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Abstract
Oblique-viewing endoscopes (oblique scopes) are widely used in computer assisted surgeries. The viewing direction of an
oblique scope can be changed by rotating the scope cylinder; this extends the field of view, but also makes the geometric
calibration process more difficult. Although few calibration methods have yet been developed, calibration is critical for the
application of augmented-reality technologies such as stereo vision to procedures involving oblique scopes. Moreover, to
our knowledge, no photometric calibration method has yet been introduced for endoscopes, even though such calibration is
important for illumination-based visualization techniques such as shape-from-shading. In this paper, we present a complete
calibration process for oblique-viewing endoscopes, estimating both geometric and photometric properties. Experimental
results demonstrate that our methods are practical and accurate.
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Introduction

One of the main goals of computer assisted

orthopedic surgery is to enable true minimally

invasive surgery (MIS). As a key MIS tool, the

endoscope is attracting increasing attention for its

potential role in computer assisted surgery, espe-

cially in conjunction with a surgical navigation

system. By tracking the endoscope in space using

a position localizer, its role can be significantly

augmented. For example, it can be used to create

MIS augmented-reality systems, to merge virtual

and real endoscopic images [1], to overlay real

endoscopic images with 3D surfaces derived from

CT images [2], or to recover the 3D shape from a

single endoscopic image [3, 4] or multiple

images [5–7].

Geometric calibration of the camera, an

important step in endoscope-related applications

and mostly based on Tsai’s model [8], has been

addressed in several publications [2, 9–11].

However, with the exception of that by Yamaguchi

et al. [11], most of these reports concern the forward-

viewing endoscope, in which the viewing direction

is aligned with the axis of the scope. The range of

movement of such a tool is constrained by the small

incision, so the field of view is very small. To provide

a sideways view, the oblique scope has been designed

with a tilted viewing direction, and a wider viewing

field can be obtained by rotating the scope cylinder.

Figure 1 illustrates an oblique-viewing endoscope.

Rotation occurs between the scope cylinder and the

camera head. Yamaguchi et al. first modeled and

calibrated the oblique scope [11, 12]. They formu-

lated the rotation parameter of the scope cylinder as

another external parameter in Tsai’s camera model,

and used two extra transformations to compensate

for the rotation � of the lens system and stillness of the

camera head. While their camera model successfully

compensates for the rotation effect, the method

requires five additional parameters and the model is

complicated. In this paper we propose an alternative

approach to simplify the calibration in which an
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optical marker is attached to the scope cylinder,

instead of to the camera head, with a newly designed

coupler (as shown in Figure 1b). As a result, our

camera model is simpler and we only need to

estimate one additional parameter.

Photometric calibration of the camera, another

important process in illumination-related applica-

tions, is performed to find the relationship between

the image irradiance and image intensity for the

camera. This relationship is called the camera

response function. Traditional photometric calibra-

tion recovers the camera response function by

changing the camera’s exposure time. Compared

with regular cameras, it is hard to control the

exposure time for an endoscope, and the light

spatial distribution can be anisotropic. We have

therefore developed a method to calibrate all of

these unknown parameters simultaneously.

Geometric calibration

The common orthopedic endoscope has a single

camera and one or more point light sources at the

tip of the scope. For this work, we used two oblique

endoscopes as examples (shown in Figures 1 and 6).

Model for oblique-viewing endoscope

The camera model of Yamaguchi et al. is based on

that of Tsai [8, 9]:

�pi ¼ A � cTmð�Þ �
mTw � Pw

cTmð�Þ ¼ TRð��; lhð�ÞÞTRð�; lsÞ
cTmð0Þ

ð1Þ

where Pw is a 3D point in the world coordinate

system, pi is the corresponding 2D image pixel, mTw

is a rigid transformation from the world coordinates

to the optical marker coordinates, and cTm(�) is a

rigid transformation from the marker (camera head)

to the camera coordinates. cTm(�) is dependent on

the rotation angle �. By considering the marker

coordinates (camera head) as a reference, only the

lens system rotates while the camera head, i.e.,

the image plane, remains fixed irrespective of the

rotation. Yamaguchi et al. [11, 12] describe such a

transformation due to the rotation by decomposing

the single physical rotation into two mathematical

rotations: TR(�; ls) is a rotation of both the scope

cylinder and the camera head (image plane) around

the axis of the cylinder ls; TR(��; lh(�)) is an inverse

rotation of the image plane around the z-axis of the

lens system lh. Both ls and lh have two unknown

parameters. Although this model works well, it is

very complicated.

