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A point-selection algorithm based on spatial-stiffness analysis

of rigid registration

B. MA1 & R. E. ELLIS1,2

1
School of Computing, Queen’s University, Kingston, Ontario, Canada, and

2
Department of Radiology, Brigham and

Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA

Abstract

Objective:We propose a model of shape-based registration that leads to a task-specific algorithm for preoperatively selecting a
set of model registration points.
Materials andMethods: We performed five sets of computer simulations using registration points generated by our algorithm
and two noise amplification index (NAI) algorithms on the basis of the research of Simon [20]. We used several different bone
surface models (distal radius, proximal femur and tibia) computed from CT images of patient volunteers. The number of
registration points used varied between 6 and 30.
Results: Our algorithmwas faster than the NAI-based algorithms by factors of approximately 4 and 200. It had equal or better
performance in terms of target registration error (TRE) when compared with the other algorithms. Our simulations also
showed that point selection can have a large effect on TRE behavior; in particular, poor point selection does not necessarily
decrease TRE as more registration points are added.
Conclusions: Our point-selection algorithm produces model registration points with similar or better TRE behavior than the
NAI-based algorithms we tested, and it does so with significantly less computation time.

Keywords: Orthopaedic surgery, point selection, rigid registration, spatial stiffness, target registration error

Introduction

A patient’s anatomy can be registered to preoperative

3D medical images for use in image-guided surgery

by digitizing anatomical registration points on the

patient and matching them to surface models

derived from the images. We propose a method for

choosing model registration points from the preopera-

tive medical image on the basis of an extension of the

method we described for fiducial registration [1]. We

view the registration points as the locations where an

elastic suspension system is attached to a rigid mecha-

nism. By analyzing the stiffness matrix of the mecha-

nism, we are able to compute a stiffness-quality

measure that characterizes the least-constrained dis-

placement of the mechanism with respect to a point

target. The analysis yields the direction of translation,

or the axis of rotation, of the least-constrained displa-

cement. The form of the stiffness matrix suggests a

way to add a new point to stiffen this displacement,

thereby improving the quality measure.

A common problem in mechanics is determining

the relationship between the displacement of a

mechanism and the reaction forces that arise. This

stiffness relationship is taken to be linear for small

displacements about an equilibrium configuration

and is characterized by a 6�6 spatial stiffness

matrix. Consider an unloaded linear spring: the reac-

tion force that arises when the spring is stretched or

compressed along its length by a small amount x is

F ¼ kx, where k is the scalar spring constant. More

generally, for an unloaded, unconstrained elastic

mechanism, the force–displacement relationship is

w¼Kt

force

torque

f

t

� �

¼ A B

BT D

� �

v

v

� �

linear displacement

rotational displacement

(1)

where the generalized force w is called a wrench and

the generalized displacement t is called a twist. The

symmetric 6�6 matrix K is called the spatial-stiffness

matrix; the blockmatricesA,B, andD are all matrices

of size 3 � 3. Properties of the spatial stiffness matrix

have been discussed by many researchers [2–11].
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Simon [20] proposed a method, closely related to

our spatial-stiffness approach, for preoperatively

choosing registration point sets. The method

required calculating the eigenvalues of a 6�6

matrix that he called the scatter matrix; in fact, the

scatter matrix is the same as the spatial-stiffness

matrix that we define for shape-based registration.

He referred to the problem of selecting good regis-

tration points as constraint analysis. He proposed

that the noise amplification index (NAI) was one

way to quantify the amount of constraint provided

by a set of registration points, and his algorithm

for selecting registration points attempts to maxi-

mize the value of the NAI; the NAI is defined in

the Materials and methods section. Simon provided

evidence that point sets with large values of NAI

were associated with smaller values of his measure

of registration error. The variance of registration

error was also lower for point sets with large

NAI. He further showed that the NAI was an

approximate estimator of worst-case registration

error. When compared with expert-selected point

sets, the point sets synthesized using an NAI-

based algorithm generally had smaller registration

errors when the number of points was small; this

difference tended to disappear when the number

of points was greater than 25.

Materials and methods

Our spatial-stiffness model of surface-based regis-

tration is illustrated in Figure 1. We parameterize

the model by N surface points with locations fpig
and unit normal vectors fnig for i ¼ 1, . . . , N.

