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ORIGINAL ARTICLE

Nephroprotective potential of Bacopa monniera on
hypercholesterolemia induced nephropathy via the NO signaling
pathway

Venkatakrishnan Kamesh and Thangarajan Sumathi

Department of Medical Biochemistry, Dr. A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus,

Chennai, Tamil Nadu, India

Abstract

Context: Bacopa monniera L. (Scrophulariaceae) is used as a traditional medicine in India for
various ailments such as epilepsy, mental disorders, and also as a cardio-tonic. However, its
nephroprotective role is still unknown.
Objective: The present study assesses the modulatory impact of the alcoholic (ethanol) extract
of Bacopa monniera (AEBM) on renal oxido-lipidemic stress in hypercholesterolemic rats.
Materials and methods: B. monniera (1 kg) was extracted with 90% ethanol, filtered, and dried
(52 g). Group-I rats as control, Group-II rats fed with a hypercholesterolemic diet (HCD) for 45 d
[4% cholesterol and 1% cholic acid], Group-III rats fed with HCD for 45 d + AEBM (40 mg/kg,
body weight) for last 30 d, and Group-IV AEBM alone rats. Blood and kidney were removed to
analyze lipid, antioxidant status, and histological analysis.
Result: The levels of total cholesterol (TC), triacylglycerol (TG), phospholipids (PLs), renal
functional parameters (urea, creatinine, and uric acid), and lipid peroxidation (LPO) products
were significantly attenuated (p50.01) in AEBM-treated hypercholesterolemic rats. Activities of
both enzymic (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx),
glutathione-S-transferase (GST), and glutathione reductase (GR)) and non-enzymic antioxidant
(GSH, Vit-C, and Vit-E) were significantly increased (p50.01), on supplementation with AEBM.
Administration with AEBM the mRNA levels of eNOS and iNOS genes was significantly
up-regulated and down-regulated (p50.01). Histomorphological observations also evidenced
that AEBM effectively protects the kidney from hypercholesterolemia-mediated oxido-lipidemic
damage.
Discussion and conclusion: From this study, we hypothesized that AEBM can act as
renoprotective agent by attenuating the renal oxido-lipidemic stress via regulating NOS level
and thereby protects the nephron in hypercholesterolemic rats.
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Introduction

Hypercholesterolemia and hyperlipidemia have been demon-

strated to be the major risk factors for the progression of

various renal diseases (Arora et al., 2010). The relationship

between hypercholesterolemia and renal damage has been

well documented for the past few decades (Chade et al., 2007;

Montilla et al., 2006). Several studies have shown that the

abnormal lipid metabolism (elevated lipid level) acts as an

integral factor rather than primary initiator in modulating

progressive renal damage (Deji et al., 2009; Feldstein et al.,

1999). It is increasingly recognized that reactive oxygen

species (ROS) and proinflammatory cytokines are involved

in the development of renal damage induced by

hypercholesterolemia (Ying et al., 2005). ROS produce

tissue injury by initiating lipid, protein, and DNA oxidative

modifications, owing to elevated oxidative stress (imbalance

between oxidant and antioxidant) which could be involved in

hypercholesterolemia-induced renal vasculopathies

(Parthasarathy et al., 2000).

Several studies have shown that hypercholesterolemia

usually results in oxidative stress and since Bacopa monniera

L. (Scrophulariaceae) saponins, flavonoids, alkaloids, and

phytosterol are potent antioxidants, they could be explored as

possible supplements for treating hypercholesterolemia-

induced oxidative stress in renal tissue, hence B. monniera

was chosen for the present study. B. monniera (locally called

Brahmi) has been used in Ayurvedic medicine to treat asthma,

hoarseness, mental disorders, improve mental performance,

nervine tonic, cardiotonic, and diuretic (Chopra et al., 1956).

It also used for inflammation, pain, pyrexia, epilepsy, and as a

sedative (Russo & Borrelli, 2005). The plant has been shown

to possess a potent free radical scavenging and antioxidant

properties (Tripathi et al., 1996). Besides, it also exhibits
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cardio-protective (Mohanty et al., 2010), vasodilatory

(Channa et al., 2003), anti-inflammatory (Channa et al.,

2006), hepatoprotective (Sumathi & Nongbri, 2008), antiulcer

(Sairam et al., 2001), and anti-addictive (Sumathi & Niranjali

Devaraj, 2009) properties.

