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REVIEW ARTICLE

Vitamin D in cancer chemoprevention
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Carla Flandina1, Francesca M. Tumminello1, and Gaetano Leto1

1Unit of Physiology and Pharmacology, DIGISPO and 2Department of Biological, Chemical and Pharmaceutical Sciences and Technologies,

University of Palermo, Palermo, Italy

Abstract

Context: There is increasing evidence that Vitamin D (Vit D) and its metabolites, besides their
well-known calcium-related functions, may also exert antiproliferative, pro-differentiating, and
immune modulatory effects on tumor cells in vitro and may also delay tumor growth in vivo.
Objective: The aim of this review is to provide fresh insight into the most recent advances on the
role of Vit D and its analogues as chemopreventive drugs in cancer therapy.
Methods: A systematic review of experimental and clinical studies on Vit D and cancer was
undertaken by using the major electronic health database including ISI Web of Science,
Medline, PubMed, Scopus and Google Scholar.
Results and conclusion: Experimental and clinical observations suggest that Vit D and its
analogues may be effective in preventing the malignant transformation and/or the progression
of various types of human tumors including breast cancer, prostate cancer, colorectal cancer,
and some hematological malignances. These findings suggest the possibility of the clinical use
of these molecules as novel potential chemopreventive and anticancer agents.

Keywords

Calcitriol, cancer prevention, Vitamin D
analogues

History

Received 21 August 2014
Revised 6 November 2014
Accepted 12 November 2014
Published online 9 April 2015

Introduction

The clinical use of cytotoxic drugs has had a significant

impact on neoplastic diseases. However, their therapeutic

effectiveness is limited due to their narrow therapeutic index

and the onset of chemoresistance. Therefore, many efforts are

currently being directed to finding new therapeutic options

that may overcome these problems. In this scenario,

chemoprevention, i.e., the use of natural, synthetic, or

biological substances to reverse, suppress, or prevent the

development and progression of malignant diseases, holds

great promise (Davis & Wu, 2012). In this context, a

consistent body of investigation provides evidence that

Vitamin D (Vit D) and its metabolites, in addition to its

well-known involvement in calcium homeostasis, also appears

to be effective in preventing the malignant transformation and

the progression of various types of human tumors (Krishnan

& Feldman, 2010; Nagpal et al., 2005; Vuolo et al., 2012). On

one hand, experimental evidence indicates that these effects

appear to be likely due to the antiproliferative, proapoptotic,

and immunomodulatory activities with which these molecules

are endowed (Krishnan & Feldman, 2010; Vanoirbeek et al.,

2011). On the other hand, numerous epidemiological obser-

vations based on geographic variation in the incidence of

cancer and\or mortality in relation to 18 different types of

human cancer clearly demonstrate that Vit D exerts

chemopreventive effects on at least three types of solid

tumors at high risk of mortality, namely breast cancer

(Khan et al., 2010), prostate cancer (Swami et al., 2011),

and colorectal cancer (Pereira et al., 2012) and on squamous

cell carcinoma (SCC) and some hematological malignances

(Kim et al., 2012; Reddy, 2013). The aim of this paper is to

provide insight into the most recent advances on the role of

Vit D as chemopreventive drug in cancer therapy.

Vit D chemical structure, biological functions, and
metabolism

The Vit D complex includes a group of fat-soluble pro-

hormones that contribute to maintaining calcium and phos-

phate homeostasis and bone and muscle integrity (Bouillon

et al., 2008). On one hand, Vit D is known to be essential for

the absorption of calcium and phosphate ions in the small

intestine, their mobilization from the bone tissue, and their

resorption in the kidney (Bouillon et al., 2008). These effects

suggest an indirect involvement of this molecule in the

regulation of the normal function of different tissues such as

muscle contraction, nerve conduction, bone metabolism, and

blood clotting (Bouillon et al., 2008). Interestingly, emerging

evidence suggests that Vit D also appears to be implicated in

the regulation of other important biological processes such as

cell proliferation and differentiation (Gocek & Studzinski,

2009), immune response (Hewison, 2011), and insulin

secretion (Teegarden & Donkin, 2009). Vit D is available in

two main distinct forms: i.e., Vitamin D2 (Vit D2)

Correspondence: Gaetano Leto, Unit of Physiology and Pharmacology,
University of Palermo, Via Augusto Elia 3, 90127 Palermo, Italy.
Tel: +39 091 6236 409. Fax: +39 091 6236 407. E-mail:
gaetano.leto@unipa.it



(ergocalciferol) and Vitamin D3 (Vit D3) (cholecalciferol)

(Figure 1). Vit D2 is synthesized in plants, yeasts, and fungi

whereas Vit D3 is of animal origin (Bouillon et al., 2008;

Jäpelt & Jakobsen, 2013) (Figure 1). Vit D2 is derived from

ergosterol, which is turned into viosterol by ultraviolet (UV)

light and then converted into ergocalciferol. In this form, Vit

D2 can be ingested from the diet and from supplements

(Figure 1). On the other hand, the exposure of skin to

ultraviolet B radiation (UVB; 290–320 nm) converts 7-

dehydrocholesterol (DHCR7) to pre-vitamin D3 (1,25-dihy-

droxycholecalciferol or calcitriol) which isomerizes to Vit D3

(Figure 1) (Bouillon et al., 2008; Jäpelt & Jakobsen, 2013). In

this form, Vit D3 binds to Vit D-binding protein (DBP) and is

then transported into the liver. Vit D complex molecules are

known as secosteroids, namely steroids in which one of the

rings of its cyclopentanoperhydrophenanthrene structure has a

broken carbon–carbon bond. Vit D2 and Vit D3 differ in their

side chains in that the side chain of the D2 form additionally

contains a double bond between carbons 22 and 23 and a

methyl group on carbon 24 (Figure 1). The biosynthetic

pathway of Vit D3 involves the hepatic hydroxylation of the

carbon atom in position 25 by four cytochrome P450

isoenzymes, i.e., CYP2R1, CYP2J2, and CYP3A4 isoforms

and the mitochondrial CYP27A1 isoform (Figure 1) (Jones

et al., 2014; Schuster, 2011). This first hydroxylation

generates the main circulating form of Vit D, namely 25-

hydroxyvitamin D3 [25(OH)D] or calcidiol (Figure 1).

Normal serum values of 25(OH)D are comprised between

25 and 130 nmol/L depending on the geographic location

(Ross et al., 2011). This form reflects dietary sources as well

as Vit D production by UV light on the skin (Ross et al.,

2011). A second hydroxylation in the 1-a position occurs in

the kidney, at the tubule proximale levels, where it leads to the

formation of 1a,25(OH)2D3 (calcitriol) which is the most

biologically active form of Vit D (Figure 1) (Jones et al.,

2014; Schuster, 2011). Once synthesized in the kidney, via

CYP27B1 (25-hydroxyvitamin D3 1-a-hydroxylase), this

active form enters the bloodstream and it is then transported,

by specific binding proteins (VDBP) to distant target tissues

(Bouillon et al., 2008) (Figure 1). Vit D activity is tightly

regulated by metabolic processes mediated by the CYP24A1

isoform (1,25-dihydroxyvitamin D3 24-hydroxylase) that

converts 1a,25(OH)2D3 into 1,24,25-trihydroxycholecalci-

ferol [1a,24,25(OH)3D3] which has a lower affinity for Vit

Figure 1. Synthesis and metabolism of secosteroids Vitamin D3 and Vitamin D2. In humans, cholecalciferol (Vitamin D3) is synthesized from 7-
dehydrocholesterol upon sunlight exposure. Vitamin D may also be obtained from dietary sources or supplements as ergocalciferol or Vitamin D2.
Vitamin D3 binds to Vitamin D-binding protein (DBP) in the bloodstream and then is transported to the liver where it is first converted by the enzyme
25-hydroxylase (CYP2R1) to 25-hydroxyvitamin D [25(OH)D]. This molecule is converted by the renal enzyme 1-a hydroxylase (CYP27B1) to 1,25
dihydroxycholecalciferol (calcitriol), which is the active form of Vitamin D. The rate limiting step in catabolism is the degradation of 25(OH)D3 and
1,25(OH)2D3 to 24,25(OH)D3 and 1,24,25(OH)2D3, respectively, which occurs through 24-hydroxylation by mitochondrial 1,25-dihydroxyvitamin D3

24-hydroxylase, (CYP24A1). 24,25(OH)D3 and 1,24,25(OH)2D3 are excreted in this form.

1400 M. Giammanco et al. Pharm Biol, 2015; 53(10): 1399–1434



D receptors (VDR) (Schuster, 2011). This molecule, then,

undergoes a further metabolization to generate calcitroic acid

which is excreted in this form (Figure 1). In contrast,

expression levels of renal 1-a hydroxylase (CYP27B1),

namely the enzyme which converts 1,25-hydroxycholecalci-

ferol into 1,25-dihydroxycholecalciferol, are positively regu-

lated by high calcium and phosphate levels parathyroid

hormone (PTH), calcitonin, growth hormone, and insulin-like

growth factor-I (IGF-I) (Henry, 2011). Conversely, low

calcium and phosphate levels, fibroblast growth factor 23

(FGF23), and 1,25(OH)2D3 itself function as negative regu-

lators of this enzyme (Fukumoto, 2014). However, PTH and

1a,25(OH)2D3 have no effect on the expression and/or

activity of extrarenal 1a-hydroxylase. Other rate-limiting

steps in Vit D metabolism involve the modulation of CYP2R1

(Vit D 25-hydroxylase) activity, which is induced by

decreased level of 25(OH)D and that of CYP24A1 which is

induced by 25(OH)D and 1,25(OH)2D3 (Bouillon et al., 2008;

Schuster, 2011).

Vit D receptor: structure and functions

The biological effects induced by the active form of Vit D and

its semisynthetic analogues are mediated by the vitamin D

receptor (VDR), also known as NR1I1 receptor (Wang et al.,

2012). This receptor belongs to the superfamily of the nuclear

receptor (NR) that includes receptors for steroid hormone,

retinoids, and thyroid hormones. VDR is located in the

nucleus of a variety of target cells including cells of the

immune system (Wang et al., 2012). Similar to other nuclear

receptors, VDR shows a domain structure which is homolo-

gous to that of these receptors (Bouillon et al., 2008; Haussler

et al., 2011). This domain can be functionally divided into

three regions with well-characterized functions, i.e., (a) an

aminoterminal region factor that binds a short N-terminal

activation-function 1 (AF-1) domain (A/B) and that plays an

important role in the VDR-mediated transactivation; (b) a

central region that contains a DNA-binding domain (DBD)

which interacts directly with the cellular DNA at the level of

Vit D-response elements (VDREs). This region contains two

Zn2+-finger (C) portions consisting of four cysteine residues

that coordinate a zinc atom; (c) a carboxy-terminal region that

encompasses a multifunctional domain named ligand-binding

domain (LBD), which may interact with different ligands such

as retinoid X receptor (RXR) and the transcriptional regula-

tory factor AF-2 (Bouillon et al., 2008).

Vit D and regulation of gene expression

The effects induced by Vit D may occur in three different

ways through the modulation of the expression of specific

genes responsive to Vit D (Haussler et al., 2011, 2013;

Kriebitzsch et al., 2009). In particular, the transcription of

genes that are involved in the regulation of bone-remodeling

processes, such as receptor activator of NF-kB ligand

(RANKL), carbonic anydrase II, osteocalcin, osteopontin,

or other genes, such as phospholipase C (PLP C),

24-hydroxylase or CYP3A4, b3 integrin, tumor suppressor

p21, insulin growth factor-binding protein-3 (IGFB-3), can be

positively regulated by a direct interaction with vitamin D

response elements (VDREs) present in their promoter regions

(Cao et al., 1993; Haussler et al., 2011, 2013). Conversely, Vit

D, through the interaction with negative VDREs, may

negatively regulate the expression of gene encoding for

several pro-inflammatory cytokines such as interleukin-2 (IL-

2) and interleukin-12 (IL-12), tumor necrosis factor a (TNF-

a), interferon g (IFN-g), and/or growth factors and receptors

such as epidermal growth factor receptor (EGFR), c-myc, and

hormones involved in calcium homeostasis including para-

thyroid hormone (PTH), parathyroid hormone-related peptide

(PTHrP), and rel-B (Haussler et al., 2011, 2013). Gene

transcription may also be inhibited by the expression of genes

that antagonize the effects of specific transcription factors,

such as (NF)-aT and NF-kB (Haussler et al., 2013).

Vit D signal transduction pathways

To date, two major signal transduction pathways activated by

Vit D in target cells have been identified, namely the so-called

‘‘genomic pathway,’’ where the Vit D nuclear receptor plays a

major role, and the ‘‘non-genomic signal transduction path-

way’’ (Haussler et al., 2011). This latter pathway triggers

those responses mediated by Vit D that are faster than those

induced following changes in gene expression. In this case,

Vit D is supposed to interact directly with a receptor present

in the plasma membrane (mVDR). This interaction induces

rapid changes in intracellular calcium concentrations, alter-

ations in membrane phospholipid metabolism, and activation

of several signaling transduction pathways (Haussler et al.,

2011). In order to ensure the full biological activity of

1,25(OH)2D3 both pathways needed to be activated.

Following the binding of 1,25(OH)2D3 to VDR, the receptor

is phosphorylated. In this form, VDR may promote the

recruitment of its preferred dimerization partner, namely the

nuclear receptor for 9-cis retinoic acid (RXR), thus forming a

heterodimer that, in turn, binds to VDR responsive elements

(VDREs) (Haussler et al., 2011). In the absence of its ligand,

most of the Vit D receptors are located in the cytoplasm.

However, upon interaction with 1,25(OH)2D3 and the subse-

quent heterodimerization the complex migrates from the

cytoplasm into the nucleus. The 1,25(OH)2D3-VDR–RXR

complex then interacts with DNA at VDREs level that is

located in the classic promoter regions of responsive genes,

near the transcription start site of the gene (Haussler et al.,

2011, 2013). Downstream targets of these genes are

implicated in mineral metabolism and in the regulation of

other metabolic pathways including those involved in the

immune response and cancer.

Effects of vitamin D on tumor progression

The prophylactic and therapeutic activities of Vit D toward

the most common types of cancer have been extensively

investigated either in vitro or in vivo (Khan et al., 2010;

Leyssens et al., 2013; Pereira et al., 2012; Swami et al., 2011).

