vicious circle of oxidative stress 
associated with a secondary brain damage, as in the case 
of fetal brain edema in which DKA-in is also associated 
with increased levels of HNE, 8-hydroxyguanosine 
(8OHG), and heme-oxygenase-1 (HO-1) in the pyramidal 
neurons of hippocampus [53]. Similarly, the HNE-protein 
adducts were shown to accumulate also in endothelial and 
Schwann cells of the peripheral nerve, neurons, astrocytes 
and oligodendrocytes of the spinal cord and neurons and 
glial cells of the dorsal root ganglia [54]. The inhibition 
of poly(ADP-ribose) polymerase (PARP) may diminish 
the accumulation of HNE-protein adducts in peripheral 
nerves, spinal cord, and dorsal rood ganglion neurons 
indicating important role of PARP and HNE in diabetic 
peripheral neuropathy [54], while HNE was also shown 
to upregulate aldose reductase, an enzyme of the polyol 
pathway related to microvascular complications in DM 
[55]. Indeed, carbonyl/PUFA pathway might promote 
localized oxidative stress in tissues sensitive to diabetic 
damage such as retina and aortic tissue [56]. These data 
point not only to oxidative stress in general but in par-
ticular to the HNE and related aldehydes as important 
factors of DM pathophysiology.   

 Relationship between obesity, reactive aldehydes, 
and DM pathology 

 Excessive HNE generation has also been suggested to be 
involved in obesity by promoting fatty acid synthesis and 
suppressing fatty acid  β -oxidation [57], although it is 
likely that lipid peroxidation itself is not a prerequisite 
for obesity. Namely, the study carried out on mice fed 
with a high fat diet (70% energy as fat) has shown that 
such a diet increased body weight and fat mass develop-
ment, impaired glycemia and insulinemia, but it decreased 
malondialdehyde (MDA determined as thiobarbituric 
acid-reactive substances) content in the liver as well as 
in epididymal, subcutaneous, and visceral adipose tissues 
[58]. Thus, lipid peroxidation, at least in the important 
metabolic organs studied, does not appear to be necessar-
ily related to the development of metabolic disorders 
associated with diabetes and obesity. In favor of this 
assumption are fi ndings of the recent in vitro study show-
ing that acute and repeated exposure of adipocytes to 
physiological concentrations of HNE is suffi  cient to pro-
mote subsequent oxidative stress, impaired adipogenesis; 
alter the expression of adipokines; and increase lipolytic 
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gene expression and subsequent increase in free fatty acid 
release [59]. Accordingly, it may be assumed that HNE 
has diverse eff ects toward adipocyte homeostasis and adi-
pocyte diff erentiation, which may be important for the 
pathogenesis of obesity and metabolic syndrome. Similar 
fi ndings of diverse eff ects of HNE in vitro 
were revealed twenty years ago for the fi rst time, when 
the aldehyde was found to be not only the cytotoxic 
by-product of lipid peroxidation but also bifunctional, 
growth regulating factor interacting with various cytok-
ines [60,61]. Therefore, not only cytotoxic, but also 
regulatory eff ects of HNE, known nowadays as a signal-
ing molecule involved in regulation of major cellular 
activities [13,44] as well as a potent factor modifying 
structure and function of numerous cellular and extracel-
lular proteins [62], might help understanding the involve-
ment of HNE and related aldehydes in pathophysiology 
of DM. Of importance is to keep in mind that HNE has, 
in particular, affi  nity to bind to the membrane-associated 
proteins [63], thus allowing its bioactivities to be obtained 
at the site of its origin as well as remote from the mem-
brane lipids, while non-enzymatic modifi cations of pro-
teins by HNE (ALE) can be infl uenced, even reverted by 
hormetic eff ects nutriceuticals, especially those with 
antioxidant capacities [64 – 66]. These aspects might help 
understanding some contradictory data in the literature 
and encourage further necessary studies similar to the 
one done by Vincent et   al. who found that elevated levels 
of HNE, observed in obese people, could be reduced by 
exercise and the change of diet [67]. 