Figure 2a shows the geometric model modified

from that of Yamaguchi et al. by attaching an optical

marker to the scope cylinder instead of to the

camera head.

�p0i ¼ A � cTm �
mTw � Pw

pi ¼ Rð�Þ � ð p0i � ccÞ þ cc
ð2Þ

where Pw is a 3D point in the world coordinates,

p0i is the corresponding 2D image pixel without

rotation, pi is the image pixel with rotation �, mTw is

a rigid transformation from the world coordinates to

the optical marker coordinates, cTm is a rigid

transformation from the marker (scope cylinder) to

Scope cylinder

Light sources

Camera lens

Marker mount

Scope cylinder

Coupler

Connect to light source device

Camera head

Connect to video system

Scope cylinder

Connect to light source device

Connect to coupler

(a)

(b)

(c)

Figure 1. Stryker 344-71 arthroscope Vista (70 degree, 4 mm). An oblique endoscope consists of a scope cylinder with a
lens and point light sources at the tip (which is tilted at an angle from the scope cylinder axis), a camera head that captures
video images, and a light source device that supports the illumination. The scope cylinder is connected to the camera
head via a coupler. This connection is flexible to enable rotation of the scope cylinder and camera head separately or
together.

20 C. Wu et al.



the camera coordinates and independent of �, cc is

the principal point which is an intrinsic parameter,

and R(�) represents a rotation of the image plane

around cc by �. Thus, the camera intrinsic matrix A

and external matrix cTm can be calibrated by using

Zhang’s method [9] and mTw can be obtained

directly from the tracking system. In our model we

only need to estimate the rotation angle.

The rotation angle can be estimated by using a

rotary encoder, as done by Yamaguchi et al. [12].

When this is absent, the rotation angle can be

estimated by using two optical markers; one

attached to the scope cylinder and the other

mounted on the rod (the camera head).

A comparison between our model and that of

Yamaguchi et al. is presented in Figure 3.

Yamaguchi et al. used the camera head as a

reference coordinate in their hand-eye calibration

system. As surgeons rotate the scope cylinder with

respect to the camera head in order to obtain a

sideways view, it is natural to consider the camera

head as a reference. However, this makes the camera

model very complex. To approach this from the

opposite direction, no matter how the surgeons

rotate the scope cylinder, if the reference coordinate

is on the cylinder itself, the lens system is fixed with

respect to the cylinder but the camera head rotates

around �. Thus, the external parameters are no

longer affected by the rotation. Since the image

plane is in the camera head, the rotation only affects

the image plane. Our method is therefore developed

based on the above observations. The model of

Yamaguchi et al. requires five more parameters,

whereas we only need one. Likewise, their method

uses two optical markers and one rotary encoder,

whereas our method only requires two optical

markers.

Estimation of rotation angle using two optical markers

Let the marker attached to the scope cylinder be

Marker 1 and that attached to the rod (camera head)

be Marker 2 (Figure 2b). As shown in Figure 4,

when we rotate the camera head around the scope

cylinder by �, point Pr in Marker 2’s coordinates O2

will move along a circle with respect to a point O on

the axis of the scope cylinder, in Marker 1’s

coordinates O1. Thus, we can estimate the center

O of the circle first and compute � as

� ¼ arccos
k ~OPA

r k
2 þ k ~OPB

r k
2 � k ~PA

r PB
r k

2

2k ~OPA
r k � k

~OPB
r k

ð3Þ

y1
x1

z1

O1

Optical Tracker

World Coordinates

Scope cylinderCouplerCamera head

Optical maker

y2
x2

z2

O2Scope Coordinates

y3

x3

z3

O3

Camera Coordinates

q

T T

Coupler

Marker 1Marker 2

(a)

(b)

Figure 2. The geometric model of an endoscope based on a tracking system. A new coupler (see Figure 1b) has been
designed to enable mounting of an optical marker on the scope cylinder, ensuring that the transformation from the scope
(marker) coordinates O2 to the lens system (camera) coordinates O3 is fixed. The optical tracker defines the world
coordinates O1. Two optical markers are attached to the coupler and camera head separately to compute the rotation �
between them.
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where A is the position of O2 when �= 0 and B is the

position of O2 given a rotation �. The center of the

circle can be represented in terms of the transfor-

mation from the world coordinates Ow to Marker

1’s coordinates O1 and Marker 2’s coordinates O2,

and at least 3 different positions of Marker 2 (O2)

(with different values of �) are necessary.