The most striking results have been obtained following studies

on breast cancer, prostate cancer, and colorectal cancer

(Krishnan & Feldman, 2010; Leyssens et al., 2013;

McCulloug et al., 2009). Experimental observations suggest

that the chemopreventive effects of Vit D appear to be mainly

due to its modulating activity on important biological

functions such as cell proliferation, cell differentiation,

DOI: 10.3109/13880209.2014.988274 Vitamin D and cancer 1401



growth factors gene expression, signal transduction, and

apoptosis (Gocek & Studzinski, 2009; Haussler et al., 2013;

Samuel & Sitrin, 2008) (Table 1). The inhibiting effects of Vit

D on tumor cell growth were first described by Colston et al.

(1981) who showed for the first time a dose-dependent

decrease of cell proliferation in melanoma cells treated with

1,25(OH)2D3. The growth inhibiting activity of this molecule

was subsequently observed in other tumor cell lines including

breast, prostate, and colon cancer cells (Welsh, 2012). These

studies also highlighted the presence of specific receptors

with high affinity for 1,25(OH)2D3 that appeared to be

essential for the growth inhibitory activity exerted by Vit D

(Welsh, 2012). In line with these observations, other in vitro

studied reported that antisense oligonucleotides, which

decreased the intracellular levels of VDR, reduced the

sensitivity of tumor cells to the antiproliferative effects of

1,25(OH)2D3 (Hedlund et al., 1996; Welsh, 2012). On the

contrary, VDR overexpression resulted in a potentiation of

cell growth arrest (Hedlund et al., 1996; Welsh, 2012; Zhuang

et al., 1997). Interestingly, recent studies have shown that

1,25(OH)2D3 may also affect ovarian cancer cells prolifer-

ation by decreasing human telomerase reverse transcriptase

(hTERT) mRNA through a small non-coding RNA (Ikeda

et al., 2003; Kasiappan et al., 2012). Consistent with these

observations a recent experimental investigation has shown

that, in ovarian tumor and ovarian cancer cell lines,

microRNA-498 (miR-498) induced by 1,25OH2D3 decreased

hTERT mRNA expression, fostered cell death, and sup-

pressed tumor growth (Kasiappan et al., 2012). Conversely,

the ability of 1,25OH2D3 to decrease hTERT mRNA and to

suppress ovarian cancer growth was compromised in the

absence of miR-498, following its depletion in cell lines and

in tumor-bearing mice (Kasiappan et al., 2012). Finally, Vit D

has been reported to foster several types of malignant cells

to undergo differentiation toward more mature phenotypes

or to induce cell death by triggering apoptosis according to

the cell type (Gocek & Studzinski, 2009).

Effects of Vit D on cyclin/cycline-dependent kinase
system

Many investigations undertaken with the aim of assessing a

direct effect of 1,25OH2D3 on the expression levels of genes

encoding for intracellular inhibitors of the cell cycle demon-

strate that this molecule may increase the expression of

cyclin-dependent protein kinase (CDK) inhibitors p21 and

p27, while it decreases the expression of cycline regulatory

proteins such as cyclin-dependent kinase 2 (Cdk2) (Colston &

Hansen, 2002; Hager et al., 2001; Wang et al., 1996; Yang &

Burnstein, 2003). These phenomena ultimately lead to a

growth arrest of cells in the G0/G1 phase. In addition, Vit D

has been shown to inhibit human breast cancer and prostate

cancer cell-cycle progression by blocking cells in G1/S

transition (Istfan et al., 2007; Jensen et al., 2001). This effect

appears to be due to the conversion of the retinoblastoma gene

(Rb), which is a direct target of cyclin-CDK complexes, in its

active hypophosphorylated form (Jensen et al., 2001).

Furthermore, other in vitro studies on SCC cells show that a

30 h exposure of these cells to 1,25(OH)2D3 induces the

overexpression of p18 tumor suppressor gene but not that of

p27 or p19 gene, which regulates G1 progression, by forming

a stable complex with CDK4 or CDK6 and by preventing the

activation of CDK kinases (Gedlicka et al., 2006). However,

in LNCaP human prostate cancer cell line, 1,25(OH)2D3

induces a marked increase of p21 gene while, in RWPE-1

prostate epithelial cells, VDR may epigenetically regulate p21

gene expression by generating histone modifications in the

promoter (Flores et al., 2010). Moreover, 1,25(OH)2D3 may

also regulate p21 expression levels by modulating miR-106b

expression (Thorne et al., 2011). Conversely, in MCF-7

human breast cancer cells 1,25(OH)2D3 show minimal effects

on the expression levels of mRNA coding for p21 (Verlinden

et al., 1998). These findings suggest that, according to the cell

types, the growth inhibitory effect of 1,25(OH)2D3 does not

appear to be related to an activation of VDR- mediated p21

gene transcription. In contrast, Swami et al. (2003) high-

lighted the fact that, in MCF-7 MDA-MB-231 estrogen

receptor a positive [ERa(+)] and estrogen receptor a negative

[ER a(�)] human breast cancer cells, the treatment with

1,25(OH)2D3 induces different profiles of gene expression

with a few overlapping genes. These findings further support

the hypothesis that different cellular pathways regulated by

1,25(OH)2D3 may be involved in the growth inhibitory effects

in different tumor cells.

Vit D-mediated regulation of the forkhead box O
(FoxO) proteins

The forkhead box O (FoxO) proteins belong to a family of

transcription factors that plays an important role in tumor

suppression by upregulating target genes involved in cell-

cycle arrest and apoptosis (An et al., 2010). In particular,

FoxO1 (FKHR), FoxO3A (FKHRL1), FoxO4 (AFX), and

FoxO6 regulate cell proliferation and differentiation. They are

inhibited by phosphatidylinositol-3-kinase (PI3K), which

stimulates their Akt-dependent phosphorylation and nuclear

export. The biological functions of several members of the

FoxO family are inhibited by phosphorylation induced by

mitogen-activated protein kinases (MAPKs) such as ERK and

p38. Interestingly, recent findings show that the interaction

between 1,25(OH)2D3 and VDR induces post-translational

modifications and functional alterations of FoxO proteins (An

et al., 2010). In fact, in vitro studies report that the treatment

of human head and neck SCC (HNSCC) with 1,25(OH)2D3

potentiates the binding of FoxO3A and FoxO4 proteins to

FoxO promoter target genes and causes a block in the

mitogen-induced FoxO protein nuclear export (An et al.,

2010). Furthermore, in vitro investigations on human neuro-

blastoma cells show that a 4 h exposure of these cells to

1,25(OH)2D3 induces the deacetylation and the dephosphor-

ylation of FoxO. Consistent with these observations, the arrest

of cell-cycle progression induced by Vit D is not observed in

cells lacking FoxO3 and FoxO4 (An et al., 2010). These

findings further indicate that FoxO proteins appear to play a

key role as mediators of the anti-proliferative effects of Vit D

in some human tumors.

Insulin growth factor modulation by Vit D

Experimental evidence shows that Vit D may also negatively

affect cell proliferation by interfering with several growth
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factors. In particular, Vit D appears to be implicated in the

regulation of insulin growth factor (IGF) and in that of certain

IGF-binding proteins including the major binding protein

IGFBP-3 (Boyle et al., 2001; Matilainen et al., 2005; Peng

et al., 2004; Teegarden & Donkin, 2009). These observations

are in line with the results from in vitro studies on MCF-7 and

Hs578T human breast cancer cell lines showing that two

Vit D analogues EB1089 and CB1093 may inhibit the

stimulating effects of IGF-I on cell growth and may enhance

the production of IGFBP-3 which, in turn, regulates the

promoting activity of IGF-I and IGF-II on cell proliferation

(Colston et al., 1998). Similar effects were observed in

prostate cancer cells following their exposure to Vit D or its

analogues (Huynh et al., 1998; Sprenger et al., 2001). The

role of IGFBP-3 as a critical mediator of the antiproliferative

activity of Vit D has been further highlighted by other studies

which show that antisense oligonucleotides against IGFBP-3

antagonize the growth-inhibiting effects of Vit D in androgen-

responsive LNCaP human prostate cancer cells (Boyle et al.,

2001; Krishnan et al., 2004). On one hand, in agreement with

these data, Peng et al. (2008) have recently shown that, in the

LNCaP human prostate cancer cell line, high concentrations

of androgens exert growth inhibitory effects at least partially

through the IGFBP-3-p21/p27 pathway. On the other hand,

in vivo studies by Nickerson and Huynh (1999) show that the

administration of Vit D analog EB1089 to rats for 14 d

increases the expression of several isoforms of IGFBPs,

including IGFBP-3, in the prostatic tissue and that these

effects were associated with a reduction of prostate volume.

As IGFBP-3 has been shown to possess pro-apoptotic,

antimetastatic, and anti-angiogenic activities against prostate

cancer cells (Massoner et al., 2009), it is conceivable to

hypothesize that the modulation of IGFP-3 expression by Vit

D may be a possible effective therapeutic option in the

clinical treatment of prostate cancer.

Transforming growth factor-b modulation by Vit D

Transforming growth factor-b (TGF-b) is a member of growth

factor of the namesake superfamily of growth factors which is

implicated in the regulation of several important biological

processes such as cell proliferation, differentiation, motility,

adhesion, organization, and programmed cell death

(Massagué, 2008). TGF-b is known to inhibit the proliferation

of normal epithelial cells and the early steps of carcinogenesis

while it fosters the later steps of cancer progression, e.g., cell

motility, invasion, and metastasis (Massagué, 2008). Vit D

and TGF-b share similar effects on cell growth and differen-

tiation (Daniel et al., 2007; Wu et al., 1998). Experimental

studies stress that, according to the cell type, Vit D may

increase the expression levels of TGF-b and that of its

receptors (Chen et al., 2002; Daniel et al., 2007; Koli &

Keski-Oja, 1995; Tu et al., 2013; Wu et al., 1997a,b, 1998;

Yanagisawa al., 1999) or its secretion (Bizzarri et al., 2003;

Koli & Keski-Oja, 1995). These effects, which may in part,

account for the anti-proliferative effects of Vit D, were also

described as occurring in various breast cancer cell lines such

as MCF-7, MDA-MB-231, or MCF10CA (Lee et al., 2006;

Swami et al., 2003; Wu et al., 1998; Yang et al., 2001) and in

prostate cancer cells (Murthy & Weigel, 2004; Peehl et al.,

in
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2004). In particular, some of these studies show that short-

term exposure (512 h) to 1,25(OH)2D3 or to its analog

EB1089 results in an increased expression level of TGF-b
and/or TGF-b receptors in breast cancer cells (Yang et al.,

2001). In addition, other in vitro observations on LNCaP

prostate cancer cells show that the growth-inhibiting effects of

1,25(OH)2D3 on these tumor cells appear to be associated

with the increased expression and secretion of the growth

differentiation factor-15 (GDF-15), another member of the

TGF-b superfamily of growth factors (Lambert et al., 2006).

Interestingly, the effects of a long-term treatment with

1,25(OH)2D3 on the mRNA levels encoding different mem-

bers of the family TGF-b are also reported on other tumor cell

types such as colorectal cancer cells or squamous carcinoma

cells (Lin et al., 2002; Pálmer et al., 2003).

Vit D interaction with Wnt/b-catenin-signaling
pathways

Another possible mechanism by which Vit D may halt cell

proliferation involves the inhibition of some of the numerous

functions mediated by the Wnt/b-catenin-signaling pathway.

To this end, in vitro observations show that in colon cancer

cell lines 1,25(OH)2D3 can block the transcriptional regula-

tion mediated by b-catenin by decreasing the formation of the

transcriptional complex TCF4-b-catenin (Larriba et al.,

2013). Consistent with this hypothesis, Xu et al. (2010)

have demonstrated that administration of 1,25(OH)2D3 or that

of its analogues for 12 weeks reduces the number of polyps in

the colon mucosa and that, in the small intestine and in the

colon, this effect is associated with a reduced expression of

target genes for b-catenin. The effects mediated by Vit D may

also indirectly affect the function of b-catenin through an

increased production of E-cadherin, a membrane protein that

binds b-catenin, thus preventing its nuclear localization and

transactivation (Pálmer et al., 2001). However, there is

evidence that 1,25(OH)2D3 may also inhibit the growth of

many different cells without affecting cadherin expression.

These findings indicate that the up-regulation of E-cadherin is

just one of the mechanisms by which Vit D may negatively

affect the b-catenin signaling pathway (Shah et al., 2006).

These observations also indicate that the effects of

1,25(OH)2D3 on the growth and differentiation of many

different epithelial cancer cells may be, in part, explained by

its ability to differentially regulate the activity of VDR, E-

cadherin, and b-catenin/TCF pathways (Beildeck et al., 2009;

Shah et al., 2006). 1,25(OH)2D3 may also interact with the

Wnt/b-catenin-signaling pathway by affecting the expression

of Wnt regulators, for instance, by up-regulating the expres-

sion of the Wnt antagonist Dickkopf-1 (DKK-1) protein

(Pendás-Franco et al., 2008b). However, whether all the DNA

binding sites for b-catenin are equally inhibited by VDR and

whether the link of b-catenin in different sites is equally

influenced by 1,25(OH)2D3 and VDR remain still unraveled.

Further studies may better define these interactions.

Vit D and apoptosis

The induction of apoptosis is an additional, important mech-

anism by which Vit D appears to exert its chemopreventive

effects on cancer cell growth (Vanoirbeek et al., 2011).

Vit D has been shown to promote apoptosis in breast cancer,

prostate cancer, colon cancer, and SCC cells (Gocek &

Studzinski, 2009). However, this phenomenon is not univocal.

For instance, Zhang et al. (2005) have reported that, in

ovarian cancer cells, Vit D may inhibit apoptosis. These

findings are in agreement with the results of several studies

showing that Vit D may positively or negatively modulate the

expression of anti-apoptotic or pro-apoptotic factors accord-

ing to the cell type (Dı́az et al., 2000; Pereira et al., 2012).