 In addition, recently, Shevalye and colleagues have 
shown that high-calorie/high-fat diet causes systemic and 
renal oxidative stress and is associated with prediabetic 
nephropathy. They have observed a 38% increase in HNE 
adducts in the renal cortex of mice fed with a high-fat diet 
for 16 weeks [68]. Obesity is also associated with the 
development of gestational DM in pregnant woman [69]. 
Maternal hyperglycemia induces oxidative stress and con-
tributes to diabetic embryopathy. Recently, the increased 
levels of HNE and MDA in embryos of diabetic wild-type 
mice were described [70]. However, these eff ects of oxida-
tive stress were successfully mitigated by SOD1 overex-
pression that blocked maternal hyperglycemia-induced 
PKC activation [70].   

 The role 4-Hydroxyalkenals as endogenous activators 
of the peroxisome proliferator-activated receptor- d  
(PPAR d ) in diabetes 

 Peroxisome proliferator-activated receptor- δ  (PPAR δ ) is 
a ligand-activated transcription factor which dimerizes 
with the retinoid X receptor (RXR) to form a heterodimer 
that interacts with the PPAR response element (PPRE) in 
the promoters of target genes. This complex regulates the 
transcription of various proteins in adipose tissue, skel-
etal muscles, skin, cancer cells, and in infl ammatory pro-
cesses [71]. Of particular interest are studies showing 
that the pharmacological activation of PPAR δ  could 

attenuate the metabolic syndrome by ameliorating dys-
lipidemia, preventing obesity, improving peripheral insu-
lin sensitivity, and ultimately reducing symptoms of 
non-insulin-dependent diabetes [71 – 77]. Various satu-
rated and unsaturated fatty acids as well as PUFA-derived 
mediators have been proposed to function as endogenous 
activators of PPAR δ  [71,78 – 81]. Yet, no consensus on 
the nature of endogenous activating ligands has yet been 
reached. However, small synthetic molecular weight acti-
vators (e.g., GW501516) and antagonists (e.g., GSK0660) 
have been developed and tested in a variety of  in vitro  
and  in vivo  experimental systems [82 – 86]. Ravnskjaer 
et   al. [87] and Riahi et   al. [88] have recently shown that 
the lipid peroxidation products of arachidonic acid and 
linoleic acid, namely HNE and 4-hydroxydodecadienal 
(4-HDDE), are potent activators of PPAR δ  in pancreatic 
 β -cells and vascular endothelial cells, respectively. Cohen 
et   al. have studied, in detail, the role of HNE in rat islets 
of Langerhans and in the INS-1E  β -cell line, which was 
derived from rat insulinoma [89]. Two important obser-
vations have been reported in this study: fi rst, exoge-
nously added HNE caused dose-dependent apoptosis and 
cell death and second, stressful conditions, like high glu-
cose levels, altered the turn-over of fatty acids in mem-
brane phospholipids due to the activation of phospholipase 
A2 and subsequent release of arachidonic and linoleic 
acids to the cell interior. These two fatty acids were read-
ily peroxidized in the oxidative environment induced by 
high glucose and fragmented to 4-hydroxyalkenals 
[90,91]. In INS-1E cells, this process leads to an aug-
mented production of HNE. Yet, the levels of HNE under 
these conditions were signifi cantly below the cytotoxic 
range and the cells remained viable and maintained a 
normal insulin secretory function. Moreover, these con-
ditions augmented glucose-stimulated insulin secretion 
to levels typically seen in the adaptation phase response 
of  β -cells to hyperglycemia. 