Consider what occurs when a small displacement

made up of a translation d ¼ [tx ty tz]
T and a rotation

R ¼ Rz(vz) Ry(vy)Rx(vx) is applied to the regis-

tration points. The new locations of the displaced

registration points are given by qi ¼ Rpiþ d. For

small displacements, we can assume that the region

around each pi is locally planar. The squared distance

between qi and the nearest point on the surface is

given by ((qi � pi) � ni)
2. The potential energy Ui

stored in each linear spring (with the spring constant

taken to be unity) connecting qi and the nearest

surface point is Ui ¼ 1
2
((qi � pi) � ni)

2. It can

be shown that the upper-triangular part of the

symmetric Hessian matrix Hi of Ui evaluated at

equilibrium is

Hi ¼ H(Ui; y ¼ v ¼ 0)

¼

n2xi nxinyi nxinzi nxidyzi �nxidxzi nxidxyi

n2yi nyinzi nyidyzi �nyidxzi nyidxyi

n2zi nzidyzi �nzidxzi nzidxyi

d2
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(2)

where pi ¼ ½xi yi zi�T , ni ¼ ½nxi nyi nzi �T , dxyi ¼
½xi yi� � ½nyi � nxi �, dxzi ¼ ½xi zi� � ½nzi � nxi �, and dyzi ¼
½yi zi� � ½nzi � nyi �.

The dot products, dxyi, dxzi, dyzi, have important

geometric interpretations. For example, dxyi can be

computed by projecting the vectors pi and ni onto

the xy-plane; dxyi is the dot product of the projected

pi and a vector in the xy-plane that is perpendicular

to the projected ni. An example of the dot product

dxyi and its geometric significance is illustrated in

Figure 2.

The spatial-stiffness matrix for surface registra-

tion is:

K ¼
X

N

i¼1

Hi ¼
X

N

i¼1

Ai Bi

BT
i Di

� �

¼ A B

BT D

� �

where
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Analysis of spatial stiffness

Our method for selecting registration points is based

on calculating eigenvalues and eigenvectors related to

Figure 1. Detail of the spatial stiffness model in the region around

one of N registration points. The registration point pi with surface

normal direction ni in its original position (gray) is displaced to new

a position qi (white) by a small rotation and translation. The spring

is attached to qi on the displaced body and to the nearest point

(outlined black) on the undisplaced body.
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the spatial-stiffness matrix K [8]. The eigenvalues of

K are not immediately useful because their magni-

tudes change with the coordinate frame used to

define K. However, it can be shown that the eigen-

values of

KV ¼ D�BTA�1B (4)

CW ¼ A�1 (5)

are frame invariant. The eigenvalues m1, m2, m3 of KV

are called the principal rotational stiffnesses and the

eigenvalues s1, s2, s3 of C
�1
W are called the principal

translational stiffnesses. The eigenvectors can be

used to calculate the principal axes of translation

and rotation associated with the principal stiffnesses.

The principal stiffnesses are related to the amount of

energy stored in the elastic system when the mechan-

ism is displaced from equilibrium; a large rotational/
translational stiffness value indicates that it is more

difficult (that is to say, more energy is required) to

rotate/translate the mechanism about the associated

principal axis.

The screw representation of a twist is a rotation

about an axis followed by a translation parallel to the

axis. The screw is usually described by the rotation

axis, the net rotation magnitude M, with the indepen-

dent translation specified as a pitch, h, which is the

ratio of translational motion to rotational motion. For

a twist [12] h ¼ v � y=kvk2, M ¼ kvk, and the axis

of the screw is parallel to v passing through the point

q ¼ v� y=kvk2. A pure translation (where v ¼ 0)

has h ¼ 1 and M ¼ kyk, with the screw axis parallel

to y passing through the origin. A unit twist has mag-

nitude M ¼ 1, in which case, for v = 0, h ¼ v � y,
and q ¼ v� y. For a small screw motion with

M ¼ a and v = 0, a point located at a distance r

from the screw axis will be displaced by length

l � jaj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ (v � y)2
q

(6)