Although the mechanisms by which Vit D may promote

apoptosis remain to be fully clarified, experimental evidence

highlights the fact that 1,25(OH)2D3 can trigger the intrinsic

pathway of programmed cell death 1,25(OH)2D3 (Guzey

et al., 2002). In this context, in vitro studies on colorectal

cancer cells show that 1,25(OH)2D3 and its analogue EB1089

may promote apoptosis by a p53-independent mechanism

(Dı́az et al., 2000). These investigations also show that these

molecules may inhibit apoptosis by down-regulating the

expression of anti-apoptotic and pro-survival proteins such as

Bcl-2, Bcl-XL, or by increasing the expression of pro-

apoptotic proteins such as Bax, Bak, and Bad (Dı́az et al.,

2000). Additionally, these studies also show that the increased

expression of Bak and the reduced expression of BCl-2 in

response to EB1089 were more marked compared with that

induced by 1,25(OH)2D3 (Dı́az et al., 2000). In line with these

findings, Blutt et al. (2000) demonstrate that continuous 6-d

exposure of LNCaP cells to 1,25(OH)2D3 induces apoptosis

and that this phenomenon was associated with the down-

regulation of anti-apoptotic proteins Bcl-2 and Bcl-XL and

with the up-regulation of pro-apoptotic protein Bax. More

recently, Pan et al. (2010) have shown that 1,25(OH)2D3 may

promote apoptosis also in the HCG-27 gastric cancer cell line.

This effect appears to be the result of the up-regulation of

PTEN, a tumor suppressor gene that negatively regulates the

anti-apoptotic activity of protein kinase B (Akt), mediated

by VDR. Furthermore, in the MCF-7 cell line, the treatment

with 1,25(OH)2D3 induced an increase in the level of the

pro-apoptotic Death Associated Protein-3 (DAP-3), Fas-

Associated Death Domain (FADD), and the caspases-3, -4,

-6, and -8 (Swami et al., 2003). Consistent with these

observations in vitro studies on squamous cell carcinoma

SCC25 cells and colon cancer SW480-ADH cells show that

Vit D may potentiate its pro-apoptotic effects by increasing

the gene expression of the pro-apoptotic protein G0–G1

switch 2 (G0S2) (Pálmer et al., 2003) or by activating caspase

effector molecules (Pálmer et al., 2001). Furthermore, more

recent in vitro studies from Sergeev (2012) suggest that, in

breast cancer cells, Vit D can act as an apoptotic initiator that

directly recruits Ca(2+)-dependent apoptotic effectors such as

Ca(2+)-dependent m-calpain and Ca(2+)/calpain-dependent

caspase-12 which are capable of executing apoptosis.

Finally, Kasiappan et al. (2012) have recently reported that,

in OVCAR3 ovarian cancer cells, 1,25(OH)2D3 destabilizes

telomerase reverse transcriptase (TERT) mRNA, inducing

apoptosis through telomere attrition and the down-regulation

of telomerase activity. The multiple mechanisms underlying

Vit D-mediated apoptosis observed in different tumor cell

lines may be, in part, explained by the need for tumor cells to

develop different mechanisms that may be useful for escaping

the pro-apoptotic effects induced by Vit D.
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Vit D and autophagy

Autophagy or autophagocytosis is a catabolic process by

which cells may degrade cytosolic macromolecules and

intracellular components through the lysosomal machinery

(Singletary & Milner, 2008). This process plays a key role in

the regulation of several important biological processes such

as cell growth, development, and homeostasis, by maintaining

a balance among the synthesis, degradation, and subsequent

recycling of cellular products. Although autophagy is gener-

ally regarded as a survival strategy or a mechanism that

protects cells from stressful situations such in the case of lack

of energy reserves or oxidative stress, it can also be modulated

to determine the death of cancerous cells (Singletary &

Milner, 2008). Therefore, unlike apoptosis, autophagy, in

response to stressful stimuli, can contribute either to cell

survival or to cell death (Morselli et al., 2009; Singletary &

Milner, 2008). Many food components such as selenium,

resveratrol, curcumin, and Vit D itself have been reported to

promote autophagy (Singletary & Milner, 2008; Wu & Sun,

2011). The first evidence regarding the permissive effect of

1,25(OH)2D3 on autophagy was reported by Mathiasen et al.

(1999). These authors showed that 1,25(OH)2D3 and two

analogues EB1089 and CB1093 induced growth arrest in

MCF-7 breast cancer cells expressing the tumor suppressor

gene p53 and in T47D breast cancer cell lines line lacking

p53. Surprisingly, the same studies also highlighted the fact

that the growth-inhibiting effects of Vit D and its analogues

were also caspase independent and that the overexpression of

the anti-apoptotic protein Bcl-2, completely protected tumor

cells from autophagy induced by these molecules (Mathiasen

et al., 1999). Consistent with these data, other in vitro studies

reported that Vit D analog EB1089 induced tumor cell death

by a mechanism not related to caspase activation and which

consisted in the induction of chromatin condensation and

DNA fragmentation (Høyer-Hansen et al., 2005). In particu-

lar, these investigations showed that, in MCF-7S1 tumor cells,

autophagic activity could be increased by protein Beclin-1,

also known as autophagy-related gene ATG6. Beclin-1 is a

Bcl-2-interacting protein that promotes, in association with its

binding partner class III phosphoinositide 3-kinase (PI3K),

autophagosome formation (Høyer-Hansen et al., 2010). It may

also function as a brake for autophagy and autophagic cell

death when associated with Bcl-2 (Høyer-Hansen et al.,

2010). Conversely, this phenomenon was inhibited by the

mammalian target of rapamycin protein (mTOR) (Høyer-

Hansen et al., 2007). These findings are consistent with those

of Wang et al. (2008) showing that, in HL-60 human myeloid

leukemia cells, Vit D triggered autophagy by up-regulating

Beclin-1 and by down-regulating mTOR levels. Furthermore,

additional evidence showed that Vit D-induced autophagy

may be mediated by CDK inhibitors. For instance, Tavera-

Mendoza et al. (2006) showed that 1,25(OH)2D3 contribute to

make SCC25 cells knocked down for p19(INK4D) gene

expression more susceptible to cell death by autophagy as this

gene protects cells from autophagy-induced death (Høyer-

Hansen et al., 2005). This effect was also noted in MCF-7

human breast cancer cells (Høyer-Hansen et al., 2005).

However, 1,25(OH)2D3 has been shown to decrease the

circulating levels of TNF-a, a phenomenon that may lead to a

decreased autophagic activity induced by this molecule

(Stubbs et al., 2010). In addition, Vit D may also inhibit the

release of IFN-g from macrophages and peripheral blood

mononuclear cells (Wu & Sun, 2011). This effect may result

in an inhibition of IFN-g induced activation and potentiation

of lysosomal activity of macrophages, recruitment of

autophagic proteins and, ultimately, may lead to a decrease

of autophagy (Wu & Sun, 2011). Another possible target for

the chemopreventive activity of Vit D on cancer progression

is the nuclear factor kappa B (NF-kB), a nuclear transcription

factor involved in the regulation of many genes implicated in

inflammation, growth regulation, apoptosis, autophagy, car-

cinogenesis, and malignant progression (Aggarwal, 2004;

Baldwin, 2012). In this context, Tse et al. (2010) reported that

Vit D3 inhibited NF-kB activity in human breast cancer cells.

Likewise, a similar effect was observed by other authors on

colorectal cancer cells (Schwab et al., 2007) and prostate

cancer cells (Krishnan & Feldman, 2010). Nevertheless, as

opposing results have been also reported on the effects of Vit

D on NF-kB expression levels (Bao et al., 2010; Janjetovic

et al., 2011; Krishnan et al., 2007) further studies may better

define the role of NF-kB in autophagy and, consequently, the

potential therapeutic impact of Vit D in modulating this

phenomenon in cancer cells.

Vit D and cell differentiation

Experimental studies show that Vit D may also induce

differentiation in normal and neoplastic cells which, in some

case, may be associated with a reduced proliferation rate

(Gocek & Studzinski, 2009). The differentiating activity of

Vit D is associated with the increased expression and/or

activation of several intracellular signaling pathways. This

may, in part explain, why the mechanisms underlying Vit D-

induced differentiation may somehow differ according to the

cell types (Gocek & Studzinski, 2009). For instance Geng

et al. (2011) showed that CYP27B1/1a-hydroxylase is

required for osteoblast differentiation of human marrow

stromal cells. Recent studies suggest that the anti-apoptotic

effects of 1,25(OH)2D3 on osteoblasts and osteocytes are

mediated by Src, PI3K, and JNK kinases (Gocek &

Studzinski, 2009). The association of VDR with other

proteins appears to be important in Vit D-induced osteoblast

differentiation (Gocek & Studzinski, 2009; van Driel et al.,

2006; Woeckel et al., 2013). 1,25(OH)2D3 may also regulate

keratinocytes differentiation by increasing intracellular cal-

cium levels through the induction of the expression of

calcium receptor (CaR) and phospholipase C (PLC) which are

critical for calcium to stimulate keratinocyte differentiation

(Bikle, 2012). Additionally, Vit D has been shown to increase,

via AP-1 activation, the expression of several genes involved

in the regulation of keratinocytes differentiation such as

involucrin, transglutaminase, loricrin, and filaggrin and that

of cornified envelope formation while inhibiting the prolif-

eration of keratinocytes (Bikle, 2012). Moreover, time-

dependent changes in the expression of VDR co-activators

were noted during cell differentiation. It has been hypothe-

sized that these changes may contribute to the temporal

sequence of Vit D-mediated gene expression during keratino-

cytes differentiation (Bikle, 2012). 1,25(OH)2D3 has also
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been shown to facilitate myogenic differentiation by increas-

ing the expression of IGF-II and Follistatin (Lee et al., 2010)

and by decreasing the expression of the insulin growth factor I

(IGF-I) and that of myostatin, a negative regulator of skeletal

muscle mass (Garcia et al., 2011; Lee et al., 2010). In

contrast, in human colon and breast cancer cells, Vit D

appears to foster tumor cell differentiation by increasing the

expression levels of proteins such as b-catenin and E-cadherin

(Lopes et al., 2012; Pendás-Franco et al., 2008a). In

particular, on one hand, the binding of b-catenin to VDR

may cause the loss of this molecule from the transcriptional

complex TCF-4-b-catenin in the nucleus. This phenomenon

ultimately results in a decreased cell proliferation (Larriba

et al., 2013). One of the proposed mechanisms that may

account for the reduced cell proliferation associated with cell

differentiation induced by Vit D may be related, as

emphasized in Caco-2 cells, to the marked inhibitory effects

of this molecule on the expression of EGFR at both mRNA

and protein levels (Gocek & Studzinski, 2009). On the other

hand, in vitro studies on MDA-MB-453 human breast cancer

cells have shown that their treatment with 1,25(OH)2D3

resulted in accumulation of integrins, paxillin, and focal

adhesion kinase and their phosphorylation (Pendás-Franco

et al., 2007). Conversely, the mesenchymal marker

N-cadherin and the myoepithelial marker P-cadherin resulted

down-regulated. These findings suggest that 1,25(OH)2D3

may revert the myoepithelial phenotype associated with

more aggressive forms of human breast cancer. However,

not all breast cancer cell lines show a similar response to

1,25(OH)2D3. The difference appears, in part, to be due to the

lack or decrease of VDR expression or function (Gocek &

Studzinski, 2009; Valrance et al., 2007). However, alterations

in 1,25(OH)2D3 metabolizing enzymes, which can decrease

Vit D levels below its effective concentration, cannot be ruled

out (Byrne & Welsh, 2007; Gocek & Studzinski, 2009). For

instance, in ER(+) breast cancer cell lines, 1,25(OH)2D3 may

facilitate cell differentiation by converging VDR and estrogen

receptor pathways to regulate BRCA-1, a tumor suppressor

gene that encodes a nuclear phosphoprotein that plays a role

in maintaining genomic stability (Campbell et al., 2000; Roy

et al., 2011). This effect contributes to regulating the balance

between differentiation and proliferation signaling (Campbell

et al., 2000; Gocek & Studzinski, 2009). Likewise breast

cancer, experimental observations provide evidence that

1,25(OH)2D3 may also induce differentiation in prostate

cancer cells (Gocek & Studzinski, 2009). To this end, in vitro

studies demonstrated that the treatment of LNCaP cells with

1,25(OH)2D3 up-regulates the expression of the androgen

receptor (AR) and increases the secretion of prostate-specific

antigen (PSA), a differentiation marker for epithelial prostate

cells (Gocek & Studzinski, 2009). The up-regulation of AR

may cause, in turn, an increase in the expression levels of

VDR which selectively enhances the AR-mediated androgenic

pro-differentiating effects but not the proliferation activity. In

contrast, microarray analysis by Krishnan et al. (2004)

demonstrates that in LNCAP tumor cells 1,25(OH)2D3

increases the expression of insulin-like growth factor-binding

protein-3 (IGFBP-3), which functions as an inhibitor of cell

proliferation, by up-regulating p21/Cip1 (Boyle et al., 2001).

In addition, Vit D treatment may also cause the up-regulation

of a ‘‘prostate differentiation factor,’’ a member of the bone

morphogenetic protein (BMP) family, which is generally

involved in growth and differentiation of embryonic and adult

tissues (Lambert et al., 2006). Interestingly, these studies

also revealed that 1,25(OH)2D3 regulates certain androgen-

responsive genes as well as genes that encode enzymes

involved in androgen catabolism. Prostate cancer cells are

also known to undergo ‘‘trans-differentiation’’ to a neuroen-

docrine phenotype which is an aggressive form of prostate

cancer. Recent evidence suggests a key role for NF-kB, as

well as IL-6, in this process (Mori et al., 2009). In this

context, Vit D up-regulates the expression of CCAAT/

enhancer-binding protein beta (C/EBP b), a transcriptional

activator that regulates genes involved in immune and

inflammatory responses, and which cooperates with NF-kB

in regulation of the secretion of IL-6 in neuroendocrine

human prostate cancer cells (Xiao et al., 2004). These data

suggest that 1,25(OH)2D3 may be promising as a potential

therapeutic agent in the treatment of this aggressive form of

prostate cancer. Experimental findings show that Vit D may

induce leukemic cells to differentiate. In particular, in vitro

studies show that the exposure of human myeloid leukemia

cells to physiological concentrations of 1,25(OH)2D3 for 36–

48 h induces their differentiation into functional monocytes

(Hughes et al., 2010). The differentiating activity of Vit D is

associated with the increased expression and/or activation of

different intracellular pathways such as protein kinase C

(PKC), PI3K/AKT pathway, p42 extracellular-regulated

kinase (p42-ERK), p38-ERK, and the c-Jun N-terminal

kinases (JNK) families of mitogen-activated protein kinases

(MAPKs) (Hughes et al., 2010). Pharmacological or genetic

blockade of these pathways may abrogate 1,25(OH)2D3-

driven monocytic differentiation.