The novelty of the present study is to explore the

renoprotective potential of alcoholic extract of B. monniera

(AEBM) by analyzing renal lipid status [TC, triacylglycerol

(TG), and PLs], antioxidant profile (both enzymic and non-

enzymic antioxidants), oxidative marker-lipid peroxidation

(LPO), renal markers (urea, creatinine, and uric acid), nitric

oxide synthase levels as well as histomorphology on oxido-

lipidemic-induced hypercholesterolemic rats.

Materials and methods

Collection of plant material and extraction procedure

Bacopa monniera was collected from Chennai, India, on

30 March 2010. The plant was authenticated by

Dr. A. Sasikala, Botanist, Captain Srinivasa Murthi Drug

Research Institute for Ayurveda, Arumbakkam, Chennai,

India. A voucher specimen (BOTM-7) was deposited in the

herbarium of the same research Institute. The shade-dried and

coarsely powdered whole plant material (1 kg) was extracted

with 90% ethanol in the cold (48 h). The extract was filtered

and distilled on a water bath to get a dark green syrupy mass.

It was finally dried in vacuo (52 g). The alcoholic extract of

B. monniera (AEBM) was given orally as a suspension based

on appropriate concentration in experimental design.

Experimental animals

Twenty-four male albino rats of the Wistar strain weighing

200 ± 10 g were used for the current study. The animals were

procured from the Central Animal House Block, Dr. ALM PG

IBMS, University of Madras, Taramani Campus, Chennai.

The animals were housed in large spacious cages. Food and

water were given ad libitum. Rats were allowed to adapt to

their environment condition for at least 10 d before the

initiation of experiment. Animal experiments were conducted

according to the guidelines of the Institutional Animal Ethics

Committee (IAEC No: 01/09/12). Animals were randomly

divided into four groups of six rats each.

Group I served as control rats fed with normal diet, Group

II rats fed with hypercholesterolemic diet (HCD) for 45 d

[rat chow supplemented with 4% cholesterol (w/w) and 1%

cholic acid (w/w)], Group III rats fed with HCD for 45 d

(Sudhahar et al., 2008) in addition to receiving AEBM

(40 mg/kg, body weight/day orally) for the last 30 d, and

Group IV rats were fed with normal diet for 45 d along with

AEBM (40 mg/kg, body weight/day orally) (Kamesh &

Sumathi, 2012a) for last 30 d.

On the 46th day, all the animals were sacrificed by cervical

decapitation under sodium pentobarbitone (60 mg/kg) anes-

thesia. The renal tissue with renal artery were excised

immediately, washed with ice-cold saline and then dried

with filter paper. The slice of renal tissue was fixed with 10%

formalin and stained with hematoxylin and eosin stain for

histopathological studies. A 10% homogenate of renal tissue

and artery were prepared by using 0.1 M Tris HCl buffer pH

7.4. Blood was collected in a tube without anticoagulant for

the separation of serum. The above said samples were used for

biochemical analysis.

Biochemical analysis

Renal total lipids (TL) were extracted in chloroform:methanol

(2:1) ratio and purified by Folch’s wash procedure (Folch

et al., 1957) and aliquot were used for the estimation of renal

total cholesterol (TC) (Parekh & Jung, 1970), triglyceride

(Rice, 1970), and phospholipids (PLs) (Rouser et al., 1970

with slight modification) according to the above-mentioned

method. The renal antioxidant enzymes, namely, superoxide

dismutase (SOD) (Marklund & Marklund, 1974), catalase

(CAT) (Sinha et al., 1972), glutathione peroxidase (GPx)

(Rotruck et al., 1973), glutathione reductase (GR) (Stall et al.,

1969), glutathione-S-transferase (GST) (Habig et al., 1974),

glutathione content (Moron et al., 1979), vitamin C (Omaye

et al., 1979), and vitamin E (Baker & Frank, 1951) were

estimated according to the reported methods. The LPO in the

renal tissue was measured by method of Devasagayam and

Tarachand (1987). Serum creatinine, urea, and uric acid were

determined using commercial kits (Roche Diagnostics

Corporation, Basel, Switzerland) according to manufactures

instructions. Protein was estimated by the method of Lowry

et al. (1951) method.