Estimation of the center of circle in 3D

We rotate the camera head around the cylinder to

acquire 3 different positions of Marker 2. Let the

transformation matrix from the world coordinates

Ow to both Marker 1’s coordinates O1 and Marker

2’s coordinates O2 for position i be (o1Ti
ow

, o2T i
ow

)

(i = 1, 2, 3). Given any point ~Pr in O2, we first

compute the position ~Pi in O1 corresponding to

different rotations as follows:

~Pi ¼
o1Ti

ow
� ðo2T i

ow
Þ
T
� ~Pr , i ¼ 1, 2, 3: ð4Þ

Therefore, O is the center of the circumcircle of the

triangle ( ~P1, ~P2 and ~P3).

If ~R1 ¼ ~P1 � ~P3, ~R2 ¼ ~P2 � ~P3, the normal of the

triangle is ~n ¼ ~R1 � ~R2. The perpendicular bisector
~L1 of ~R1 and ~L2 of ~R2 can be computed as follows:

~L1 ¼ ~P3 þ ~R1=2þ �1 � ~n� ~R1

~L2 ¼ ~P3 þ ~R2=2þ �2 � ~n� ~R2

ð5Þ

where �1 and �2 are parameters of the line ~L1 and
~L2. The intersection of these two lines is the center

Yamaguchi et al.’s system Our system

Figure 3. A comparison between the system of Yamaguchi et al. and our own system. In the former, the camera head is
tracked such that the transformation from the marker to the lens system is not fixed but depends on the rotation angle �.
Using the marker coordinates as a reference, the lens system is rotated around the scope cylinder through �, but the image
plane (that is in the camera head) remains the same. Yamaguchi et al. use two additional transformations to describe the
effect of rotation, so their model becomes complicated. Moreover, they must calibrate the axis of both the scope cylinder
and the lens system by using another optical marker attached to the scope cylinder. Based on our observation, it is possible
to simplify the model if we fix the transformation between the marker and the lens system. We designed a coupler that
enables the optical marker to be mounted on the scope cylinder. We then set the marker coordinates as a reference; the lens
system remains fixed. The rotation only affects the image plane since the camera head is rotated around the cylinder
(reference), and the image plane only rotates around the principal point. Since the principal point is an intrinsic parameter,
we need only estimate the rotation angle. As a result, we have a very simple model (see details in the text).
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of the circle. From Equation 5 we can derive the

center of the circle as follows:

~O ¼
ð ~R2 � ~R1Þ � ~R1=2

j ~R1 � ~R2j
2
� ð ~R1 � ~R2Þ � ~R2 þ ~R2=2þ ~P3

ð6Þ

It can easily be proven that O does not depend

on the selection of ~Pr . Since at least 3 different

positions are necessary, we rotate the camera head

around the scope cylinder by N different angles.

We then apply a RANSAC algorithm to estimate ~O

using random positions, and select the
~~O which

corresponds to the smallest variance as the center of

the circle. The pseudo code of RANSAC is listed in

Table I. It can be also proven that � does not depend

on the selection of Pr either. A similar RANSAC

algorithm as shown in Table II is then used to

compute �. Figure 5 shows the estimated rotation

angle using the RANSAC algorithm for two

different endoscopes. The red curves represent the

output angles from different RANSAC iterations,

and the black curve is the average angle. As can be

seen, the variance of the estimation is very small

(less than 0.2 degrees).

Experimental results

We tested our algorithm using two different

systems. The first test was conducted in our labo-

ratory, using a Stryker 344-71 arthroscope Vista

(70 degree, 4 mm) oblique-viewing endoscope,

Marker 1

y1

x1

z1

O1

Marker 2

Marker 1

q

y2

x2 z2

O2

A

B

Scope cylinder

Camera

head

Coupler

y2

x2

z2

O2

O

O
ptical T

racker

yw
xw

zw

Ow

Pr

P r

o1 T

o T (0)

o T (q)

Figure 4. Relationship between the rotation angle � and two marker coordinates. O1 is attached to the scope cylinder and
O2 is attached to the camera head. A indicates the position of O2 when �= 0 and B indicates the position of O2 given a
rotation �. Given any point Pr in O2, its trace following the rotation of the camera head is a circle in Marker 1’s coordinates
O1. It moves from position PA

i to PB
i in Marker 1’s coordinates O1. This circle is also on the plane perpendicular to the axis

of the scope cylinder. O is the center of the circle.