Because the principal rotational and translational stiff-

nesses have different units, they cannot be directly

compared with one another. One solution is to use

Equation 6 to scale the principal rotational stiffnesses

by an appropriate factor [8] yielding the so-called

equivalent stiffnesses, meq,i:

meq,i ¼
mi

r2i þ (vi � yi)
2

i ¼ 1, 2, 3 (7)

where, mi is an eigenvalue of KV with an associated

eigenvector vi, and ri is the distance between the

point of interest and the screw axis of the twist

½yT
i v

T
i �T . The equivalent stiffnesses can be compared

with the principal translational stiffnesses, which leads

to the stiffness quality measure

Q ¼ min (meq,1, meq,2, meq,3, s1, s2, s3). Q charac-

terizes the least constrained displacement of the

mechanism. Therefore, maximizing the smallest

rotational and translational stiffnesses will minimize

the worst-case displacement of the mechanism. We

use Q as the basis for a point-selection algorithm that

builds a registration point set by sequentially choosing

points that result in the largest increase in Q.

The matrix Ai in Equation 3 has only one non-

zero eigenvalue s; its associated eigenvector is

ni ¼ ½nxi nyi nzi �T. It must be the case that s ¼ 1

because the trace of Ai is n
2
xi
þ n2yi þ n2zi ¼ 1 and the

sum of the eigenvalues is equal to the trace of a

matrix [13]. The single non-zero eigenvalue indicates

that a registration point pi only contributes to the

translational stiffness in the direction parallel to its

normal vector ni. There is a simple geometric expla-

nation for this prediction: the region surrounding pi
is planar, so translation of pi in this plane induces

no extension of the spring attached to pi because pi
never leaves the surface. If Q corresponds to a trans-

lational stiffness smin then it is easy to find the model

point that produces the largest increase in Q, by

selecting the model point with normal vector n

most closely aligned in direction with the principal

axis associated with smin. It turns out that the princi-

pal axis associated with smin is parallel to the eigen-

vector ymin associated with smin. The point with

normal vector most closely aligned in direction with

Figure 2. Two examples of the dot product dxy. (A) A point p on a circle in the xy plane and its associated surface normal n. (B) The pro-

jection of p onto the xy plane; n is also projected but then rotated 908 in the plane. The dot product of the two vectors shown is dxy ¼ 0;

p provides no rotational constraint about the z axis. (C) A point p on an edge in the xy plane and its associated surface normal n.

(D) The projection of p onto the xy plane; n is also projected but then rotated 908 in the plane. The dot product of the two vectors

shown is dxy ¼ kpk; p provides good constraint about the z axis.
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yminmaximizes the quantity (n � ymin)
2. Alternatively,

a rotation R can be applied to the surface model so

that Rymin is parallel to the z axis; the rotated

point with the largest value of nz
2 should be chosen.

Applying the rotation is much less efficient than

simply computing a dot product, but it illustrates

the approach that is required for increasing rotational

stiffness.

The analysis of rotational stiffnesses is complicated

by their being coupled to the translational stiffnesses.

To simplify the analysis, we will ignore the coupling

and focus on the matrix D that relates torque to

rotational displacement. There exists a coordinate

frame rotation that diagonalizes D [2] and the eigen-

values of this diagonal matrix are equal to the diag-

onal elements, which are the squared dot products

dxy
2 , dxz

2 , and dyz
2 . Suppose the rotation about the z

axis needs to be stiffened. This can be done by

choosing a new point pi with normal vector ni so

that d2
xyi

is maximized. This leads to a heuristic for

stiffening the rotation about the least-constrained

rotational axis: Apply a coordinate frame transform-

ation so that the axis passes through the origin and

is aligned with the z axis, then find the transformed

point with normal vector that maximizes d2
xyi
. This

heuristic is not optimal, because it ignores the

coupling with the translational stiffnesses. Moreover,

it is not coordinate-frame invariant. However, the

analytic expression to be maximized is simple to

compute and is intuitively appealing.

A greedy selection algorithm

We propose an algorithm based on a simple greedy

heuristic: choose the next registration point such

that the increase in the value of Q is maximized.

. Choose an initial set P0 of six registration points.

. P ¼ P0

. For i ¼ 7, 8, . . .N

(i) Compute the quality measure Q.