Reverse transcriptase-polymerase chain reaction
(RT-PCR) analysis

Total RNA was isolated from the renal artery using Trizol

Reagent (Invitrogen, Carlsbad, CA) according to the manu-

facturer’s instructions. The quality and integrity of RNA were

confirmed by spectrophotometric analysis (OD260/280). RT-

PCR for endothelial NOS (eNOS) and inducible NOS (iNOS),

mRNA expression was done according to manufacturer’s

guidelines (Qiagen One Step RT-PCR mix). Briefly, the

reaction mixture contained 10 ml of 5� Qiagen one step RT-

PCR buffer containing final concentration of 2.5 mM MgCl2,

2 ml of dNTP mix, 5 ml of each sense and antisense primers of

eNOS and iNOS, 5ml of sense and antisense primers of

housekeeping b-actin (each of 0.6 mM final concentration),

1.0 mg of template RNA, 2 ml of Qiagen one step RT-PCR

enzyme mix and made up to 50 ml with RNase free water.

b-Actin was used as an internal control.

Primers were designed by primer3 software (Whitehead

Institute for Biomedical Research, Cambridge, MA) with

the following sequences: forward primer of eNOS was

50-CACACTGCTAGAGGTGCTGGA-30; the reverse primer

was 50-TGCTGAGCTGACAGAGTAGTA-30. The forward

primer of iNOS was 50-GCAGGTTGAGGATTACTTCTT

CCA-30; the reverse primer was 50-GCCCTTTTTTGCTCC

ATAGGAAA-30. The forward primer of b-actin was 50-AG

CCATGTACGTAGCCATCC-30; the reverse primer of b-actin

was 50-CTCTCAGCTGTGGTGGTGAA-30 (MWG Biotech,

Ebersberg, Germany). Amplification conditions were used in

this study consisted of an initial denaturation at 94 �C for

5 min followed by denaturation at 94 �C for 2 min. Annealing

at 58 �C 30 s and extension at 72 �C for 2 min for 30 cycles.

The cycles were followed incubation at 72 �C for 7 min. To

compare with the amount of steady state mRNA, 5 ml of each
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PCR product was resolved onto 2% agarose gel using TBE

buffer after electrophoresis, the gel were viewed under UV

light and digital images were captured on biorad gel

documentation system. The expression of each target gene

was standardized with internal control gene expression

(b-actin) and represented as a ratio.

Histopathological studies

A portion of renal tissue was quickly removed from experi-

mental rats and were fixed in 10% formalin, then dehydrated

in the descending grades of isopropanol and xylene. The renal

tissue was then embedded in molten paraffin wax and

sectioned at 5 mm thickness and was stained with hematoxylin

and eosin (H&E). The sections were then viewed under a light

microscope (Nikon microscope ECLIPSE E400, model 115,

Tokyo, Japan) for histopathological changes.

Statistical analysis

The values were expressed as mean ± SD (n¼ 6) for six

animals in each group. Differences between each group were

assessed by a one-way analysis of variance (ANOVA) using

SPSS 17 version (SPSS Inc., Chicago, IL) and least signifi-

cant difference (LSD) was determined using post hoc test at

the level of p50.05.

Results

Effect of AEBM on renal lipid status

The levels of renal lipid status, TC, triglyceride (TG), PLs are

shown in Figure 1. Significant elevation (p50.01) in the

levels of renal lipid profile such as TC, TG, and PLs in HCD

fed rats, as compared with control rats. Treatment with

AEBM substantially decreased (p50.01) the levels of renal

TC, TG, and PLs when equivalence to the HCD group.

Effect of AEBM on the activities of renal enzymic and
non-enzymic antioxidant

The activities of renal tissue antioxidant enzymes, namely,

SOD, CAT, GPx, GST, and GR enzymes, and non-enzymic

antioxidant, namely, glutathione contents (GSH), vitamin C,

and vitamin E were significantly reduced (p50.01) in

HCD-induced rats, when matched to normal rats (Tables 1

and 2). Oral administration with AEBM brought back the

activities of both enzymic and non-enzymic antioxidants to

near normal.