Table I. Pseudo code of RANSAC for estimating the
center of the circle

Loop k=1:K (K=2000)

Generate a random point Pr from 3D space

Generate random number x, y, z between [1, N]

Compute Px, Py, Pz using Eq. 4

Compute Ok using Eq. 6

Compute jOkPj j; j 2 ½1;N �; j 6¼ x; y; z

Compute vk

Save Ok, vk

End loop

Return Oq, q = argkmin(vk)

Table II. Pseudo code of RANSAC for estimating the
rotation angle

Loop k=1:K (K=1000)

Generate a random point Pr from 3D space

Compute PA and PB using Eq. 4

Compute �k using Eq. 3

End loop

Return � ¼ 1
K

P
k �k
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a DYONICS DyoCamTM 750 video camera, a

DYONICS DyoBrite 3000 light source, and a

Polaris optical tracker (Northern Digital Inc.,

Waterloo, Ontario, Canada). Next, we tested the

algorithm in conjunction with our standard operat-

ing room equipment: a Smith & Nephew SN-OH

272589 video arthroscope (autoclavable; 30 degree,

4 mm), a DYONICS video camera and light source,

and an OPTOTRAK optical tracker (Northern

Digital Inc.). Figure 6 shows the different endo-

scopes and optical trackers used.

The endoscope was first fixed in place and the

calibration pattern was rotated on the table to enable

the capture of images. A set of images were captured

without any rotation between the scope cylinder and

camera head. These were used to estimate both the

intrinsic matrix A (including focal length and radial

distortion coefficients) and the extrinsic matrix cTm

using Zhang’s method [9] (implemented using

OpenCV functions). Another set of images were

captured when there was rotation between the

camera head and the scope cylinder, and the

center of the circle could be computed using

Equation 6. Next, we fixed the calibration pattern,

with two optical markers attached to the scope

cylinder and the camera head, and captured a set of
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Figure 5. Estimated rotation angles for the two endoscopes. In each trial we rotated the camera head with respect to the
scope cylinder and captured an image. We captured a few images for the initial position, then acquired two images for each
rotation angle. The red curves are the estimated rotation angles from different RANSAC iterations; the black curve is the
average rotation angle.
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images by applying general motions of the endo-

scope (moving the whole scope body or rotating the

camera head with respect to the scope cylinder

[better described as rotating the scope cylinder with

respect to the camera head]). This set of images was

used to estimate the rotation angles. The initial

position of the camera head was considered as the

reference position A seen in Figure 4. Figure 7

illustrates the back projection of the 3D corners of

the calibration pattern with (blue) and without (red)

any rotation compensation. The green points are

the ground truth. For each rotation angle of the

endoscope, we computed the average back-projec-

tion error for this angle as follows:

�ð�Þ ¼
1

M

XM
i¼1

jpi � pðPi; �Þj ð7Þ

where Pi is a 3D point in the world coordinates, pi is

the corresponding 2D image pixel, p(Pi, �) is the

(a) (b)

Figure 7. (a) The back projection with and without rotation compensation. The green points are the ground truth – 2D
corner pixels on the image of the calibration pattern. The red points are the back projection of the 3D world positions of the
corners using the first equation of Equation 2, which has no rotation compensation. The blue points are the back projection
using both equations of Equation 2. Since the rotation is included in the camera model, the back-projected pixels are much
closer to the ground truth than the red points. (b) An image used in the paper by Yamaguchi et al. [11, 12]. This image has
higher resolution, better lighting and less distortion than our own.

Marker

CouplerEndoscope

(a)

Endoscope Coupler

Marker
(b)

Figure 6. The endoscopes used in the experiments. (a) Smith & Nephew video arthroscope – autoclavable SN-OH
272589 (30 degree, 4 mm). (b) Stryker 344-71 arthroscope Vista (70 degree, 4 mm).
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back-projected 2D image pixel of Pi, and M is the

number of corners on the calibration pattern. We

used different grid patterns (3� 4 as shown in

Figure 7, 4� 5 and 5� 6; the size of each check is

2 mm� 2 mm). In order to obtain enough light on

the grid pattern, the endoscope must be placed very

close to the target (usually at a distance of

5–15 mm). The smaller grid could not capture the

radial distortion, but the bigger grid exceeded the

field of view. The 5�6 grid gave the best results.