Antioxidant defense and DNA

On one hand, free radicals, also known as reactive oxygen

species (ROS), in concert with reactive nitrogen species

(RNS) may play a dual role in cell homeostasis since they

may function as a second messenger in controlling cell

proliferation and differentiation. Furthermore, ROS may also

foster cellular senescence (Dröge, 2003) and apoptosis (Circu

& Aw, 2010). The cumulative production of ROS and RNS

in response to endogenous or exogenous insults, i.e., the

‘‘oxidative stress’’, is a typical phenomenon that can be

observed in many types of cancer cells (Valko et al., 2006). A

redox imbalance occurring within these cells may ultimately

facilitate oncogenic stimulation. On the other hand, the

induction of antioxidant defense mechanisms may reduce the

biological impact of ROS (Valko et al., 2006). In line with

these observations, several in vitro and in vivo studies

highlight the fact that 1,25(OH)2D3 exerts antioxidative

activities on colorectal cancer (Nair-Shalliker et al., 2012).

In particular, it has been shown that DNA damage induced by

oxidative stress, as measured by the amount of 8-hydroxy-20-
deoxyguanosine, is high in the epithelium of the distal colon

of VDR-knockout mice and it is reduced in the epithelium of

human colon after a daily supplement of 800 IU (international

units) of Vit D (1 IU is the biological equivalent of 0.025mg

cholecalciferol or ergocalciferol) (Fedirko et al., 2010).
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These findings further suggest that Vit D may protect against

oxidative stress-induced DNA damage in humans. In line with

this hypothesis, Banakar et al. (2004) report that the treatment

of rats with calcitriol increases the expression of VDR and

markedly reduces the levels of malondialdehyde. However, no

substantial evidence has been obtained so far regarding a

direct relationship between Vit D and prevention of DNA

damage at a population level. Nevertheless, the clinical and

epidemiological observations that suggest a correlation

between deficient levels of calcidiol and increased incidence

of diseases associated with increased levels of DNA damage

in humans warrant further extensive investigation.

Induction of antioxidant enzymes

1,25(OH)2D3 is known to increase the expression of numerous

enzymes of the antioxidant defense system in humans (Fleet

et al., 2012). For instance, in vitro studies show that the

exposure of prostate cancer cells and MCF-7 breast cancer

cells to 1,25(OH)2D3 or its analogues induce the expression of

thioredoxin reductase 1 (TXNRD1), an enzyme that converts

thioredoxin to its reduced form needed to perform its

antioxidant function (Kovalenko et al., 2010; Peehl et al.,

2004; Swami et al., 2003). In addition, 1,25(OH)2D3 has been

shown to increase the production of superoxide dismutase 1

(SOD1) and 2 (SOD2) in prostate epithelial cells (PECs) and

in androgen-sensitive prostate cancer cells (LNCaP), respect-

ively (Lambert et al., 2006; Peehl et al., 2004). Furthermore,

other in vitro observations show that the treatment of the

human prostate epithelial cell line RWPE-1, and that of BPH-1

benign prostatic hyperplasia (BPH) epithelial cell line or

OVCAR3 ovarian carcinoma cell line, with 1,25(OH)2D3,

increases the intracellular levels of glucose-6-phosphate

dehydrogenase (G6PDH), an enzyme which regulates the

intracellular levels glutathione (Bao et al., 2008; Kovalenko

et al., 2010; Zhang et al., 2005). This effect ultimately protects

cells from apoptosis induced by H2O2. These findings are in

line with experimental evidence showing that the expression

levels of G6PDH in prostatic epithelial cells are modulated by

1,25(OH)2D3 through VDRE located in the first intron of the

gene coding for G6PDH (Bao et al., 2008). However, this

phenomenon was not observed in DU145 and CWR22 prostate

cancer cells (Bao et al., 2008). The different responses of these

cell lines to 1,25(OH)2D3 treatment may be, in part explained,

with the loss of AR expression, which is a characteristic of

tumor cells less susceptible to Vit D treatment (Stewart &

Weigel, 2004; Ting et al., 2007a,b). Furthermore, the protec-

tion from oxidative stress mediated by Vit D, may also be

indirectly due to the induction of the nuclear factor erythroid-

derived 2-Like 2 (NFE2L2), a transcription factor that controls

the gene expression of several enzymes of the antioxidant

systems such as glutathione peroxidase 3 (GPX-3), heme

oxygenase 1 (HMOX-1), and aldo-keto reductase 1C2

(AKR1C2) (Kovalenko et al., 2010). The effects of Vit D on

the oxidative system further support the clinical benefit of this

molecule in cancer chemoprevention.

Regulation of proteins involved in DNA repair

Experimental in vivo observations show that VDR-deficient

mice are more susceptible to the development of skin tumors

either induced by chemical carcinogens such as 7,12-

dimethylbenzanthracene (DMBA) or by chronic UVR expos-

ure (Bikle, 2012). These studies suggest that 1,25(OH)2D3

may protect the skin from malignant transformation by

controlling keratinocyte proliferation and differentiation,

by facilitating DNA repair, and by suppressing the activation

of the hedgehog (Hh) pathway following UVB exposure

(Bikle, 2012). In particular, recent studies show that

1,25(OH)2D3 may protect DNA by regulating the expression

of genes coding for DNA repair enzymes (Krishnan et al.,

2004; Nair-Shalliker et al., 2012). In this context, Akhter et al.

(1997) have reported that in SCC cells, Vit D analog EB1089

induces the overexpression of the growth arrest and DNA-

damage-inducible a (GADD45a) gene, a p53 target gene

whose products are involved in DNA repair. It has also been

shown that the treatment of ovarian cancer cells with

1,25(OH)2D3, causes cell-cycle arrest at the G2/M transition

through p53-independent induction of GADD45� (Jiang et al.,

2003a,b). The role of GADD45� induction in eliciting the

chemopreventive effects of Vit D is supported by the findings

that cell-cycle arrest in G2 or in M induced by 1,25(OH)2D3

does not occur following GADD45� deletion (Akter et al.,

1997; Jiang et al., 2003a). Furthermore, microarray analyses

performed in MCF-7 breast cancer cells show that the

treatment of these cells with 1,25(OH)2D3 increases the

mRNA expression levels of other molecules involved in DNA

repair such as p53 and proliferating cell nuclear antigen

(PCNA) (Swami et al., 2003). Additionally, more recent

studies show that 1,25(OH)2D3 treatment can protect BPH-1

human prostate epithelial cells from carcinogen-induced

genotoxic stress via VDR-mediated transcriptional upregula-

tion of DNA repair genes, ATM and RAD50, thereby

facilitating DNA double-strand break repair (Ting et al.,

2012). Interestingly, on one hand, recent findings stress that in

BRCA1-deficient breast cancer cells, Vit D prevents the

degradation of the DNA repair protein 53BP1 mediated by

cysteine proteinases Cathepsin L (Gonzalo, 2014), a lyso-

somal endopeptidase which is involved in tumor cell prolif-

eration, invasion, and metastasis (Gonzalo, 2014; Lankelma

et al., 2010; Leto et al., 2010). On the other hand, recent

observations report that the gene encoding the BRCA1 protein

is a critical downstream target of Vit D. Consistent with these

data Campbell et al. (2000) show that treatment of MCF-7

cells with calcitriol results in a near 6-fold increase in BRCA1

protein and that VDR expression is directly correlated with

induction of BRCA1.

Effects of Vit D on the synthesis and metabolism of
prostaglandins

It is well established that prostaglandings (PGs) may promote

cancer cell proliferation and progression (Wang & Dubois,

2010). Since experimental findings demonstrate that

1,25(OH)2D3 may act as a negative modulator of the synthesis

and activity of prostaglandins (PGs) (Krishnan & Feldman,

2010; Moreno et al., 2006), these effects may also, in part,

account for the chemo-preventive activity of Vit D on tumor

progression. In support of this hypothesis, recent studies have

better defined the role of prostaglandin–endoperoxide syn-

thase, a key enzyme of prostaglandin synthesis and more
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widely known as cyclooxygenase (COX), on carcinogenesis

(Wang & Dubois, 2010). Increasing experimental and clinical

observations show that the inducible isoform of this enzyme,

namely COX-2, is overexpressed in many human tumors and in

cancer cell lines. Moreover, these findings also show positive

relationship between COX-2 overexpression and tumor pro-

gression (Cordes et al., 2012; Krishnan & Feldman, 2011; Thill

et al., 2012). Alterations in the expression of COX-2 and its

product, prostaglandin E2 (PGE2), have been observed in

breast cancer and colorectal cancer where these molecules

appear to be involved in several key steps of malignant

progression such as tumor initiation, tumor cell proliferation,

and metastasis formation (Thill et al., 2012; Wang & Dubois,

2010). Thus, COX-2 may be considered an appropriate target

for cancer chemoprevention and treatment. To this end, some

in vitro studies carried out on LNCaP and PC-3 prostate cancer

cells have shown that the treatment with 1,25(OH)2D3

decreases the expression levels of COX-2 and that of prosta-

glandin receptors EP2 and FP, whereas it increases the

expression of 15-hydroxyprostaglandin-D dehydrogenase (15-

PGDH) a NAD+-dependent enzyme involved in the degrad-

ation of PGE2 (Krishnan & Feldman, 2010; Moreno et al.,

2005). Interestingly, Thill et al. (2012) have recently reported

that VDR and COX-2 expressions are inversely correlated in

malignant breast cell lines. This phenomenon has also been

observed in ovarian cancer tissues (Cordes et al., 2012). These

findings support the hypothesis that 1,25(OH)2D3 may inhibit

tumor cell proliferation by reducing the intracellular levels of

biologically active prostaglandins. In line with these observa-

tions, more recent in vitro studies by Yuan et al. (2012) report

that a 72-h exposure of MCF-7 breast cancer cell to

1,25(OH)2D3 results in a significant decrease of COX-2

mRNA expression levels and in that of PGE2 in cell culture

supernatant. These data suggest a possible therapeutic effect-

iveness of the association calcitriol with non-steroidal anti-

inflammatory drugs (NSAIDs) in the prevention and treatment

of breast and prostate cancers (Krishnan & Feldman, 2010;

Moreno et al., 2005). This drug association may also have the

vantage of lowering the dose of NSAIDs thus reducing their

toxic effects (Moreno et al., 2005).

Target cells of Vit D

Effects of Vit D on cancer stem cells

Vit D is one of the molecules involved in the regulation of

stem cell homeostasis. 1,25(OH)2D3 exerts its important

biological effects on both adult stem cells (ASC) (Cianferotti

et al., 2007; Zhou et al., 2010) and cancer stem cells (CSCs)

(Feldman et al., 2014; Maund et al., 2011; So et al., 2011).

DNA repair and protection from oxidative damage are

processes that mainly affect ASCs, while cell-cycle arrest

and induction of apoptosis limit the expansion of the CSCs

population. Extensive research has recently been carried out

to evaluate the direct effects of 1,25(OH)2D3 on stem cells

(Fleet et al., 2012). Most of the experimental data regarding

the molecular mechanisms underlying the inhibiting effects of

1,25(OH)2D3 on CSC growth and differentiation have been

obtained following investigations carried out on primary

cancer cell cultures or on established cancer cell lines (Pervin

et al., 2013). These studies highlighted the fact that in mice

the proliferation of prostate stem cells was inhibited by

1,25(OH)2D3. Further experiments performed to better clarify

the possible mechanisms underlying this effect showed that

the interaction between Vit D and VDR stimulates the

production of interleukin-1a (IL-1a) (Maund et al., 2011).

This pro-inflammatory cytokine, in turn, mediated the anti-

proliferative effects of 1,25(OH)2D3 in adult prostate pro-

genitor/stem cells (PrP/SC) by promoting cell-cycle arrest and

senescence (Maund et al., 2011). Furthermore, Fedirko et al.

(2009) have recently shown that 1,25(OH)2D3 treatment and

calcium supplements decrease the expression of the human

telomerase reverse transcriptase (hTERT) in cells of the upper

portion of the colon. These observations indicate that Vit D

may indirectly inhibit the expansion of this cell population

and protect it from potential genetic mutations. In line with

these observation, Kasiappan et al. (2012) described how

1,25(OH)2D3 decreases the mRNA expression of hTERT by

inducing the expression of non-coding small RNA

microRNA-498 (miR-498) in ovarian tumor cells. These

effects ultimately result in the suppression of ovarian cancer

growth. Finally, 1,25(OH)2D3, and its analogues have been

reported to regulate the expression of CD44, a specific marker

of breast cancer stem cells, in human breast cancer cells

in vitro (Parvin et al., 2013; So et al., 2011). These studies

provide a basis for preclinical and clinical evaluations of Vit

D and its analogues for chemoprevention of cancer stem cells.

These observations warrant more extensive studies to assess

the impact of Vit D on cancer stem cells.