(ii) IfQ corresponds to a translational stiffness

(a) Choose pi with ni from the rotated

model such that dQ ¼ (ni � y)2 is

maximized.

(iii) If Q corresponds to a rotational stiffness

(a) Translate and rotate the surface model

so that the least-constrained rotational

axis passes through the origin and is

parallel to the z axis.

(b) Choose pi with ni from the trans-

lated and rotated model such that

dQ ¼ d2
xyi

¼ (½xi yi � � ½nyi � nxi �)2 is

maximized.

(c) Undo the transformation applied to pi
and ni.

(iv) P ¼ {P, pi}

(v) Optional: Remove pi from the set of model

points.

The initial set of registration points P0 should be

chosen, so that the stiffness matrix calculated using

Equation 3 is positive definite. The 3:2:1 fixturing

concept [14] is a useful rule for manually choosing

these 6 points.

The time complexity of this algorithm is O(MN),

where M is the number of model points and N is

the total number of registration points. The algor-

ithm is not optimal, because it only tends to increase

Q with each new point instead of genuinely maximiz-

ing Q. However, it is easy to implement and seems

to work in practice. We will refer to this algorithm

as Qseq.

The NAI and registration

Explicitly expanding Simon’s [20] expression for the

scatter matrix produces a matrix that is identical to

the stiffness matrix given by Equation 3. The NAI

for any square matrix is

NAI ¼ lmin
ffiffiffiffiffiffiffiffiffiffi

lmax

p (8)

where lmin and lmax are the smallest and largest

eigenvalues of the matrix, respectively. The NAI

was originally proposed for robot calibration pur-

poses [15], where it was shown that maximizing the

NAI led to good calibration results. Simon proposed

finding the N points from M model points that maxi-

mize the NAI for registration point set selection. An

exhaustive search algorithm would require examining

all MþN�1
N

� �

subsets of N registration points from the

M surface model points (Simon allowed points to be

chosen with repetition). Simon examined several

algorithms that found local maximizers of the NAI;

all of them were based on random sampling followed

by optimization. He examined hillclimbing methods,

a genetic algorithm, and population-based incre-

mental learning as optimizers of NAI [16]. The

major disadvantage of these methods is that they

are computationally expensive. Also, they only

produce point configurations that are local maxi-

mizers of NAI. In this article, we use Simon’s hill-

climbing algorithm to maximize the NAI, and refer

to it as NAImax. NAImax has two adjustable par-

ameters: the number of times the algorithm is run

from a random initialization (Ntrials) and the

number of iterations the algorithm is allowed to run

before termination (Niter). This algorithm is not

appropriate for online use because the point set of

size Nþ1 is constructed independently of the set

of size N.
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The obvious heuristic for sequentially maximizing

the NAI is to choose the next point that results in

the highest NAI.

. Choose an initial set P0 of 6 registration points.

. P ¼ P0

. For i ¼ 7, 8, . . .N

(a) Choose pi with normal ni from the surface

model points so that the NAI of {P, pi} is

maximized.

(b) P ¼ {P, pi}

(c) Optional: Remove pi from the set of model

points.

The time complexity of this algorithm is O(MN).

We have observed that this algorithm has the undesir-

able property of decreasing the NAI when moving

fromN toNþ1 points. We will refer to this algorithm

as NAIseq.

Experimental validation

The concept of target registration error (TRE) [17]

is a natural measurement of registration error for

our purposes because our point-selection algorithm

requires that a point target be specified as input.

Suppose the locations of the target in the patient

coordinate frame and the coordinate frame of the

computer model are xpatient and xmodel, respectively.

Given a registration transformation T that maps

points in the patient frame to points in the model

frame, the TRE is defined as

TRE ¼ kT(xpatient)� xmodelk (9)

where k � k denotes Euclidean distance. The TRE is

simply the discrepancy in distance between the regis-

tered physical target and the target identified on the

computer model of the patient’s anatomy.