Effect of AEBM on the levels of renal LPO

The levels of renal LPO of HCD-induced control and

experimental rats are illustrated in Figure 2. A significant

increase (p50.01) in LPO levels of renal tissues were

observed in HCD fed groups as compared with the control

group. Treatment with AEBM caused a substantial decline

(p50.05) in the levels of LPO products, when compared with

untreated hypercholesterolemic rats.

Effect of AEBM on the levels of urea, creatinine, and
uric acid (renal functional markers) in serum

Table 3 summarizes the levels of renal markers in serum of

HCD-induced control and experimental rats. There was a

Table 1. Effect of AEBM on the activities of renal enzymic antioxidant of HCD-induced hypercholesterolemia in control and experimental rats.

Groups SOD CAT GPx GR GST

Control 3.11 ± 0.31 62.45 ± 6.77 14.34 ± 1.30 0.86 ± 0.07 0.56 ± 0.04
HCD 2.37 ± 0.28 a** 49.51 ± 5.14 a** 11.21 ± 1.10 a** 0.56 ± 0.06 a** 0.41 ± 0.02 a**
HCD + AEBM 2.90 ± 0.35 b** 56.78 ± 5.68 b** 13.14 ± 1.16 b** 0.72 ± 0.07 b** 0.49 ± 0.03 b**
AEBM 3.15 ± 0.30 61.56 ± 7.03 14.12 ± 1.34 0.83 ± 0.06 0.57 ± 0.07

Values were expressed as mean ± S.D. for six rats in each group. Statistical significance (p value): **p50.01, (a) compared with control group,
(b) compared with HCD group.

SOD, units/mg protein, one unit is equal to amount of enzyme that inhibits the auto-oxidation reaction by 50%; CAT, mmoles of H2O2 consumed/min/
mg protein; GPx, mg of GSH oxidized/min/mg protein; GR, mmol NADPH oxidized/min/mg protein; GST, nmol cDNB–GSH conjugate/min/mg
protein.

Figure 1. Effect of AEBM on renal lipid status of HCD-induced
hypercholesterolemia in control and experimental rats. Values were
expressed as mean ± S.D. for six rats in each group. Statistical
significance (p value): **p50.01, (a) compared with the control
group, (b) compared with the HCD group.

Table 2. Effect of AEBM on the activities of renal non-enzymic
antioxidant of HCD-induced hypercholesterolemia in control and
experimental rats.

Groups GSH Vit-C Vit-E

Control 8.34 ± 0.74 2.02 ± 0.19 1.62 ± 0.14
HCD 6.78 ± 0.59a** 1.44 ± 0.15a** 1.08 ± 0.12a**
HCD + AEBM 7.95 ± 0.64b** 1.81 ± 0.17b** 1.47 ± 0.15b**
AEBM 8.29 ± 0.86 2.10 ± 0.21 1.70 ± 0.17

Values were expressed as mean ± S.D. for six rats in each group.
Statistical significance (p value): **p50.01, (a) compared with control
group, (b) compared with HCD group. GSH, Vit C, Vit E: mg/mg
protein.
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concomitant elevation (p50.01) in the levels of renal markers

such as urea, creatinine, and uric acid were observed in

HCD-induced rats in comparison with control rats. AEBM

treatment significantly (p50.01) restored the activity of

urea, uric acid, and creatinine to near normal levels. AEBM

alone-treated group did not show any significant change in

renal lipid profile, antioxidant status, and renal functional

parameters as compared with normal rats.