Effects of vitamin D on vascular cells and angiogenesis

Growing evidence indicates that Vit D may play an important

role in the inhibition of tumor angiogenesis (Vanoirbeek et al.,

2011; Xu et al., 2013). This peculiar function has been

defined with the term ‘‘angioprevention’’ (Tosetti et al.,

2002). On one hand, experimental studies suggest that the

preventive activity of 1,25(OH)2D3 on tumor angiogenesis

might be the consequence of the effects of this molecule on

vascular endothelial cells (EC) (Furigay & Swamy, 2004;

Mantell et al., 2000). On the other hand, in vitro observations

have highlighted the presence of VDR on cultured bovine

aortic endothelial cells, in human capillary and in venous

endothelial cells (Chung et al., 2006, 2009; Merke et al.,

1989). In addition, the expression of the enzyme 1a-

hydroxylase, a key enzyme involved in the biosynthesis of

1,25(OH)2D3, has also been reported in these cells (Chung

et al., 2009; Merke et al., 1989; Suzuki et al., 2009; Zehnder

et al., 2002). Early experimental investigations by Mantell

et al. (2000), aimed at evaluating the effect of Vit D on

angiogenesis, show that 1,25(OH)2D3 may inhibit the expres-

sion of the vascular endothelial growth factor (VEGF) and the

formation of new blood vessels in mice transplanted with

MCF7 human breast cancer, a tumor which expresses high

levels of VEGF. In prostate cancer, 1,25(OH)2D3 has been

reported to decrease the expression of VEGF through

transcriptional repression of the hypoxia-inducible factor

1(HIF-1) (Ben-Shoshan et al., 2007). Furthermore, in SCC

tumor cells, 1,25(OH)2D3 has been observed to suppress

the expression of the proangiogenic factor IL-8 via NF-

kB-dependent pathway thus leading to the inhibition of
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endothelial cell migration and tube formation (Bao et al.,

2006). The specific mechanisms underlying this phenomenon

consist in a reduced translocation of the p65 subunit of NF-kB

to the nucleus that results in a decreased transcription of IL-8

gene mediated by NF-kB. Furthermore, Chung et al. (2009)

have highlighted the fact that, in VDR wild-type (WT) or

VDR knockout mice inoculated with transgenic adenocarcin-

oma of the mouse prostate (TRAMP), the tumor vessels are

enlarged and their volume increased in KO mice thus

suggesting a negative regulation of VDR-Vit D on tumor

angiogenesis. These investigations additionally showed that

VDR knockout mice had increased expression levels of pro-

angiogenic factors such as HIF-1, VEGF, angiopoietin-1

(Ang-1), and platelet-derived growth factor (PDGF). Vit D

can increase VEGF mRNA levels in vascular smooth muscle

cells (Cardús et al., 2006) while in SW480-ADH human colon

tumor cells, this molecule has been shown to upregulate the

mRNA levels of thrombospondin-1 (THSD1), a potent anti-

angiogenic factor (Fernandez-Garcia et al., 2005). Other

studies aimed at investigating the effect of 1,25(OH)2D3 on

normal endothelial cells and tumor-derived endothelial cells

(TDECs) showed effects of 1,25(OH)2D3 greater than those

elicited in the normal aortic endothelial cells or yolk sac

endothelial cells (MYSECs) (Chung et al., 2009).

Furthermore, Vit D analogues, EB1089, Ro 25-6760, and

ILX23-7553, also showed a potent antiproliferative activity

against TDECs (Bernardi et al., 2002). It has been also

demonstrated that the Vit D-dexamethasone association was

more effective in inhibiting TDECs growth than each single

agent (Chung et al., 2009). Other in vitro observations

reported that, in TDECs, Vit D increased the intracellular

levels of VDR and that of the pro-apoptotic protein p27 which

reduces the concentration of signal molecules for angiogen-

esis, including angiopoietin-2 (Bernardi et al., 2002; Flynn

et al., 2006). Interestingly, on one hand, Chung et al. (2006)

compared the effects of calcitriol on SCC TDECs and

endothelial cells derived from matrigel (MDECs). These

authors pointed out that both these cell types expressed VDR

and the interaction with 1,25(OH)2D3 resulted in a 47%

growth inhibition of TDECs and in a 12.3% growth inhibition

of MDECs. Furthermore, in TDECs, Vit D caused cell-cycle

arrest in the G0/G1 phase and a decrease of the number of

cells in the S phase, due to the induction of p27 and the down-

regulation of p21. These data indicated that TDECs are more

susceptible than MDECs to the anti-proliferative effects of

1,25(OH)2D3. On the other hand, Flynn et al. (2006) showed

that 1,25(OH)2D3 regulated the expression of several proteins

involved in TDEC differentiation and apoptosis. These

authors reported that although VDR is present in TDECs

and MYSEC and Vit D upregulated VDR in these cells, a 48-

h exposure of the cells to dexamethasone further increased

VDR expression. Finally, no increase in the intracellular

levels of CYP24A4, the predominant enzyme involved in the

catabolic inactivation of 1,25(OH)2D3 in normal tissues, was

found in TDECs. Conversely this phenomenon occurred in

MYSECs (Flynn et al., 2006). In line with these findings,

Chung et al. (2006) have demonstrated that TDECs may be

more sensitive to calcitriol due to novel epigenetic silencing

of CYP24A1. Therefore, the direct effects of calcitriol on

endothelial cells may play a role in the calcitriol-mediated

antitumor activity observed in vivo in animal tumor models.

Furthermore, in vitro studies on RWPE1 prostatic epithelial

cells highlighted treatment with 1,25(OH)2D3 as causing

growth arrest (Kovalenko et al., 2010). The subsequent

genomic analysis revealed a decrease in the expression level

of genes coding for NF-kB and IGF-1. Additionally, the

inhibition of the transcription of pro-inflammatory cytokines,

including IL-1, IL-6, and IL-17, was noted as occuring after

about a 6-h exposure. The same studies also showed that

1,25(OH)2D3 caused a reduction of VEGF and VEGF

receptors mRNA levels, including the kinase insert domain

receptor (KDR) and neuropilin 1 (NRP1) and the induction of

anti-angiogenic factors and that of molecules involved in the

protection of cells from oxidative stress and in the homeo-

stasis of cellular redox (Kovalenko et al., 2010). Finally, it

was shown that, in RWPE1 cells, 1,25(OH)2D3 induced the

expression of numerous isoforms of semaphorins, including

SEMA 3B, 3F, and 6D (Kovalenko et al., 2010). As these

molecules may antagonize the proangiogenetic effects of

VEGF by a competitive binding to receptor NRP1, this may

also partly account for the growth-inhibiting effects of Vit D

on prostate cancer cells. An additional mechanism of the

preventive effects of Vit D on tumor angiogenesis involves its

ability to inhibit COX-2 expression levels (Aparna et al.,

2008). COX-2 has been shown to exert indirectly its

promoting effects on tumor angiogenesis by increasing the

synthesis of HIF-1a protein in cancer cells (Sahin et al.,

2009). Therefore, the inhibition of this enzyme may result in a

decreased growth activity of tumors. Moreover, 1,25(OH)2D3

strongly represses DICKKOPF-4 (DKK4), a weak WNT

antagonist that promotes invasion and angiogenesis in

cultured colorectal cancer (CRC) cells and that is up-

regulated in human colon tumors (Pendás-Franco et al.,

2008b). All these effects may also, in part, account for the

significant inhibition of metastasis observed in murine models

of prostate and lung cancer treated with Vit D.

Regulation of immune function by vitamin D

Vit D and the immune system

The role of Vit D, as an immunomodulator, was well

established nearly 30 years ago (Rook et al., 1986). The

effects of Vit D on immune system appear to be closely linked

to the chemopreventive effects on tumors (Fleet et al., 2012).

The possible role of Vit D in the regulation of immune

responses is strongly supported by the findings that almost all

immune cells, including T cells, B cells, monocytes, neutro-

phils, platelets, macrophages, and dendritic cells express Vit

D receptors and that Vit D appears to modulate the activity of

these cells (Hewison, 2011). The ligand for VDR also showed

a synergic activity with Vitamin A, Vitamin K2, and certain

chemotherapeutic agents (Funato et al., 2002; James et al.,

1999). Interestingly, only naive T cells display very low VDR

levels, while this receptor is abundantly present upon T cell

activation (Hewison, 2011). However, the differentiation of

monocyte into macrophages or dentritic cells (DCs) has been

shown to be associated with a decrease in VDR-expression,

making these cells less sensitive to 1,25(OH)2D3 (Hewison,

2011). In this context, 1,25(OH)2D3 has been recognized as an

important mediator of innate immune responses, enhancing
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the antimicrobial properties of immune cells such as mono-

cytes and macrophages (Hewison, 2011). There is evidence

that Vit D modulates the expression of many genes in cells of

the innate immune system which encode for proteins that are

crucial for autophagy and for the antimicrobial activity

(Hewison, 2011). In particular, one of these studies reported

that Vit D increased the expression levels of genes encoding

for the antimicrobial peptides human cathelicidin (CAMP)

and b defensin-1 (DEFB1) in isolated human keratinocytes,

monocytes, and neutrophils (Wang et al., 2004). These

molecules form the first line of host defence against microbial

pathogens. Another study showed that 1,25(OH)2D3 markedly

induced the expression of CAMP and, to a lessen extent, that

of defensin b2 (DEFB2/HBD2) in different cell types such as

colon cancer, acute myeloid leukemia, keratinocytes, human

bone marrow cells-derived macrophages, and bone marrow

cells (Gombart et al., 2005). These effects occurred following

the interaction of Vit D with a specific VDRE present in the

promoter region. In particular, in vitro studied showed that

1,25(OH)2D3 stimulates the expression of the pattern recog-

nition receptor NOD2/CARD15/IBD1 gene in primary human

monocytic and epithelial cells. As a consequence of the

NOD2 downstream signaling activation, a stimulation of NF-

kB transcription factor function occurs. This effect, in turn,

induces the expression of the gene-encoding antimicrobial

peptide defensin b2 (DEFB2/HBD2) (Wang et al., 2010a).

Furthermore, numerous cytokines can modulate the metabol-

ism of Vit D in macrophages, monocytes and dendritic cells

(Hewison, 2011). The pro-inflammatory cytokines such as

IFN-g and TNF-a stimulate the synthesis of 1,25(OH)2D3 by

increasing the expression of CYP27B1 in monocytes

(Zehnder et al., 2002). On the other hand, several inflamma-

tory cytokines and agonists of toll-like receptor (TLR), which

are transmembrane proteins involved in recognizing and

defending against invading pathogens, may increase the

expression of CYP27B1 and that of VDR in dendritic cells

(Széles et al., 2009). In contrast, IL-4 produced by type-2

T-helper lymphocytes potentiates CYP24 gene expression in

monocytes, leading to the formation of inactive metabolite

24,25-dihydroxyvitamin D3 (Edfeldt et al., 2010). These

effects may alter the intracellular levels Vit D metabolites

which, in turn, can modulate the function of other immune

cells in the microenvironment. Numerous studies have

demonstrated that 1,25(OH)2D3 is also involved in the

regulation of cell functions of the adaptive immune system

(Hewison, 2011). Consistent with these findings, Vit D

deficiency has been associated with the development of several

autoimmune diseases, including ulcerative colitis, Crohn’s

disease, and also infectious diseases (Cantorna, 2012; Meeker

et al., 2014). However, a very limited number of studies have

been performed to assess the role of the immune regulatory

function of Vit D in cancer. In this context, Krishnan et al.

(2007) reported that calcitriol exhibits anti-inflammatory

effects that may account for its inhibitory activity in prostate

cancer. More recently, Bessler and Djaldetti (2012) showed

that Vit D alters the relationship between immune and cancer

cells leading to a significant decrease in the pro-inflammatory

cytokines TNF-a and IL-6. On the basis of these results, these

authors hypothesized that the reduced production of pro-

inflammatory cytokines induced by Vit D may lead to a

suppression of tumor development. Furthermore, recent

studies by Young and Day (2013) showed that the time

elapsing before cancer recurrence following surgical treatment

was increased by over 3-fold in head and neck patients

receiving 1,25(OH)2D3 as compared with untreated patients.

This phenomenon was associated with, and increased, differ-

entiation of blood-derived CD34+ cells into dendritic cells and

to a decrease in the peripheral blood and intratumoral levels of

immunosuppressive CD34+ cells.

Chemopreventive effects of Vit D on specific tumors:
possible mechanisms of action

Effects of vitamin D on breast cancer cells

In vitro and in vivo studies carried out in order to assess the

effects of 1,25(OH)2D3 and its semisynthetic analogues on

breast cancer cell proliferation and malignant progression

showed that different ligands of the VDR are equally effective

in inhibiting the growth of ER(+) breast cancer cell lines such

as MCF-7, T-47-D, ZR-75-1, SKBR-3 (Krishnan et al., 2012),

and ER(�) breast cancer cell lines such as BT-20, MDA-MB-

435, MDA-MB-231, and SUM-159PT (Flanagan et al., 2003;

Mehta et al., 2012). These data are in agreement with the

clinical observations that describe the therapeutic benefit of

Vit D and its analogues in both ER(+) and ER(�) breast cancer

(Krishnan et al., 2012; Lee et al., 2008; Li & Brown, 2009;

Mehta et al., 2012). Although the exact mechanisms by which

Vit D may exert its growth inhibitory activity on breast cancer

cells has not yet been fully understood, in vitro observations

indicate that this molecule may affect tumor cell proliferation

by causing cell-cycle arrest in the G0/G1 phase, by promoting

apoptosis and by inhibiting tumor angiogenesis (Li et al.,

2005; Nagpal et al., 2005; Vanoirbeek et al., 2011). The

inhibiting effects of Vit D on cell-cycle arrest in G0/G1 entry

appears to be due to an increase of the expression of cyclin

kinase inhibitors CDKIs, including p21 and p27 which inhibit

cell-cycle progression by blocking the activity of CDK

complexes with VDR ligands (Jensen et al., 2001; Krishnan

et al., 2012). Furthermore, studies carried out on the MCF-7

cell line showed that 1,25(OH)2D3 reduced, in a time-

dependent fashion, the intracellular levels of CDK2, CDK4,

cyclin D1, and cyclin A (Jensen, 2001; Lowe et al., 2003;

Verlinden et al., 1998). In particular, 1,25(OH)2D3 was shown

to prevent the activation of the cyclin D1-CDK4 complex, to

decrease cyclin D3 expression, and to inhibit the E2F

transcription factor thus decreasing the expression of cyclin

A (Jensen et al., 2001). However, on one hand, the

antiproliferative effects of Vit D on breast cancer cells also

appears to be mediated by the induction of TGF-b (Colston &

Hansen, 2002; Koli & Keski-Oja, 1995; Proietti et al., 2011)

and by the suppression of the protoncogene c-myc expression

(Jensen et al., 2001; Lopes et al., 2012; Saunders et al., 1993).