The selection algorithms produce model registration

points defined in the coordinate frame of the com-

puter model of the patient’s anatomy. In a com-

puter-assisted procedure, patient registration points

defined in the coordinate frame of the patient are

used. Our simulations generate patient registration

points by adding point localization noise to the model

registration points and applying a random, rigid

transformation. Point-localization error (PLE) is

the uncertainty in the measurement of a patient

registration point. Our experiments used isotropic,

normally distributed, zero mean measurement

errors. Thus, the PLE is characterized by the vari-

ance sPLE
2 of the measurement error.

The point-selection algorithms were evaluated in

terms of TRE by performing simulations of shape-

based registration using points sampled from a

variety of surfaces. Specifically, we used the distal

end of a radius, the proximal end of a femur, and

the proximal end of a tibia. The surfaces were com-

puted from CT scans of patient volunteers using a

combination of manual segmentation and the

Marching Cubes algorithm [18]. Because the NAI-

based algorithms are known to be sensitive to the

choice of coordinate frame, all of the models were

translated so that their centers of mass coincided

with the origin. The surgically accessible region of

bone and a point target was identified on each

surface model. Images of the bone surfaces and

target locations are shown in Figure 3.

Six sets of simulations were performed to assess

the performance of Qseq versus the NAI-based

algorithms. All simulations were performed using

N ¼ 6, 7, . . . , 30 registration points and an isotro-

pic point-localization noise variance of s2PLE ¼
(0:5mm)2. Qseq, NAImax, and NAIseq were used to

generate the point sets.We chose the option of remov-

ing a point from further consideration after it had

been selected when using the sequential algori-

thms, and we allowed repeated selection of the same

point when using NAImax. NAImax was run using

Ntrials ¼ 10 and Niter ¼ 10. The sequential selection

algorithms (Qseq and NAIseq) were initialized with

the same set of 6 points obtained using NAImax with

Ntrials ¼ 1000 and Niter ¼ 15. The generated point

sets of sizes 9, 18, and 30 are shown in Figures 4–6.

The input to each simulation was the surface, a set

Figure 3. Computer models of the bone surfaces used in the

simulations. Dark gray regions are the regions from which regis-

tration points may be selected. Targets are marked by the dark

gray cubes. On the distal radius model (top left), the target is the

approximate location of a screw hole for a plate used to fixate an

osteotomy performed to correct a fracture malunion. On the proxi-

mal femur model (top center and right), the target is the app-

roximate location of an osteoid osteoma. On the proximal tibia

model (bottom), the target is a point on the hinge of a closing

wedge osteotomy.
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of registration points, a point target, and the (isotro-

pic) variance sPLE
2 of the point-localization noise

magnitude. The output was the average TRE.

Simulation 1. In this simulation, we generated patient

registration points by adding point-localization noise

to the selectedmodel registration points. Patient regis-

tration points generated in this fashion should not

violate the small displacement assumption of the

spatial stiffness model. This simulation was run with

10,000 trials, each trial executing the following steps:

(1) Zero-mean, normally distributed noise was

drawn from N (0, s2PLE=3) and added to the

x, y, and z components of each registration-

point location.

(2) The noisy point locations were registered to

the selection region using the ICP algorithm

[19]. The algorithm was initialized with the

true registration transformation and allowed

to run to convergence in root-mean-squared

error with a tolerance of 0.01 mm.

(3) The TRE was calculated. The expected TRE

was the average TRE taken over the 10,000

trials.

Simulation 2. The purpose of this simulation was to

explore if the selection algorithms would cause any

Figure 4. Distal radius surface model and registration points

generated using the point-selection algorithms. From top to

bottom are point sets of size 9, 18, and 30.

Figure 5. Proximal femur surface model and registration points

generated using the point-selection algorithms. From top to

bottom are point sets of size 9, 18, and 30.

Figure 6. Proximal tibia surface model and registration points

generated using the point-selection algorithms. From top to

bottom are point sets of size 9, 18, and 30.
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differences in TRE if ICP was started away from

correct registration. Patient registration points were

generated by adding point-localization noise and

then applying a small random displacement to the

selected model registration points. The displacement

was specified as a rotation of 58 about a randomly

generated axis passing through the origin followed

by a 5-mm displacement along the axis. We did not

expect that the NAI or the spatial stiffness model

would be applicable after such a large displacement.