Effect of AEBM on the mRNA expression of NOS in
renal artery

Figures 3 and 4 show the mRNA expression of eNOS and

iNOS in renal artery of HCD-induced control and experi-

mental rats. The mRNA expression levels of eNOS and iNOS

gene were significantly decreased (p50.05) and increased

(p50.01), respectively, in the renal artery of HCD-induced

rats (lane 3) as compared with normal rats (lane 2). Oral

treatment with AEBM substantially up-regulated and down-

regulated (p50.01) the mRNA expression levels of eNOS and

iNOS, respectively, in renal artery (lane 4) when compared

Figure 4. Effect of AEBM on mRNA expression levels of iNOS in
renal artery of control and experimental rats. Lane 1 represents the
DNA marker; lane 2 represents the control group; lane 3 represents
the HCD group; lane 4 represents the HCD + AEBM treatment group;
lane 5 represents the AEBM alone group. Densitometric analysis of
the bands is expressed as net intensity ratio corrected for the
corresponding b-actin contents. Values were expressed as mean ± S.D.
for six rats in each group. Statistical significance (p value): **p50.01,
(a) compared with the control group, (b) compared with the HCD group.

Figure 3. Effect of AEBM on mRNA expression levels of eNOS in renal
artery of control and experimental rats. Lane 1 represents the DNA
marker; lane 2 represents the control group; lane 3 represents the HCD
group; lane 4 represents the HCD + AEBM treatment group; lane
5 represents the AEBM alone group. Densitometric analysis of the
bands is expressed as net intensity ratio corrected for the corresponding
b-actin contents. Values were expressed as mean ± S.D. for six
rats in each group. Statistical significance (p value): *p50.05,
**p50.01, (a) compared with the control group, (b) compared with
the HCD group.

Figure 2. Effect of AEBM on the levels in renal LPO of HCD-induced
hypercholesterolemia in control and experimental rats. Values were
expressed as mean ± S.D. for six rats in each group. Statistical
significance (p value): *p50.05, **p50.01, (a) compared with the
control group, (b) compared with the HCD group.

Table 3. Effect of AEBM on the levels of urea, creatinine, and uric acid
(renal markers) in serum of HCD-induced hypercholesterolemia in
control and experimental rats.

Groups Urea (mg/dl) Creatinine (mg/dl) Uric acid (mg/dl)

Control 27.69 ± 2.47 1.08 ± 0.10 1.85 ± 0.19
HCD 40.34 ± 4.06a** 1.31 ± 0.15a** 2.95 ± 0.31a**
HCD + AEBM 32.04 ± 3.23b** 1.17 ± 0.13b** 2.15 ± 0.23b**
AEBM 28.15 ± 2.40 1.10 ± 0.11 1.94 ± 0.17

Values were expressed as mean ± S.D. for six rats in each group.
Statistical significance (p value): **p50.01, (a) compared with the
control group, (b) compared with the HCD group.
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with HCD rats (lane 3). AEBM alone-treated rats do not show

any changes in mRNA expression levels of eNOS and iNOS.

Effect of AEBM on histopathological changes in renal
tissue

Figure 5 portraits the histopathological changes in renal tissue

of HCD-induced control and experimental rats. Transection

of renal tissue (control) rendered normal architecture of

glomeruli and tubules of nephron (H&E, 100�) (Figure 5A).

Transection of HCD-induced rats depicts swelling of renal

tubules and tubular epithelial denudation with casts in the

widened lumens (glomerular hypertrophy) (Figure 5B).

Transection of AEBM + HCD rats portrait mild tubular

epithelial damage when compared with HCD rats

(Figure 5C), when compared with HCD rats. AEBM alone-

treated group (Figure 5D) showed no changes in the

morphology/structure of renal tissue (H&E, 100�).

AEBM alone (Group IV)-treated rats showed normal renal

architecture which is similar to that of control rats.

Discussion

The aim of the present study was to assess the modulatory

impact of alcoholic extract of B. monniera (AEBM) on renal

lipid levels, antioxidant profile, renal markers, mRNA

expression of NOS levels, and renal morphology in high-

cholesterol-induced rats. It has been convincingly demon-

strated that rats with chronic hyperlipidemia and hyperchol-

esterolemia develop glomerulosclerosis in kidneys without

immune complex disease (Grone et al., 1994; Saini et al.,

2004; Scheuer et al., 2000). In our present study, we found

that there was a significant elevation in the levels of renal

lipid profile such as TC, TG, and PLs in HCD fed rats, as

compared with normal rats owing to increased absorption of

lipids (plasma) which reflect in elevated renal lipid levels.