In addition, Vit D can block the proliferative activity of

insulin and IGF-1, most likely by increasing the expression of

IGFBP-3 and IGFBP-5 (Colston et al., 1998; Lee et al., 2006;

Rozen et al., 1997). On the other hand, the promoting effect of

Vit D on apoptosis in breast cancer cells appears to be the

result of decreased levels of Bcl-2, a redistribution of Bax, a

release of cytochrome c, and DNA fragmentation (Nagpal

et al., 2005; van den Bemd & Chang, 2002). Furthermore, it
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was demonstrated that 1a,25(OH)2D3 is involved in the

inhibition of transcriptional activity of NF-kB in breast cancer

cells (Tse et al., 2010). In addition to their direct growth-

inhibiting effects, VDR ligands may also inhibit angiogenesis

and decrease the invasive and metastatic potential of breast

cancer cells in vitro and in vivo (Hansen et al., 1994; Mantell

et al., 2000; van den Bemd & Chang, 2002; Vanoirbeek et al.,

2011). These results support the concept that the combination

of VDR ligands with the most common clinically available

antitumor agents used in breast cancer treatment might result

in a more effective therapeutic response (Krishnan &

Feldmann, 2011). This hypothesis has been further sustained

by in vitro studies which demonstrated that 1,25(OH)2D3

enhances the cytotoxic effects of doxorubicin, paclitaxel,

adriamycin, cisplatin, and those induced by irradiation on

tumor cells (Chaudhry et al., 2001; Lawrence et al., 2013;

Sundaram et al., 2000). Interestingly, recent observations

show that Vit D prevents genomic instability due to the

Cathepsin L-mediated degradation of DNA repair protein

53BP1 in BRCA-1-negative breast cancer cells (Gonzalo,

2014). These results suggest that Vit D may be of clinical

relevance in the treatment of aggressive form of breast cancer

such as triple-negative BRCA-1-deficient ones.

Vit D on breast cancer: clinical studies

The epidemiologic studies regarding the association between

Vit D and breast cancer risk have generated conflicting results

so far (Engel et al., 2010; Freedman et al., 2007; Khan et al.,

2010; Maalmi et al., 2014; Mehta et al., 2012; Mohr et al.,

2011; Rose et al., 2013). For instance recent clinical obser-

vations showed a significant inverse association between

1,25(OH)2D3 serum concentration and risk of breast cancer

with a more pronounced decrease in risk in premenopausal

than in perimenopausal women (Engel et al., 2010; Maalmi

et al., 2014; Mohr et al., 2011; Mehta et al., 2012). In line with

these findings, other clinical investigations reported that

women with 1,25(OH)2D3 serum concentrations greater than

52 ng/ml showed a significant decrease (50%) in the risk of

breast cancer compared with women with circulating levels of

1,25(OH)2D3 lower than 13 ng/ml (Bertone-Johnson et al.,

2005; Garland et al., 2007; Lowe et al., 2005). Furthermore,

women with 1,25(OH)2D3 serum concentrations above 27 ng/

ml showed a decreased risk of breast cancer by 27%, compared

with those with circulating levels of this molecule lower than

19.8 ng/ml (Engel et al., 2010). These data also showed that

the preventive effects of a high plasma concentration of

1,25(OH)2D3 on the onset of breast cancer were more

pronounced in women with normal body mass index (BMI),

i.e., lower than 25 kg/m2 (Engel et al., 2010). These findings

also indicate that, in order to maintain plasma concentrations

of 1,25(OH)2D3 higher than 30 ng/ml, women leading a

sedentary life style and who are exposed for a short period of

time to sunlight require an intake of at least 2000 IU/d

(Garland et al., 2007). Alternatively, it was calculated that

12 min per day of continuous exposure to sunlight and the

exposure of at least the 50% skin surface is approximately

equivalent to an oral administration of 3000 IU of Vit D (Engel

et al., 2010; Holick, 2013). However, the optimal cut-off levels

of Vit D and the threshold values below which a subject may

be considered Vit D deficient are still controversial. The

optimal dose currently suggested to be administered in order to

prevent deleterious consequences due to hypercalcemia is

30 ng/ml (Khan et al., 2010). Foods naturally rich in Vit D

content more widely consumed by the population are fish

(55%), meat (23.5%), cheese (6.8%), and eggs (5.6%).

However, no consistent association of breast cancer risk with

the consumption of meat, eggs, or dairy foods have been

highlighted so far, while the correlation between fish intake

and breast cancer incidence still remains debatable (Engeset

et al., 2006; Kim et al., 2009; Pala et al., 2009). The

geographical area of residence, such as in the case of northern

and southern Italy, has been shown to be an important factor in

influencing the endogenous synthesis of Vit D (Rossi et al.,

2009). In fact, an inverse association between Vit D and breast

cancer was observed to be much higher in women in southern

Italy compared with women in the northern part of the country

because of longer exposure to sunlight (Rossi et al., 2009).

However, conflicting results on the relationship between skin

pigmentation and Vit D synthesis were obtained following a

study carried out in United States to assess the risk of breast

cancer when comparing women of Latin American origin

(Hispanic women) and non-Hispanic white women (John

et al., 2007; Rollison et al., 2012). Overall these studies

showed an inverse relationship between Vit D intake and

incidence of breast cancer either in premenopausal women or

in post-menopausal women (Anderson et al., 2010; Rollison

et al., 2012; Shin et al., 2002). In addition, circulating levels of

Vit D were shown to be associated with increased breast

cancer mortality (Goodwin et al., 2009; Mohr et al., 2011; Yao

& Ambrosone, 2013). On one hand, ethnic difference and the

degree of skin pigmentation have provided important evidence

that exposure to sunlight is the main source of Vit D and that

this phenomenon stimulates the synthesis and increases the

concentrations of circulating 1,25(OH)2D3 (Armas et al.,

2007; John et al., 2007; Knight et al., 2007; Rollison et al.,

2012; Yao & Ambrosone, 2013). On the other hand, discrepant

results regarding the relationship between existing pigmenta-

tion of the skin and ability to synthesize Vit D have been

obtained from other studies (Bogh et al., 2010; John et al.,

2007; Rollison et al., 2012). Increased skin pigmentation

reduced the dose of UV exposure, consequently it may cause a

decreased synthesis of Vit D. The Hispanic women showed

lower levels of circulating Vit D than white women exposed to

the same amount of sunlight and, consequently, an increased

incidence of breast cancer and mortality (Mohr et al., 2011;

Yao & Ambrosone, 2013). The integration of Vit D in one’s

diet, in particular among Hispanic women, had a considerable

impact on Vit D circulating levels and on the incidence of

breast cancer (John et al., 2007; Mohr et al., 2011; Rollison

et al., 2012; Yao & Ambrosone, 2013). Overall these studies

do not fully clarify whether Vit D is associated with a reduced

risk of breast cancer. Further investigation may better define

the clinical impact of vitamin supplementation in breast cancer

development and treatment.

Effects of vitamin D on prostate cancer cells

Experimental and clinical studies provide evidence of a

positive correlation between Vit D deficiency and prostate

DOI: 10.3109/13880209.2014.988274 Vitamin D and cancer 1413



cancer (Swami et al., 2011). The findings showing that VDRs

are expressed in normal prostate tissue, in benign prostate

hyperplasia (BPH), and in prostate cancer cells suggest that

BPH and prostate cancer (PCa) may represent potential

targets for VDR ligands (Adorini et al., 2007; Crescioli et al.,

2002; Hendrickson et al., 2011; Krill et al., 2001; Munetsuna

et al., 2011; Swami et al., 2011). Several experimental

observations have highlighted the fact that VDR ligands may

exert numerous effects on prostate cancer cells including cell-

cycle arrest in the G0/G1 phase, apoptosis, and interaction

with androgen-mediated signaling (Guzey et al., 2002; Nagpal

et al., 2005; Zhuang & Burnstein, 1998). VDR has also been

shown to repress COX-2 and enhance expression of hydro-

xyprostaglandin dehydrogenase 15-(NAD) (HPGD), the

combined effects of which can serve to limit prostate cancer

cell growth through an overall reduction in prostaglandin

activity (Moreno et al., 2005). Consistent with this hypoth-

esis, earlier studies by Zhao et al. (1997) showed that the

androgen antagonist Casodex suppresses the antiproliferative

effect of 1,25(OH)2D3 in LNCaP cells, indicating that the AR

is involved in 1,25(OH)2D3-mediating signaling.

Experimental evidence shows that the growth inhibition

mediated by VDR ligands appears to be the result of a

decrease in CDK2 activity and an increase in the expression

of p21, p27, IGFBP-3, IGFBP-5, and E-cadherin (Drivdahl

et al., 1995; Guzey et al., 2002; Huynh et al., 1998; Krishnan

et al., 2004; Zhuang & Burnstein, 1998). In addition, in some

prostate cancer cells, Vit D has been shown to down-regulate

some anti-apoptotic genes such as Bcl-2 (Chen & Holick,

2003; Guzey et al., 2002). Recent cDNA analysis of normal

prostate cells and LNCaP prostate cancer cells treated with

1,25(OH)2D3 contributed to identifying the target genes and

to clarifying, in part, the mechanism of Vit D-induced tumor

cell growth inhibition (Krishnan et al., 2004; Peehl et al.,

2004). These studied have reported the overexpression of the

gene-encoding 24-hydroxylase, the enzyme which catalyzes

the first step of the catabolic degradation of 1,25(OH)2D3

(Chen et al., 2012; Krishnan et al., 2004; Muindi et al., 2007,

2010). These observations imply that the use of 24-

hydroxylase inhibitors may increase the inhibitory activity

of 1,25(OH)2D3 and that of its synthetic analogues (Muindi

et al., 2010). Other possible mechanisms underlying the

growth-inhibiting activity of Vit D on prostate cancer cells

include stimulation of differentiation, modulation of growth

factor activity, and inhibition of tumor angiogenesis, invasion,

and metastasis (Krishnan & Feldman, 2011; Marchiani et al.,

2006; Stio et al., 2011). Moreover, it has been also reported

that, in normal and malignant prostate cells, 1,25(OH)2D3

may induce the expression of enzymes implicated in the

maintenance of redox balance and protection of cells from

oxidative damage such as TXNRD1 and SOD-2 (Peehl et al.,

2004). Although a direct inhibiting effect of these enzymes in

prostate cell growth inhibition appears unlikely, it is reason-

able to hypothesize that they may indirectly mediate the

chemopreventive effects of 1,25(OH)2D3 by preventing DNA

damage caused by ROS. Finally, recent finding by Hsu et al.

(2011) show that Vit D may indirectly affect tumor cell

invasion and metastasis by facilitating prostate cancer cell

aggregation through the increase of E-cadherin expression.

However, Ajibade et al. (2014) recently reported that

prolonged treatments with calcitriol in homozygous male

TRAMP mice resulted in the development of a resistant and

more aggressive form of prostate cancer associated with

increased distant organ metastasis. Although the possible

mechanism(s) facilitating these effects were not defined, these

results support the concept that Vit D compounds may be

effective in slowing or preventing progression of prostate

cancer of earlier stages.

Clinical studies with prostate cancer

The data obtained following epidemiological studies on the

effects of 1,25(OH)2D3 on prostate cancer are not univocal

(Gilbert et al., 2012; Hendrickson et al., 2011; Krishnan &

Feldman, 2011; Kristal et al., 2014; Swami et al., 2011). In

fact, whereas some studies demonstrated a strong inverse

association between Vit D serum concentrations and risk of

prostate cancer (Gilbert et al., 2012; Tretli et al., 2009), other

investigations show no significant correlation between Vit D

circulating levels and serum PSA (Gilbert et al., 2012). More

recently Kristal et al. (2014) reported that low and high Vit D

concentrations were associated with increased risk of prostate

cancer. This association resulted stronger for high-grade

disease. Other clinical studies have highlighted the effective

therapeutic potential of Vit D when administered alone or in

combination with other cytostatic agents (Beer, 2008;

Hershberger et al., 2001; Krishnan & Feldman, 2011; Ma

et al., 2010; Nagpal et al., 2005; Swami et al., 2011;

Wigington et al., 2004). In addition, these studies have

provided the rationale for a combination calcitriol–taxanes

therapy in patients with prostate cancer (Beer et al., 2008;

Ting et al., 2007a,b). On the basis of these considerations,

many clinical studies have been undertaken in androgen-

independent prostate cancer patients where Vit D3 was often

combined with standard cancer therapies. However, although

these drug associations were well tolerated and the addition of

Vit D3 did not result in any additional toxicity, when

compared with the standard therapies alone, most of these

investigations reported no beneficial effect of Vit D in these

patients (Leyssens et al., 2013).

Effects of vitamin D on colon cancer cells

A consistent number of investigations provide evidence that

1,25(OH)2D3 and its semisynthetic analogues may play a key

role in the prevention and treatment of colorectal cancer

(Byers et al., 2012; Leyssens et al., 2013; Pereira et al., 2012).

Numerous studies have shown that colorectal cancer cells

express VDR and the enzyme 1a-hydroxylase that converts

25-hydroxyvitamin D3 [25(OH)D3] into the active metabolite

of vitamin D, 1,25(OH)2D3 (Matusiak et al., 2005). The

activation of VDR elicits antitumor effects by triggering

apoptosis and by inhibiting cell proliferation, invasion, and

angiogenesis (González-Sancho et al., 2006; Krishnan &

Feldman, 2011; Pendás-Franco et al., 2008a; Samuel &

Sitirin, 2008). In particular, in vitro studies showed that this

molecule may inhibit the proliferation of colon tumor cells by

blocking the cell cycle in the G1 phase, by promoting

apoptosis and cell differentiation and by affecting tumor

angiogenesis (Bettoun et al., 2002; Pálmer et al., 2001;

Pendás-Franco et al., 2008a; Pereira et al., 2012).
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Furthermore, on one hand, studies on different colon carcin-

oma cell lines showed that 1,25(OH)2D3 may promote

apoptosis by the up-regulation of the proapoptotic protein

BAK1 and the down-regulation of the nuclear anti-apoptotic

protein BAG1 and by preventing the formation of apoptotic

heterodimers Bcl-2-Bax (Pereira et al., 2012; Welsh, 2012).

The negative effects of 1,25(OH)2D3 on cell proliferation and

apoptosis are further underlined by the findings that this

molecule promotes sensitivity to the chemotherapeutic agent

5-fluorouracil (5-FU) by down-regulating the expression of

the anti-apoptotic protein survivin and that of thymidylate

synthase, a key enzyme in the biosynthethic pathway of DNA.

On the other hand, in vitro studies also reported that

1,25(OH)2D3 promotes cell differentiation by increasing the

expression of several components of cell adhesion that are

essential for the maintenance of the epithelial phenotype and

that of proteins associated with the actin cytoskeleton and

intermediate filaments (Pálmer et al., 2001; Pereira et al.,

2012). These findings are consistent with the observations

that the treatment of Caco-2 colon cancer cells with

1,25(OH)2D3 induced an increase in the expression of p21,

p27, E-cadherin, and other adhesion proteins (ZO-1, ZO-2,

and vinculin) and promotes the translocation of b-catenin and

ZO-1 from the nucleus to the plasma membrane (Gaschott

et al., 2002). More specifically, it was shown that the VDR

antagonist, ZK-191-732, modulates the differentiation process

induced by butyrate on Caco-2 cells (Gaschott et al., 2002).