Finally, we conducted many trials by moving and

rotating the endoscope randomly and estimating �
simultaneously. The average back-projection error

with respect to the different rotation angles is shown

in Figure 8. Figure 8a is the result obtained using

the Stryker 344-71 arthroscope Vista (70 degree,

4 mm) and the Polaris optical tracker. Figure 8b is

the result obtained using the Smith & Nephew

SN-OH 272589 video arthroscope (30 degree,

4 mm) and OPTOTRAK optical tracker. The red

curve represents the back-projection error without

taking into account the rotation angle, and the blue

curve shows the error considering the rotation

angle. The results indicate that including the

rotation angle in the camera model significantly

improves the accuracy of the calibration.

Figure 8 shows that different endoscopes have

different accuracy. The reason for this is that

endoscopes have different magnifications and opti-

cal trackers have differing accuracies (according to

the manufacturer, the RMS error is 0.1 mm for

OPTOTRAK and 0.3 mm for Polaris). Yamaguchi

et al. [11, 12] used an OTV-S5C laparoscope

(Olympus Optical Co. Ltd., Tokyo, Japan) and

Polaris optical tracker. They achieved a high

accuracy of less than 5 mm back-projection error

when the rotation angle was within 140 degrees.

Our results show that we can achieve the same level

of accuracy when the rotation angle is within 75

degrees. Beyond this range, due to the greater

magnification, larger radial distortion and poorer

lighting (a comparison between images used in our

experiment and those of Yamaguchi et al. is shown

in Figure 7), the back-projection error is increased

to 13 mm when the rotation angle is 100 degrees.

Given endoscopes of the same quality, we should be

able to achieve the same level of accuracy.

Photometric calibration

To our knowledge, photometric calibration for the

endoscope has not been investigated in the litera-

ture. In this paper we propose a method for

computing the camera response function, light

source intensity and light spatial distribution

function simultaneously, inspired by the work of

Litvinov and Schechner [13].

Reflectance model under near-field lighting and

projective projection

Assuming the bone surface is Lambertian, the scene

radiance can be computed according to Lambertian

cosine law as follows:

Rðx; y; zÞ ¼ G0�
n � l1

r2
1

þ
n � l2

r2
2

� �
ð8Þ

where G0 is the intensity of two light sources s1 and

s2, � is the surface albedo, n is the surface normal, l1
and l2 are two light rays arriving at the surface, and

r1 and r2 are the distances from each light source to

the surface. (x, y, z) indicates the 3D location of the

scene point P (see Figure 9).

On the other hand, the image irradiance E can

be estimated from the image intensity v given the

camera response function H(�):

Eðx; yÞ ¼
H�1ðvðx; yÞÞ

Mðx; yÞ
ð9Þ

where M(x, y) is the spatial distribution of the source

intensity that is assumed to be equal for both light

sources. Assuming there is no loss of energy when

light rays propagate from the scene to the camera

lens, the radiance remains the same and thus R = E.

Combining Equations 8 and 9, we have

H�1½vðx; yÞ� ¼ � �G0 � ~Mðx; yÞ

~Mðx; yÞ ¼Mðx; yÞ �
n � l1

r2
1

þ
n � l2

r2
2

� �
ð10Þ

For calibration, we use a Macbeth color chart

with known albedo for each patch. We capture a set

of images by varying light-source intensity for each

patch. We apply log to both sides of Equation 10 to

obtain a linear system of equations:

h½v
j

i ðx; yÞ� ¼ pi þ gj þ ~mðx; yÞ ð11Þ

where i indicates the different albedos and j indexes

the light intensity. h½v
j

i ðx; yÞ� ¼ logfH�1½v
j

i ðx; yÞ�g,
pi = log(�i), gj = log(E0j

) and ~mðx; yÞ ¼ log½ ~Mðx; yÞ�.
The unknowns (h(�), gj, ~mðx; yÞ) can be obtained by

solving this linear system of equations. The term

M(x, y) is then estimated from ~Mðx; yÞ by measuring

the distance to the chart from the scope tip. An

image of a square patch with uniform albedo is

captured and distortion is then removed. We

measure the distance between the scope tip and

four corners, and then compute the term ðnÞ � l1
r2
1

þ
ðnÞ � l2

r2
2

for each image pixel. Finally, M(x, y) is estimated by

removing the above term from ~mðx; yÞ.
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Figure 8. Back-projection errors with respect to the rotation angles for the two systems. (a) Stryker 344-71 arthroscope
Vista and Polaris optical tracker in our laboratory. (b) Smith & Nephew video arthroscope and OPTOTRAK optical
tracker in the operating room. The three images above the graphs correspond to different rotation angles (specified above
each image). The red curves represent the errors without rotation compensation; the blue curves are errors with rotation
compensation.
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Solution to h(�)