These results are well supported by many previous studies

(Al-Rejaie et al., 2012; Sudhahar et al., 2008). Oral admin-

istration of AEBM significantly decreases the levels of TC,

TG, and PLs when compared with HCD-induced rats which

may be due to hypocholesterolemic effect (Kamesh &

Sumathi, 2012b).

It was postulated that cholesterol/lipid-induced renal injury

might occur due to increased oxidative stress (imbalance

between oxidant and antioxidant enzyme activities) in renal

tissue (Salem & Salem, 2011). In the animal model, feeding

of high-cholesterol diet produces severe hypercholesterolemia

and glomerular lesion by increased oxidative stress in kidney

(Akpolat et al., 2011; Ishiyama et al., 1999). Several reports

have shown that hypercholesterolemia deteriorate the anti-

oxidant defense systems of various organs especially renal

tissue (Deepa & Varlakshmi, 2003; Green et al., 2012).

During HCD condition, the activities of renal antioxidant

enzymes, namely, SOD, CAT, GPx, GST, and GR enzymes

and non-enzymic antioxidant, namely, glutathione contents,

vitamin C, and vitamin E, were substantially suppressed.

These results were parallel to the previous report that during

HCD condition there is a concomitant increase in the levels of

free radicals (ROS) which leads to oxidative stress and finally

ends up in diminished activities of these antioxidant enzymes

(Salem & Salem, 2011; Sudhahar et al., 2008).

Figure 5. Effect of AEBM on histopathological changes in renal tissue of HCD-induced hypercholesterolemia in control and experimental rats.
Transection of renal tissue (control) showed normal architecture of glomeruli and tubules of nephron (H&E, 100�) (Figure 5A). Transection of
HCD-induced rats depict swelling of renal tubules and tubular epithelial denudation with casts in the widened lumens (glomerular hypertrophy) of renal
tissue (Figure 5B). Transection of AEBM + HCD rats showed mild tubular epithelial damage when compared with HCD rats (Figure 5C), when
compared with HCD rats. AEBM alone (Figure 5D)-treated rats showed normal renal architecture similar to that of control rats (H&E, 100�)
(scale bar: 50mm).
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On treatment with AEBM, the activities of these antioxi-

dant enzymes in renal tissue were reverted back to near

normal. Earlier it has been reported that AEBM has

antioxidant activity owing to the presence of its saponins,

flavonoids, and phytosterol (Tripathi et al., 1996) and hence

antioxidants attenuate the hypercholesterolemic-induced oxi-

dative stress in animal models, mainly due to their free radical

scavenging capabilities. Martinet and coworkers (2001) have

demonstrated that high-cholesterol diet (HCD) induces ROS

overproduction which could in turn initiate LPO. During the

HCD condition, there is a pronounced increase in ROS

generation which in turn converts the normal LDL to OxLDL

which is an important contributory factor for glomerulo-

sclerosis (Deepa & Varlakshmi, 2005). In our current study,

we found that a concomitant elevation in LPO levels was

observed in HCD-fed groups compared to the normal group,

because of increased ROS generation. These results are

compatible with several previous studies (Chenni et al., 2007;

Green et al., 2012). AEBM treatment restored the level of

LPO and equivalence to normal rats due to its antioxidant

capacity.

Numerous investigations have suggested the important role

of abnormal lipid metabolism (high-cholesterol level) as an

integral factor in progressive renal damage (Feldstein et al.,

1999; Ying et al., 2005). Scheuer and his colleague (2000)

reported that oxidative stress is a pathogenetic factor in lipid-

induced nephropathy. Nephrons are the basic unit of renal

tissue and used for filtering blood especially for excretion of

urea, uric acid, and creatinine (Yadav & Srivastava, 2013).

During the HCD condition a greater amount of ROS is

generated which in turn damage nephrons (depletion in

nephron count) which leads to a decreased filtration rate and

thereby increasing the levels of renal functional parameters

(markers) such as urea, uric acid, and creatinine in serum and

hence the level of marker enzymes was notably elevated in

HCD-fed rats. Similar observations were reported earlier in

hypercholesterolemic rats (Akpolat et al., 2011; Montilla

et al., 2006). Oral supplementation with AEBM significantly

reduced the levels of urea, uric acid, and creatinine because of

its antioxidant activity thus protecting nephron from ROS-

induced damage.