Furthermore, it was established that a decrease in the levels of

cyclin D1 is essential for the anti-proliferative effects of Vit D

(Hofer et al., 1999; Maier et al., 2009). In vitro studies aimed

at assessing the effects of 1,25(OH)2D3 on the gene expres-

sion in SW480-ADH cell line showed that Vit D increased the

expression of c-Jun, JunD, Jund, FREAC-1/Fox1, ZNF-44/

Kox7, G0S2, tumor suppressors normal epithelial-cell-specific

gene 1 (NES-1), or kallikrein 10 and protease M (Pálmer et al.,

2003). This phenomenon further stresses the concept that Vit D

appears to play a role in cell growth inhibition, adhesion,

differentiation, and apoptosis. These effects ultimately lead to

the reversion of the neoplastic phenotype to a normal epithelial

phenotype (Gocek & Studzinski, 2009; Nagpal et al., 2005).

Finally, Meeker et al. (2014) by using a model of bacteria-

driven colitis and colon cancer when infected with

Helicobacter bilis (H. bilis) showed that mice fed high vitamin

D diet had a significantly lower incidence of cancer compared

with mice fed maintenance diet. These findings further suggest

that increased dietary vitamin D is beneficial in preventing

inflammation-associated colon cancer through the suppression

of inflammatory responses during the initiation of neoplasia or

early-stage carcinogenesis.

Colorectal cancer and vitamin D

Clinical studies

Colorectal cancer is the third most common type of cancer in

men and women in western countries (Chan & Giovannucci,

2010). There is strong evidence on a significant relationship

between lifestyle and diet and incidence-rate of this type of

cancer (Chan & Giovannucci, 2010). Several case–control

studies and cohort studies have examined the relationship

between Vit D intake (total, with diet, or supplementary) and

the risk of colorectal cancer (Giovannucci, 2010; Woolcott

et al., 2010). The consistent body of investigation that

analyzed the relationship between the serum 25-hydroxyvi-

tamin D3 [25(OH)D3] level and colorectal cancer risk

generally shows an inverse association (Freedman et al.,

2007). In support of these observations, a large observational-

nested case–control study undertaken within the European

Prospective Investigation into Cancer and Nutrition showed a

strong inverse association between 25(OH)D3 concentrations

and colorectal tumor (Jenab et al., 2010). Furthermore, a

recent meta-analysis of 35 independent studies further

confirmed the inverse relationship between circulating

levels of 25(OH)D3 and colorectal cancer risk (Gandini

et al., 2011; Maalmi et al., 2014). Finally, a systematic review

of 18 prospective studies carried out by Ma et al. (2011)

undertaken to assess the association of Vit D intake or 25-

hydroxyvitamin D3 serum levels and the risk of colorectal

tumor in about 1 000 000 individuals highlighted the fact that

vitamin D intake and 25-(OH)D3 blood levels were inversely

associated with the risk of colorectal cancer. In particular,

some of these studies showed that the intake of 1000 IU/d of

Vit D was associated with a 50% decrease in risk of colorectal

tumor, while plasma concentrations of 20–29 ng/ml of 25-

hydroxyvitamin D3 were associated with an increased risk of

developing colorectal cancer. Conversely, concentrations

higher than 30–39 ng/ml were associated with a decreased

risk (Jenab et al., 2010). However, some investigations have

reported different results. For instance, on one hand,

Wactawski-Wende et al. (2006) failed to show marked effects

of Vit D on the incidence of colorectal cancer. Furthermore,

the co-administration of calcium and Vit D in women taking

estrogen resulted in an increased risk of colorectal cancer. The

conclusion of the study was that Vit D supplementation may

have a greater impact on mortality, but a lower incidence of

colorectal cancer. On the other hand, Ishihara et al. (2008) did

not highlight any statistically significant correlation between

Vit D intake and risk of colorectal cancer. Only concentra-

tions of 25-(OH)D3 lower than 80 nmol/L were inversely

associated with mortality from colorectal cancer, but not with

the incidence. The discrepancies in these results were, in part,

explained by the fact that the subjects considered in these

studies were often taking food high in calories and low in

fiber. Moreover, these subjects did not carry out any physical

activity, had a high body mass index, a positive family history

of colorectal cancer, and were smokers. There was no

difference in the amount of Vit D and sunlight exposure

between cases and controls. The use of Vit D supplements

was more common among the controls, and this was

statistically significant among men. Because of these con-

flicting results further studies are needed to better define the

chemopreventive effects of Vit D on colorectal cancer.

Effects of vitamin D on SCC

The presence of VDR in keratinocytes and the ability Vit D

to induce differentiation and to inhibit cell proliferation may,

in part, account for the therapeutic potential of this molecule

and its semisynthetic analogues in the SCC of the head

neck (H&NSCC) and aerodigestive tract (Bikle, 2012;

Ma et al., 2013a,b; Nagpal et al., 2005). In particular, the
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inhibition of p21 expression in keratinocytes has been

reported to be an essential prerequisite for the induction of

cell differentiation (Di Cunto et al., 1998). 1,25(OH)2D3 has

been shown to inhibit SCC growth in vitro and in vivo

(Hershberger et al., 2001; Ma et al., 2013b). Interestingly,

recent in vitro studies have highlighted the additive inhibitory

effects of Vit D in combination with 5-FU and or 13-cis-

retinoic acid on human oral squamous carcinoma cell growth

(Dalirsani et al., 2012). In contrast, Gedlicka et al. (2006)

have shown that Vit D induced growth inhibition in SCC cell

lines of the head and neck by arresting cells in the G0/G1

phase of the cell cycle and that this effect was associated with

an upregulation of p18 cell-cycle inhibitor. Further studies

demonstrated that 1,25(OH)2D3 inhibits, in vitro, cell motility

and invasion of SCC cells while, in vivo, this molecule

markedly suppresses the ability of SCC cells to establish

pulmonary metastases in tumor-bearing mice (Ma et al.,

2013a). The potential target genes for Vit D have been

identified in cell line SCC25 following treatment with the

analogue EB1089 (Lin et al., 2002). The expression of genes

such as 24-hydroxylase, protease M, cystatin M, amphiregu-

lin, stromelysin, and collagenase I resulted up-regulated

whereas the expression levels of CRABP-II, N-cadherin, and

SCC antigen were down-regulated (Lin et al., 2002). The

effects of Vit D and its analogues on the expression of genes

involved in cell differentiation, growth inhibition, and

immunomodulation, further indicate that SCC cell lines can

be driven to differentiation by these compounds (Goceck &

Studzinski, 2009). To date, limited epidemiologic studies on

the effect of Vit D or its metabolites on SCC prevention or

treatment in humans have generated conflicting data.

Recently, Eide et al. (2011) reported a positive relationship

between plasma levels of 25(OH)D3 and non-melanoma skin

cancer (NMSC) including SCC and basal cell carcinoma

(BCC), in a study of 3223 white health maintenance

organization patients who sought advice about the risk of

osteoporosis or low bone density. These findings have been

confirmed by a recent nested case–control study among

women by Liang et al. (2012). Conversely, Tang et al. (2010)

highlighted higher serum 25(OH)D3 levels as being asso-

ciated with a decreased risk of NMSC in older Caucasian

men. The discrepancies in these results were explained by the

different observation periods and the different types of subject

enrolled in these studies. Overall, there is some evidence that

Vit D may be of clinical interest in SCC and melanoma

prevention. However, additional studies are needed to assess

the suitability of topical or oral Vit D for chemoprevention of

SCC and BCC in humans (Tang et al., 2012).

Effects of vitamin D on hematological malignancies

There is increasing interest in the possible use of Vit D to

combat hematological diseases including leukemias, myelo-

dysplastic syndrome (MDS), lymphomas, and multiple mye-

loma (MM) (Kim et al., 2012; Motomura et al., 1991; Shanafelt

et al., 2011). The potential therapeutic role of 1,25(OH)2D3

in the treatment of hematologic malignancies was first

highlighted by Abe et al. (2004) who reported that Vit D was

able to induce in vitro differentiation of M1 murine myeloid

cells. These findings were further confirmed by other

experimental in vivo studies which showed that the adminis-

tration of Vit D increased the survival time of mice inoculated

with leukemic cells (Honma et al., 1983). The possible

therapeutic effectiveness of 1,25(OH)2D3 in the clinical

treatment of hematological malignancies relies on the obser-

vations that this molecule appears to inhibit the proliferation of

hematopoietic precursor cells and to promote their maturation

and, ultimately, cell differentiation (Abe et al., 2004; Gocek &

Studzinski, 2009; Honma et al., 1983; Kim et al., 2012;

Shanafelt et al., 2011). The biochemical mechanisms through

which Vit D and its derivatives induce these effects have been,

only in part, elucidated (Kim et al., 2012). Experimental

observations have highlighted the fact that these mechanisms

may be different according to the cell type (Bhatia et al., 1995;

Hughes et al., 2010; Kim et al., 2012). For instance, Vit D may

induce monocytic differentiation of myeloid leukemia cells.

This phenomenon may result in the G1 phase cell-cycle block

and, consequently in the cessation of cell proliferation (Bhatia

et al., 1995). In acute promyelocitic leukemic cells, Vit D

appears to activate three types of intracellular signaling

pathways, namely PKC pathway, PI3K-AKT pathway, and

three different MAPK pathways which have been suggested to

intersect at a common nodal point (Raf-1) (Bhatia et al., 1995;

Goceck & Studzinski, 2009; Hughes et al., 2010; Kim et al.,

2012; Wang & Studzinski, 1997). Activation of the MAPK and

PI3K-AKT pathways has also been implicated in Vit D-

mediated VDR synthesis and nuclear translocation (Goceck &

Studzinski, 2009; Kim et al., 2012). However, in the acute

promyelocytic leukemia cell line NB4, the monocytic differ-

entiation was induced independently of any VDR/VDRE

interaction (Bhatia et al., 1996). On the other hand, in U937

leukemic cells, Vit D was shown to activate the transcription of

cycline-dependent kinase inhibitors p21Waf1/Cip1 and

p27Kip1 and that of the protein HOXA10 (Liu et al., 2010).

Overexpression of p21 and HOXA10 facilitates the differen-

tiation of U937 cells into monocytes/macrophages cell lineage

(Kim et al., 2012; Rots et al., 1998). Therefore, the therapeutic

strategies currently available in the clinical treatment of

leukemias and MDS include agents that induce differentiation

of hematopoietic precursors (Harrison & Bershadskiy, 2012;

Kim et al., 2012; Nagpal et al., 2005; Shanafelt et al., 2011).

The main hematologic responses were observed in patients

with MDS treated with calcitriol and alfacalcidol (Kim et al.,

2012; Mellibovsky et al., 1998). Although the range of

response in these studies varied from 44 to 100%, with

complete remission in only 6% of patients, the prevention of

the progression of MDS is significant. Recent findings have

shown that Vit D may induce antileukemic effects by

promoting autophagy in leukemic cells via the increase of

the intracellular levels of beclin-1 which is known to induce

the formation of autophagosomes in mammalian systems

(Kim et al., 2012; Wang et al., 2008). On the contrary, in the

K562 chronic myeloid leukemia cell line, which is character-

ized by a rapid growth rate and lack of differentiation, Vit D

was found to induce apoptosis (Kim et al., 2012; Wang &

Studzinski, 1997). Similarly, the treatment of HL-60 cells with

Vit D induced an increase in Mcl-1, an anti-apoptotic protein

that blocks cytochrome c release in the apoptosis pathway and

may also target Raf-1 (Kim et al., 2012; Wang & Studzinski,

1997). Although experimental studies support a potential
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clinical benefit of the use of Vit D derivatives in the treatment

of hematological malignancies, the partial validation observed

in clinical trials against acute myeloid leukemia and MDS

implies that the therapeutic effectiveness of Vit D in these

malignancies deserves further extensive investigation (Kim

et al., 2012).

Effects of cancer on vitamin D metabolism

Effects of cancer on VDR levels

Although a consistent body of experimental and clinical

research have been undertaken in order to define the

therapeutic effectiveness of Vit D on cancer, other studies

have been directed towards investigating the impact of cancer

on the Vit D system. Some of these studies have shown that

VDR may be overexpressed or down-regulated in various

human cancers (Friedrich et al., 2006; Kure et al., 2009;

Lopes et al., 2012; Motomura et al., 1991; Matusiak et al.,

2005; Reichrath et al., 2004). For instance, Matusiak et al.

(2005) demonstrated that the expression levels of VDR were

low in normal epithelial cells of the colon while they were

increased in aberrant crypts foci, in polyps, and in well-

differentiated cancer cells. These findings are in line with

those of Kure et al. (2009) who showed that in 233 out of 619

patients the overexpression of VDR was associated with

mutations of Ras-MAPK and PI3K-AKT. Conversely, clinical

studies in 82 patients with melanoma highlighted a remark-

able reduction, or even the absence, of VDR expression in

tumor tissue in comparison with normal skin. This phenom-

enon was correlated with the progression of melanocytic

lesions (Broz_yna et al., 2011). These data suggest that altered

expression levels of VDR may be regarded as a potentially

useful marker in the follow-up of melanoma patients treated

with Vit D or its semisynthetic analogues. Furthermore,

studies undertaken to assess the expression level of VDRs in

normal mammary cells, in benign lesions, in localized breast

cancer, and invasive breast cancer highlighted the presence of

these receptors in a variety of breast tissues with some

quantitative differences (Lopes et al., 2010; Zhang et al.,

2014). In particular, VDRs were frequently expressed in

benign lesions (93.5%) while in carcinoma in situ or in

metastatic tumor the rate of expression was lower (56.2%)

(Lopes et al., 2010). Similar results were obtained from

studies which evaluated the expression level of VDR in

benign and malignant ovarian tissues (Thill et al., 2010).

These studies showed that VDR expression levels were

significantly lower in malignant tissue as compared with

normal tissue. On one hand, it is worth noting that Zhang

et al. (2014) recently demonstrated a negative correlation

between VDR expression in human breast cancer tissue and

metastasis in breast cancer. Furthermore, coculture of VDR-

overexpressing breast cancer cells with a macrophage cell line

demonstrated that overexpression of VDR alleviated the

prometastatic effect of cocultured macrophages on breast

cancer cells. On the other hand, Hendrickson et al. (2011),

by assessing the level of expression of VDR in tumor tissue

from 841 patients with prostate cancer, showed that the

high expression of VDR in tumor tissue was associated with

a reduced risk of cancer death suggesting an important role

of Vit D on prostate cancer progression. Interestingly,

Srinivasan et al. (2011) recently described the presence of

VDR at nuclear and cytoplasmic levels in lung cancer cells.