Simulation set 3. This simulation set involved only

the Qseq algorithm. It is reasonable to believe that

the performance of this type of sequential selection

algorithm will be dependent on the set of six points

used to initialize the algorithm. Using the distal-

radius model, we reran Simulations 1 and 2 with

registration point sets selected by Qseq started with

an initial set of points clustered together and nearly

collinear (Figure 7). This configuration of points

produced an initial stiffness matrix that was poorly

conditioned but still positive definite.

Simulation set 4. This simulation set, also involving

only the Qseq algorithm, was used to further test the

validity of selecting points based on their spatial stiff-

ness characteristics. Qseq was modified to select

the point that produced the smallest increase in the

least-constrained stiffness component, that is, the

modified algorithm should choose poor registration

points producing higher average TREs. Using the

proximal-femur model, we reran Simulations 1 and

2 with registration point sets selected by the modified

version of Qseq.

Simulation set 5. This simulation set was used to

examine the effects of correspondence error, which

is the error associated with localizing a patient regis-

tration point corresponding to the suggested model

registration point. We used a simple model of corre-

spondence error where it was assumed that the

error had a uniform distribution over all surface

points within a radius of 10 mm from the selected

model point. For each trial of the simulations, each

patient registration point was generated by taking

the model point selected by Qseq and sampling one

point from the uniform correspondence error distri-

bution (ensuring that the sampled point was also

inside the accessible region). Simulations 1 and 2

and the proximal-femur model were used for this

simulation set.

Simulation set 6. The previous simulations can be cri-

ticized because only one distinct surface model was

used for each bone. Another problem is that register-

ing the points to the selection region is unrealistic

because there is a possibility that the surgeon will

inadvertently collect points from outside this

region. Also, because Qseq tends to select points

from the boundary of the region, it may have an

unfair advantage over the NAI-based algorithms if

only the selection region is considered during

registration.

We addressed these issues by performing another

set of simulations, this time using 10 proximal-tibial

surface models from clinical volunteers. A conserva-

tively sized point-selection region was defined on

each model on the medial side of the tibia. The

surface models used for registration were the entire

tibias minus the areas that are normally inaccessible

during medial osteotomy (the tibial plateau, posterior

surface, and lateral surface). All three point-selection

algorithms were used to generate registration point

sets on the 10 models. Unlike the previous simu-

lations, we chose to run Qseq on the original bone

models rather than the centered bone models used

for the NAI-based algorithms. Simulations 1 and 2

were re-run with 10,000 trials and a PLE of

sPLE ¼ 0.5 mm.

For the ith tibial model, we computed the

average TRE as mTRE,i ¼ 1
10,000

P10,000
j¼1 TREi. We

then computed the average of the 10 average TREs,

mTRE ¼ 1
10

P10
i¼1 mTRE,i, the standard deviation of

mTRE, and the maximum TREs over all of the

models and trials.

Results

The normalized run times for the selection algor-

ithms, on a surface model with M ¼ 3065 points,

are shown in Table I. All timing results were obtained

inMatlab (TheMathWorks, Inc., Natick, MA, USA)

running on a SunBlade 1000 workstation (Sun

Microsystems, Inc., Santa Clara, CA, USA). Qseq

was faster than NAIseq by approximately a factor of

four. This was not surprising, because NAIseq must

solve an eigenvalue problem for every model point.

Qseq was faster than NAImax by approximately two

orders of magnitude. NAImax requires more

Figure 7. Registration points from Simulation set 3 generated on

the distal radius by Qseq starting from a set of six points that

poorly constrain the registration problem. The six points are the

almost collinear cluster on the shaft of the radius.
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execution time than Qseq because it attempts to find a

globally optimal set of registration points.

Simulations 1 and 2. Graphs of TRE versus number

of registration points are shown in Figures 8–10 for

the three bone surfaces. In the distal radius

simulation with only point-localization noise, Qseq

outperformed the NAI-based algorithms. With the

application of an initial displacement, Qseq had

remarkably good and stable performance after only

12 registration points. NAImax required 21 points to

match Qseq in terms of average TRE, and NAIseq

Table I. Normalized run times of the point-selection algorithms for M ¼ 3065. Actual run times

have been divided by the amount of time required by Qseq to generate a point set of size 9.