 Several lines of evidence link HNE-dependent activa-
tion of PPAR δ  to this phenomenon. The use of the 
PPAR δ  antagonist GSK0660 or silencing of PPAR δ  
expression in  β -cells abolished both high glucose- and 
HNE-augmenting eff ects of insulin secretion, whereas 
the PPAR δ  agonist GW501516 mimicked them. More-
over, neutralization of endogenously generated HNE 
with N-acetyl cysteine blocked the stimulatory eff ect. 
Finally, HNE and GW501516 induced the expression of 
a reporter gene (luciferase) in a transactivation assay in 
INS-1E cells in a PPRE-dependent manner, whereas the 
antagonist GSK0660 blocked this eff ect. These fi ndings 
point to a clear distinction between physiological func-
tions of intracellular HNE and pathophysiological eff ects 
of extracellular of HNE in cells. Under mild oxidative 
stress and accelerated phospholipid turn-over, the gen-
eration of 4-hydroxyalkenals is augmented due to the 
release of precursor PUFAs to the cell interior. The lev-
els of free intracellular 4-hydroxyalkenal in the cells 
depend on the rate of lipid peroxidation, the degree 
of covalent interactions with nucleophilic moieties 
in macromolecules, and the effi  cacy of the inherent 
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neutralization enzymes (i.e., fatty aldehyde dehydroge-
nase and glutathione peroxidase) of these bioactive 
aldehydes in cells [91]. Similarly, small molecular 
weight antioxidants, and in particular L-carnosine, that 
covalently bind and sequester 4-hydoroxyakenals greatly 
contribute to steady-state level of these reactive mole-
cules in the cells as well as they could infl uence glucose 
metabolism and scavenge reactive carbonyls. Thus, Sau-
erh ö fer et   al. observed correlation of L-carnosine levels 
with  β -cell mass in transgenic mice model mimicking 
the expression pattern of human carnosinase 1 (hCN1) 
resulting in the weight loss and glycosuria [92], while 
Aldini et   al. used obese rats to reveal that some of the 
major biological eff ects of carnosine, such as prevention 
of dyslipidemia, hypertension, and renal injury, refl ect 
direct carbonyl scavenging activities of carnosine [93]. 
However, interactions of carnosine and HNE and related 
aldehydes have yet to be understood well. 

 The study on INS-1E cells and freshly isolated rat 
islets of Langerhans [89] demonstrate that the intracel-
lular levels of HNE generated under glucose-induced 
oxidative stress are not harmful to the cells. On the con-
trary, HNE actually functions as an important signaling 
molecule in the adaptive hypersecretion of insulin from 
 β -cells in response to long-term hyperglycemia. Further 
support to this contention comes from the study of the 
eff ect of high glucose on the expression of glucose trans-
porter-1 (GLUT-1) in vascular endothelial, in which 
4-HDDE activates PPAR δ , which increases the expres-
sion of the protein calreticulin that destabilizes GLUT-1 
mRNA and ultimately lowers glucose uptake. It has been 
proposed that this mechanism equips endothelial cells 
with an eff ective natural protective mechanism against 
deleterious eff ects of uncontrolled infl ux of glucose to 
the cells under hyperglycemic conditions. Yet, it is clear 
that extended oxidative stressful conditions, which cause 
sustained generation of 4-hydroxyalkenals, may progres-
sively impair cell structure and function due to the accu-
mulation of stable adducts 4-hydroxyalkenals formed 
with proteins, phospholipids, and DNA. In addition, the 
deterioration of cells is accelerated when they are 
exposed to exogenous high levels of 4-hydroxyalkenals 
produced in the vicinity of the cells. Vazdar et   al. have 
recently shown that the entry of exogenous HNE to the 
cytoplasm of cells through membrane phospholipids is 
very fast and effi  cient [40]. High levels of HNE have 
been associated with infl ammatory processes [94,95] 
under pathological conditions such as atherosclerosis or 
obesity [90,96,97]. Therefore, 4-hydroxyalkenal-medi-
ated cell and organ dysfunction similar to these patho-
logical conditions may result from (i) exposure of cells 
to supraphysiological levels of 4-hydroxyalkenals, (ii) 
persistent and sustained generation of 4-hydroxyalkenals 
that progressively aff ect vulnerable cells lacking an effi  -
cient bioactive aldehyde neutralization and sequestration 
systems, (iii) altered redox signaling infl uenced by reac-
tive aldehydes, in particular by HNE, and (iv) extracel-
lular generation of these aldehydes under pathological 
conditions such as infl ammation.   

 Conclusion 

 Reactive aldehydes generated under various pathophysi-
ological processes of oxidative stress associated with 
lipid peroxidation act as second messengers of free radi-
cals and may therefore be of major relevance in develop-
ment and progression of various metabolic diseases, in 
particular of DM. However, to elucidate the complete 
mechanism of PUFA-derived reactive aldehydes in DM 
pathophysiology, furt her studies are needed.         
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