Given the same light intensity gj and pixel value

v(x, y) but two different albedos �i1
and �i2

, we have

h½vj
i1
ðx; yÞ� � gj � ~mðx; yÞ � pi1 ¼ 0

h½vj
i2
ðx; yÞ� � gj � ~mðx; yÞ � pi2 ¼ 0:

(
ð12Þ

Subtracting the first line from the second line of

Equation 12, we obtain

h½v j
i2
ðx; yÞ� � h½v j

i1
ðx; yÞ� ¼ pi2 � pi1 ð13Þ

We can use different pixels in the same image

(albedo) or different images (albedos) to make as

many equations like Equation 13 as required, as

long as we fix the light intensity for each pair of

albedos. Since v
j

i1
ðx; yÞ changes from 0 to 255(image

intensity), we only need 256 such equations and

stack them as follows:

� � � 1� �1� ���

� � � �1# 1# � � �

� � � � � �

2
4

3
5 �

hð0Þ

hð1Þ

..

.

hð255Þ

2
6664

3
7775¼

pi2�pi1

pi4�pi3

..

.

2
64

3
75
ð14Þ

where 1� and �1� correspond to the columns

v
j

i2
ðx; yÞ þ 1 and v

j
i1
ðx; yÞ þ 1, respectively, and 1#

and �1# correspond to the columns v
j

i4
ðx; yÞ þ 1 and

v
j

i3
ðx; yÞ þ 1, respectively. Therefore h(v) is solved

from Equation 14 and H(v) = exp(h(v)).

Solution to gj

Given the same albedo pi and pixel value v(x, y) but

two different light intensities gj1
and gj2

, we have

h½vj1
i ðx; yÞ� � gj1 � ~mðx; yÞ � pi ¼ 0

h½vj2
i ðx; yÞ� � gj2 � ~mðx; yÞ � pi ¼ 0:

(
ð15Þ

We then subtract the first line from the second

line of Equation 15:

h½v
j2
i ðx; yÞ� � h½v

j1
i ðx; yÞ� ¼ gj2 � gj1 ð16Þ

We use the minimum light intensity g1 as a

reference; for other light intensities gj, j =

2, . . . , Nlight, we have

gj ¼ g1 þ h½v
j

i ðx; yÞ� � h½v1
i ðx; yÞ� ð17Þ

Given the estimated h(v(x, y) and by changing the

albedos and pixels, we compute the average value

for each gj as follows and �Gj ¼ expðg1Þ � expð �gjÞ.

�gj ¼ g1þ
1

Nalbedo

�
1

Npixels

X
i

X
x;y

fh½v
j
i ðx;yÞ��h½v1

i ðx;yÞ�g

ð18Þ

x

y

x

y

z

Image plane

O

F (Focal length)

z l2
n(Surface

Normal)

(Scene Point)

Optical axis

Lens & light

sources plane

l1

Figure 9. The perspective projection model for an endoscope imaging system with two near point light sources: O is the
camera projection center; s1 and s2 indicate two light sources. We assume the plane consisting of O, s1 and s2 is parallel to
the image plane. The coordinate system is centered at O and Z is parallel to the optical axis and pointing toward the image
plane. X and Y are parallel to the image plane, F is the focal length, and a and b are two parameters related to the position
of the light sources. Given a scene point P, the corresponding image pixel is p. Assuming a Lambertian surface, the surface
illumination thus depends on the surface albedo, light source intensity and fall-off, and the angle between the normal and
light rays.
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Solution to ~mðx; yÞ

Again, Given the same albedo pi and light intensity

gj but two different pixels, (xp, yp) and xq, yq, we have

h½v
j

i ðxp; ypÞ� � gj � ~mðxp; ypÞ � pi ¼ 0

h½v
j

i ðxq; yqÞ� � gj � ~mðxq; yqÞ � pi ¼ 0:

(
ð19Þ

We subtract the first line from the second line of

Equation 19:

h½v
j

i ðxp; ypÞ� � h½v
j

i ðxq; yqÞ� ¼ ~mðxp; ypÞ � ~mðxq; yqÞ

ð20Þ

For each gj and �i, instead of using C2
Npixels

different

pairs of pixels, we choose only Npixels = 720� 480
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Figure 10. Results of photometric calibration. (a) Camera response function in the red channel. The red dots represent
the data points and the magenta line represents the nonlinear fit. (b) Camera response function in the green channel.
The green dots represent the data points and the magenta line represents the nonlinear fit. (c) Camera response function in
the blue channel. The blue dots represent the data points and the magenta line represents the nonlinear fit. (d) Calibrated
light intensity at different levels (blue) and the ground truth (green). We use level 6 as a reference and plot levels 1-5 with a
small level corresponding to high light intensity. A bit variation in range for the high intensities may be caused by
saturation. (e) Original image on color chart. (f ) ~m. (g) The cosine term ðnÞ � l1

r2
1

þ
ðnÞ � l2

r2
2

. (h) The spatial distribution function
m(x, y).
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pairs and stack the equations thus:

1 �1

1 �1

�

�

�1 1

2
6666664

3
7777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

�

~mðx1; y1Þ

~mðx2; y2Þ

..

.

~mðxNpixels
; yNpixels

Þ

2
666664

3
777775

¼

h½v
j

i ðx1; y1Þ� � h½v
j

i ðx2; y2Þ�

h½v j
i ðx2; y2Þ� � h½v j

i ðx3; y3Þ�

..

.

h½v
j

i ðxNpixels
; yNpixels

Þ� � h½v
j

i ðx1; y1Þ�

2
666664

3
777775 ð21Þ

It is not practical to solve Equation 21 using

singular value decomposition (SVD) directly since

matrix A requires a huge memory. However, we

noticed that the matrix A in Equation 21 is a special

Npixels by Npixels matrix such that we could get the

inverse directly by using Gauss-Jordan Elimination:

A�1 ¼

0 0 �1

�1 0 0 �1

�1 �1 0 0 �1

..

. ..
. ..

.
� � � 0 �1

�1 �1 �1 � � � �1 �1

2
66664

3
77775 ð22Þ

Thus we successfully compute each element of

~mðx; yÞ independently and again, ~Mðx; yÞ ¼ expð ~mÞ.

Experimental results

A series of color chart images are used for

photometric calibration. We use 6 different levels

of image intensity. Figures 10a–c show the camera

response function with red/green/blue channels.

Figure 10d shows the recovered light intensity in

different levels and compared to the ground truth.

Smaller values on the x-axis correspond to higher

intensity. We see a bit variance when light intensity

is high that may be caused by the saturation.

Figure 10e shows the original image and 10f

shows ~m. Figure 10g shows the cosine term
ðnÞ � l1

r2
1

þ
ðnÞ � l2

r2
2

, and 10h shows the spatial distribution

function m(x, y).

Discussion and conclusions

In this paper we have described the development of

a full calibration process for both geometric and

photometric properties of endoscopes. Our geo-

metric calibration method simplifies previous work

by using a coupler attached to the scope cylinder.

It is easy to implement and practical to apply with

standard operating room equipment such as the

surgical navigation system. The only drawback of

this method is the necessity for two markers to be

visible to the optical trackers at all times.

To our knowledge, photometric calibration has

not yet been applied to endoscopes by other groups.

Most previous work in this field did not rely on the

physical model of the endoscope light sources, or

restricted the changing of light sources during the

operation. Recently, shape-from-shading has been

applied to endoscopic images based on a simplified

light-source model without calibrating the model

parameters. However, to reconstruct an accurate

shape from endoscopic images, knowledge of the

light sources is necessary and important.

Both geometrical and photometrical parameters

are very useful for 3D visualization and reconstruc-

tion of anatomical structures such as bones.

We have already applied the calibrated endoscopes

to artificial reconstruction of the spine from

individual endoscopic images based on a calibrated

photometric model [14]. With the calibrated geo-

metric parameters of the endoscope, we were able to

transfer all individual reconstructed shapes to the

world coordinates and thus find the global occlud-

ing boundaries, which helped to later re-grow the

shape-from-shading. The results demonstrate that

calibrated endoscopes can yield very good recon-

struction results, which is promising for real surgical

applications.
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