Number of registration points

Algorithm 9 12 15 18 21 24 27 30

Qseq 1 2 3 4 5 6 7 8

Nseq 4 8 12 16 21 25 29 33

NAImax 180 450 800 1100 1500 2000 2600 3300

Figure 8. Results for Simulations 1 and 2 using the distal radius model. From top to bottom are average TRE, standard deviation of TRE,

and maximum TRE.
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never matched the performance of the other

algorithms. Qseq had the best worst-case TRE

performance. Given the clear differences in the

pattern of point distribution between the NAI and

stiffness-based algorithms, it is not surprising that

there were consistent differences in the TRE results.

The point distributions for the proximal femur

model were visually the most similar, and the TRE

results were similar as well. There were no clear

differences in TRE for point sets larger than 15 in

either simulation.

In the proximal tibia simulation with only point-

localization noise, Qseq outperformed the NAI-

based algorithms. In the second simulation, Qseq

usually produced the smallest worst-case TRE. The

erratic performance of NAImax was probably caused

by NAImax constructing point sets independently of

one another rather than building sequentially on

smaller point sets.

It is interesting that, for all three models, the

average TRE and the worst-case TRE tend not to

decrease after 15 points for the best performing

algorithms in the simulations with an initial

displacement.

Simulation set 3. The results for this simulation set

are plotted in Figure 11. When there was only

point-localization noise, the TRE behavior of

the point set initialized with clustered, nearly colli-

near points was effectively the same as the point set

used in Simulations 1 and 2 after a total of 9–12

registration points. With the addition of an initial

Figure 9. Results for Simulations 1 and 2 using the proximal femur model. From top to bottom are average TRE, standard deviation of TRE,

and maximum TRE.
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displacement, the behavior in TRE was almost iden-

tical for both point sets after 12–15 points.

Simulation set 4. The results for this simulation set

are plotted in Figure 12. The version of Qseqmodified

to select poor registration points performed much

worse than the original version of Qseq.

In the simulation with an initial displacement,

the modified Qseq exhibited increasing average

TRE. This result was surprising as well: it suggested

that it was possible to obtain increasingly worse

average TRE when using more registration points.

TRE variance and worst-case TRE were also higher

when using point sets produced by the modified

version of Qseq.

Simulation set 5. The results for this simulation

are plotted in Figure 13. Correspondence error of

up to 10 mm produced higher TREs and higher

standard deviation of TRE. Increasing the number

of registration points reduced the magnitude of this

effect.

Simulation set 6. The results for this simulation are

plotted in Figure 14. In the simulations with only

added noise, Qseq had better performance than the

NAI-based algorithms, but the differences were

small. Qseq also slightly outperformed the NAI-

based algorithms in the simulations with an initial

displacement. Again the actual differences in per-

formance were small.

When we looked at the results for each bone, we

found that Qseq produced the lowest maximum

TRE in 8 of the 10 cases. It produced the lowest

average TRE in 5 of the 10 cases. We believe that

the performance of our algorithm would have been

Figure 10. Results for Simulations 1 and 2 using the proximal tibia model. From top to bottom are average TRE, standard deviation of TRE,

and maximum TRE.
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better if we had used the same centered computer

models used for the NAI-based algorithms.

Discussion

One weakness with our experiments was that the

TREs obtained using NAImax are possibly overesti-

mated because of the difficulty in finding the global

maximum of NAI. Qseq is not a global optimizer of

its stiffness criteria, but its performance was on par

with, if not better than, NAImax, and required sub-

stantially less computation. The sequential NAI

algorithm, NAIseq, generally had the worst perform-

ance of the three algorithms. Finding an optimal sol-

ution to batch point selection, which would automate

the preoperative selection of registration points,

remains an open problem.

Another weakness of our experiments was that the

simulations were intended to examine how point

selection affects TRE, but the TRE values are inex-

tricably linked to the registration algorithm. This

almost certainly had some effect on TRE in the

simulations with the displaced point sets, but we

would be surprised if there was a strong effect on

TRE for the simulations with only added noise.

Furthermore, the simulations with the modified

version of Qseq clearly demonstrated that point

selection can have a profound effect on TRE beha-

vior. An unknown issue is to what degree point

selection affects registration accuracy in clinical

practice.