Hypercholesterolemia has been found to decrease nitric

oxide (NO) availability in the renal circulation and renal

artery (Stulak et al., 2001). NO is reported to play an

important role in the body and be involved in the control of

renal function (Plotnikov et al., 2009). Especially in health

status, endothelial NOS (eNOS) is a protective NO-generating

enzyme and contributes to the maintenance of the normal

renal structure (Sandovici et al., 2004). NO derived from

eNOS usually plays a protective effect. However, NO from

iNOS might be implicated in renal injury (Tain et al., 2008).

Over-expression of iNOS and excessive NO are proposed as

one of the causes of vascular dysfunction in kidney by

activating inflammatory cytokines (Bhatia et al., 2003). Renal

nitric oxide (NO) levels are significantly decreased and

peroxynitrite levels are significantly enhanced in cholesterol-

fed animal models (Amin et al., 2011; Feldstein et al., 1999).

In agreement with the above statement, we found marked

down-regulation and up-regulation of mRNA expression in

the levels of both eNOS and iNOS gene, respectively, in renal

artery of hypercholesterolemic-induced rats, it might be

because of enhanced production of superoxide (O2
�), which

then reacts with NO to form peroxynitrite (ONOO�) and

thereby decreases NO levels as well as increases oxidation of

LDL (oxLDL). oxLDL is suggested to be a potential regulator

of NO generation. It has the capacity of regulating eNOS and

iNOS activities via inhibiting Akt-mediated eNOS serine

1177 phosphorylation, preventing eNOS–Hsp90 interaction,

up-regulating caveolin (Cav-1) and activating endothelial

arginase II (Arg II) (Li & Forstermann, 2013). The over-

expression of iNOS may result in a reduced expression of

eNOS (Wessells et al., 2006). Consequently, the iNOS

up-regulation most likely contributes to eNOS reduction in

the present model as well (both are inversely proportional to

each other).

However, on treatment with AEBM, substantial up-

regulation and down-regulation in mRNA expression levels

of eNOS (maintain normal NO level) and iNOS (decrease

inflammatory cytokines level) were noted in renal artery

when compared with HCD-induced rats, owing to its

antioxidant property (SOD) and thereby suppression of the

production of superoxide (O2
�) radical as well as attenuating

the level of oxLDL production in the renal artery of AEBM-

treated hypercholesterolemia rats. Thus, the renal protective

effect of AEBM was associated with the activity of regulating

the NO signaling pathway due to its antioxidant capacity in

hypercholesterolemic rats.

Hypercholesterolemia and the resulting atherosclerosis

have been implicated in the pathophysiology of glomerulo-

sclerosis (Ishiyama et al., 1999; Ricardo et al., 1997).

Histological examination of the control renal tissue depicted

normal glomeruli and tubules of nephron (H&E, 100�)

(Figure 5A). In the case of HCD-induced rats, Figure 5(B)

portraits mild swelling of renal tubules and tubular epithelial

denudation with casts in the widened lumens (glomerular

hypertrophy). In the previous section, we also reported that

increase in renal markers was due to increased nephron

damage by free radical produced during HCD condition

which might be the reason for this significant morphological

alteration in renal tissue. Our results are well correlated

with previous studies (Ishiyama et al., 1999; Sudhahar et al.,

2008; Ying et al., 2005). On treatment with AEBM

(Figure 5C), renal tissue showed mild tubular epithelial

damage when compared with HCD rats due to its free radical

scavenging activity. AEBM alone-treated rats (Figure 5D)

showed normal renal architecture similar to that of

control rats.

Conclusion

From the above results, we conclude that consumption of

AEBM significantly regulates renal lipid levels, oxidative

stress, renal markers, mRNA expression of NOS, and

morphology of renal tissue mainly due to its hypocholester-

olemic and antioxidant properties and we hypothesized that

AEBM can effectively alleviate the renal oxido-lipidemic

injury associated with hypercholesterolemia. Further investi-

gations are recommended to ascertain the mode of mechanism

behind the renoprotective effect of B. monniera during the

hypercholesterolemic condition.
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