The option of removing a model point after it has

been selected does not have any significant effect on

the behavior of TRE if the surface models are

Figure 11. Results for Simulation set 3 using the distal radius model with points generated using Qseq initialized with a set of six points that

poorly constrain the registration problem. From top to bottom are average TRE, standard deviation of TRE, and maximum TRE. The solid

lines are the results obtained using a good initial set of points. The results are identical to those shown in Figure 7.

Point selection for shape-based registration 219



densely sampled because points adjacent to the

removed point will have similar location and normal

vectors. If the surface models are coarsely sampled,

then there may be a noticeable effect on TRE, but

we have not explored this issue.

Our model of correspondence error was similar to

the data collection uncertainty model used by Simon

[20]. Our model assumed identical, independent,

spatially uniform distributions of error surrounding

each suggested model point. This assumption is

overly simplistic because distinct anatomical points

should have smaller correspondence errors than less

easily identified anatomical points. We also expect

some correlation in the correspondence errors for

closely spaced registration points.

Simon [20] observed that the NAI was more sensi-

tive to variations in normal direction than point

location. This is not surprising, given the form of

the stiffness matrix: the components of the normal

vector appear everywhere, whereas the components

of point location appear only in the submatrices B

and D. In terms of the spatial-stiffness analysis, the

normal vectors affect both the translational and

rotational stiffnesses, whereas the point locations

only affect the rotational stiffnesses. One implication

of normal-vector sensitivity is that the point-selection

algorithms are unreliable when the surface models

are noisy. A denoising algorithm [21] can effectively

compensate for small-scale noise, but we suspect

that the point-selection algorithms will perform

poorly in high-noise conditions. This also suggests

that denoising algorithms that preferentially reduce

the local variability of surface normals would be

particularly useful.

Simon [20] needed to uniformly scale his models

so that he could compare the six eigenvalues of his

Figure 12. Results for Simulation set 4 using the proximal femur model with a version of Qseqmodified to pick the next point that contributes

the least to the worst-case stiffness component. From top to bottom are average TRE, standard deviation of TRE, and maximum TRE.

220 B. Ma & R. E. Ellis



scatter matrix. The approach we have presented

scales the eigenvalues instead of the model: the prin-

cipal rotational stiffnesses are scaled based on the

location of the target relative to the principal axes,

which eliminates the need to scale the model. A

minor advantage of Simon’s approach is that it does

not require a target location. However, the stiffness-

based approach produces a task-specific choice of

registration points based on a point target, which is

advantageous when a surgeon seeks to optimize the

registration around a particular anatomical site.

Qseq is based on the assumption that the TRE is

dominated by one poorly constrained stiffness com-

ponent. In theory, Qseq should be suboptimal in

terms of reducing the expected TRE, because the

maximum increase in worst-case translational/
rotational stiffness leads to a minimal increase in

the remaining four translational/rotational stiffness

components. Furthermore, the results of Simulation

set 6 suggest that Qseq is sensitive to the choice of

coordinate frame (although the spatial-stiffness

analysis is not); exactly what significance the choice

of coordinate frame has needs to be clarified. We

are investigating alternative point-selection algori-

thms that do not have these deficiencies.

An attractive feature of Qseq is that it selects the

next best registration point given the current set of

registration points. This feature would be especially

useful intraoperatively by providing the online capa-

bility of dynamically guiding the surgeon to good

registration points. Unfortunately, the stiffness

model requires that the model registration-point

locations and orientations be known. That is to say,

the registration needs to be known in order to estab-

lish a good estimate of the correspondence between

the digitized patient points and the model surface

Figure 13. Results for Simulation set 5 using the proximal femur model with Qseq and correspondence errors. From top to bottom are

average TRE, standard deviation of TRE, and maximum TRE.
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points. If the registration is known, there is no need to

acquire additional registration points, and if the

registration is unknown, the stiffness matrix cannot

be computed.Of course, an estimate of the registration

or the correspondences could be used, but this would

not account for the uncertainty in the estimate. We are

investigating the feasibility of combining Qseq with a

registration algorithm that generates estimates of the

registration uncertainty to provide online guidance of

registration-point selection.
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