These authors additionally showed that while the high levels

of nuclear VDR were associated with increased survival, no

correlation was observed between the survival and the

expression levels of cytoplasmic VDR. Furthermore, it has

been reported that some gene mutations are strongly

associated to cancer progression such as observed in the

case of Ha-Ras, in HC-11 mouse mammary epithelial cells

(Escaleira & Brentani, 1999) or K-Ras in RWPE-2 cells

(Zhang et al., 2010) or Simian Virus 40 (SV40) in human

mammary epithelial (HME) cells (Kemmis & Welsh, 2008),

and that this phenomenon may result in a decreased

expression of VDR. On the other hand, several studies have

identified many factors that may influence the expression of

VDR in cancer. For instance, it has been shown that the

overexpression of SNAIL transcription factors can reduce the

expression of the gene encoding VDR in SW-480-ADH,

HCT116, Caco-2, LS174T, and HT29 colon cancer cell lines

(Pálmer et al., 2004). Furthermore, Larriba et al. (2013)

showed that SNAIL1 repressed the expression of VDR and

also inhibited the migration of nuclear b-catenin induced by

1,25(OH)2D3 in SW-480-ADH colon cancer cells. In addition,

SNAIL1 thwarted the inhibitory effects of 1,25(OH)2D3 on

cell proliferation. In colon and breast cancer cell lines,

SNAIL1 and SNAIL2 can bind E-boxes in the proximal

promoter of the gene for VDR and enhance the recruitment of

co-repressors that reduce the expression of VDR (Mittal et al.,

2008; Peña et al., 2005). Another protein that regulates the

expression of VDR gene is p53. It has been shown that in

Saos-2 osteosarcoma cells and human non-small cell lung

cancer cells H1299, the overexpression of p53, resulted in an

increased expression of VDR (Maruyama et al., 2006).

Unfortunately, p53 gene is mutated in many human tumors

and this may account for the reduced expression of VDR gene

in breast and lung cancer cells. Interestingly, the p53 mutant

form has been shown to be able to interact with VDR, to

increase its accumulation in the nucleus, and to convert Vit D

into an antiapoptotic agent (Stambolsky et al., 2010). These

findings indicate that in tumors with p53 mutant, the

therapeutic potential of Vit D or its analogues may be limited

(Stambolsky et al., 2010). In addition, there is also some

evidence that ras activation can decrease the transcriptional

activity mediated by Vit D (Fleet et al., 2012). This

phenomenon was first described by Solomon et al. (1999),

who observed that in ras-transformed keratinocytes, the

transcriptional activity mediated by VDRs was reduced as a

result of phosphorylation on serine 260 of the heterodimeric

partners of the VDR, namely RXR. A reduction in the

transcriptional activity of the VDR after phosphorylation

within the domain of RXR AF-1 was also observed in the

RWPE2 cell line (Zhang et al., 2010). Overall, these studies

suggest that the development of cancer can lead to a reduction

of the responses mediated from 1,25(OH)2D3 thus weakening

VDR-mediated signaling pathways.

Effects of malignant transformation on
1-a-hydroxylase (CYP27B1) expression levels

Although the presence of the enzyme 1-a-hydroxylase, in

many tumor tissues, has been well recognized, studies on the
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expression of this enzyme during cancer development have

had discrepant results (Cross et al., 2005, 2009; Höbaus et al.,

2013). In fact, the expression and activity of CYP27B1 have

been shown to increase, decrease, or remain unchanged

according to the organ, the tumor grade, and the reference

tissue (Cross et al., 2005; Höbaus et al., 2013). In this context,

several in vitro studies have shown that the activity of

CYP27B1 and its contribution to 1,25(OH)2D3 production is

lost in tumors with an aggressive phenotype (Fleet et al.,

2012). On the other hand, Hsu et al. (2011) reported that

CYP27B1 was present in normal prostate epithelia cells

(PECs). However, its enzyme activity was reduced in cells

isolated from BPH while it was virtually absent in cells

isolated from prostate cancer patients. Further, Segersten

et al. (2002) reported that this enzyme was overexpressed in a

number of parathyroid adenomas of primary hyperthyroidism

(HTP) and in hyperplastic glands of secondary HPT while it

resulted underexpressed in parathyroid carcinomas, compared

with normal parathyroid glands. These findings are consistent

with the observations that, unlike cancer cells, normal cells

were susceptible to the growth inhibiting effects of

1,25(OH)2D3 treatments. These results were confirmed by

another study which showed that the reduced expression of

CYP27B1 in LNCaP cells resulted in a reduced growth

inhibition induced by 1,25(OH)2D3 (Chen et al., 2003).

Moreover, CYP27B1 expression was undetectable in metas-

tases from human colon cancer (Matusiak & Benya, 2007).

More recently, Broz_yna et al. (2011) showed an inverse

correlation between CYP27B1 expression levels and melan-

oma progression. However, the relationship between

decreased levels of CYP27B1 and malignant phenotype was

not univocally observed in all types of cancer (Fleet et al.,

2012). For instance, Friedrich et al. (2006) showed that the

mRNA coding for CYP27B1 increased in breast cancer when

compared with normal tissue. Furthermore, Clinckspoor et al.

(2012) recently highlighted CYP27B1 expression levels as

increasing in malignant thyroid tumors. Conversely, immu-

nohistochemical observations by Lopes et al. (2010, 2012)

failed to highlight significant differences in the expression of

CYP27B1 between normal breast tissue and tumor tissue

while discrepant results were obtained with renal carcinoma

(Blomberg Jensen et al., 2010; Urbschat et al., 2013). Because

of these conflicting data, no definitive conclusion can be

drawn on the consequences of malignant transformation on

the expression of CYP27B1.

Effects of malignant transformation on
24-hydroxylase (CYP24A1) expression levels

Similarly, as described for CYP27B1, the level of

CYP24A1 expression, an enzyme involved in the degradation

of metabolic products of Vit D, may be influenced by the

malignant transformation (Cross et al., 2011; Hobaus et al.,

2013). In fact, aberrantly high basal expressions of CYP24A1

have been observed in various tumors (Hobaus et al., 2013;

Horváth et al., 2010). Furthermore, epidemiological studies

showed that serum levels of 25(OH)D3, the precursor of

1,25(OH)2D3, below 30 nM were strongly associated with an

increased incidence of colorectal cancer (Cross et al., 2011).

In this context, recent experimental and clinical observations

by Cross et al. (2005) and Brozek et al. (2012) reported that

the expression levels of CYP24A1 increased dramatically

during colorectal cancer progression to a poorly differentiated

stage (G3–G4). Furthermore, studies on breast cancer showed

that the CYP24A1 gene was overexpressed in this type of

tumor and that this phenomenon also accounted for the

inhibition of the antiproliferative effects of 1,25-(OH)2D3 on

tumor cells (Lopes et al., 2010). Consistent with these

observations, Anderson et al. (2006) reported an increased

expression of CYP24A1 levels in MCF-7, SW-620 breast

cancer cells, in breast tumor tissue and in ovary, colon, and

lung cancer. Subsequent studies showed that CYP24A1 was

present in the nuclei of normal colonic epithelial cells,

aberrant cryptic foci and adenomatous polyps (Matusiak &

Benya, 2007). However, following malignant transformation,

the location of this enzyme shifted almost entirely from the

nuclear compartment to the cytoplasmic compartment

(Matusiak & Benya, 2007). Overexpression of CYP24A1

was also demonstrated in prostate cancer, ovarian cancer,

cervical cancer, lung cancer, SCC, and BCC (Friedrich et al.,

2006; Mitschele et al., 2004; Muindi et al., 2007). In

esophageal cancer, high CYP24A1 expression was reported

to correlate with a poor prognosis (Mimori et al., 2004).

Overall, these data highlight the altered metabolism of 1,25-

(OH)2D3 as appearing to be a typical feature of advanced

cancer and also suggest that one major mechanism respon-

sible for Vit D resistance or reduced sensitivity to calcitriol in

VDR-positive cells may be dependent on an increase of 1,25-

(OH)2D3 and 25(OH)D3, catabolism via the C-24 hydroxyl-

ation pathway. In line with these observations, Muindi et al.

(2007) have demonstrated that ketoconazole, an inhibitor of

CYP24A1, can restore the activity of growth inhibition

exerted by 1,25-(OH)2D3 in prostate cancer cells. More

recently, Komagata et al. (2009) found that the levels of

CYP24A1 can be reduced at post-transcriptional levels by

miR125b, a micro-RNA that can bind the 30-UTR (untrans-

lated region) mRNA for CYP24A1. In addition, these authors

demonstrated that, in breast cancer, CYP24A1 levels were

inversely related to miR125b levels suggesting that the lack of

this regulatory RNA may account for the increased expression

levels of CYP24A1 in cancer cells. These findings might, in

part, account for the limited therapeutic effects of

1,25(OH)2D3 observed in some clinical trials. Thus the

inhibition of CYP24A1 by pharmacological means may lead

to a new approach in Vit D-based treatment of neoplastic

diseases.

The semi-synthetic analogues of Vit D

The numerous epidemiological and preclinical investigations

suggesting a role of Vit D in the prevention and treatment of

several human tumors support the clinical use of

1a,25(OH)2D3 and Vit D analogues as potential preventive

and therapeutic anticancer agents (Brown & Slatopolsky,

2008; Trump et al., 2010). However, the hypercalcemic

effects induced by 1,25(OH)2D3 have strongly limited its

therapeutic use (Ma et al., 2010; Mehta, 2012). Therefore,

many efforts are currently being directed towards synthesizing

new Vit D analogues with the goal of improving the

biological profile of the natural hormone, which retains the
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therapeutic activity the analogues being endowed with a lower

calcemic effect (Byers et al., 2012; Chen & Kittaka, 2011;

Fleet et al., 2012; Trump et al., 2010). Vit D analogues are

semi-synthetic molecules, since they share the basic structure

of 1,25(OH)2D3 but differ in the presence of a characteristic

functional group (R) (Brown & Slatopolsky, 2008; Trump

et al., 2010; Unten et al., 2004) (Figure 2). To date, nearly

1500 Vit D analogues have been synthesized and evaluated,

in vitro and in vivo, for their therapeutic effectiveness, in a

variety of carcinogenesis and human cancer models (Leyssens

et al., 2014; Mehta, 2012). However, of these compounds,

only a few have been approved for further evaluation in

clinical trials in leukemia patients, breast cancer patients,

prostate cancer patients, and colon cancer patients (Agoston

et al., 2006; Hussain et al., 2003; Kim et al., 2012; Leyssens

et al., 2014; Mehta, 2012). The chemical structure of some of

the Vit D analogues endowed with cancer chemo-preventive

activity is shown in Figure 2. Analogues that are structurally

unrelated to Vit D but are able to interact with VDR have also

been synthesized (Byers et al., 2012; Choi & Makishima,

2009). More recently a new class of Vit D analogues,

characterized by two side-chains linked to carbon-20

(Gemini) and with deuterium substituted on one side-chain,

have been synthesized (Maehr et al., 2013; Okamoto et al.,

2014; Spina et al., 2007). Although these analogs do not show

any adverse calcemic effects from Vit D, they may induce

other toxic effects unrelated to calcemia (Mehta et al., 2012).

Alfacalcidol and doxercalciferol

Alfacalcidol (1a,25(OH)D3) and doxercalciferol (1a,25OHD2)

(Figure 2) are Vit D analogues endowed with chemopreventive

effects. Early reports from Iseki et al. (1999) showed that a

long-term administration of high doses of alfacalcidol signifi-

cantly reduced the incidence of colon cancer in rats. In line

with these observations, Kikuchi et al. (2007) showed that

treatment with alfacalcidol prevented the ulcerative colitis

and the development of colon cancer in mice. Similar results

were reported from experiments on female Sprague–Dawley

rats with 7,12-dimethylbenz[a]anthracene(DMBA)-induced

mammary tumor where the administration of alfacalcidol

suppressed the growth of tumors in a dose-dependent fashion

(Iino et al., 1992). Hara et al. (2001) showed that the oral

administration of alfacalcidol to mice transplanted with Dunn

osteosarcoma significantly suppressed tumor growth and

metastasis formation. The same study reported that the co-

Figure 2. The chemical structure of Vitamin D analogues endowed with cancer chemo-preventive activity.
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administration of alfacalcidol and doxorubicin resulted in

additive antitumor and antimetastatic effects. Although the

mechanisms of the antitumor effects of alfacalcidol have not

yet been fully elucidated, experimental evidence indicates that,

in particular, this molecule may inhibit tumor angiogenesis

(Iseki et al., 1999). These findings suggest that alfacalcidol

might be of therapeutic value as a chemopreventive agent in the

clinical management of cancer patients. Consistent with these

results, clinical studies by Tałalaj et al. (2005) reported that, in

patients with advanced prostatic carcinoma treated with

complete androgenic blockade, the administration of alfacal-

cidol and calcium supplement (CaCO3) prevented both

trabecular and compact bone loss. On one hand, more recent

clinical observations by Obara et al. (2008) have highlighted

the fact that in Japanese patients with metastatic renal

carcinoma (RCC), the combination of alfacalcidol and inter-

feron-a may prolong the survival of these patients without

causing severe adverse events. On the other hand, Trouillas

et al. (2001) showed that alfacalcidol may induce in some

patients, in synergy with classical surgery–radiotherapy–

chemotherapy treatment, a particular progressive and durable

regression of the tumor. Cunningham et al. (1985) reported that

the administration of alfacalcidol induced a partial remission in

patients with lymphoma. On one hand, more recently Akiyama

et al. (2010) showed that the addition of alfacalcidol to Vitamin

K appears to improve anemia and thrombocytopenia in about

one-third of patients with low/intermediate-1 MDS who had

not responded to Vitamin K2 monotherapy for 16 weeks. On

the other hand, recent findings by van Ginkel et al. (2007) show

that doxercalciferol can inhibit human neuroblastoma growth

in vivo with relatively low toxicity. However, recent clinical

investigation by Gee et al. (2013) reported no obvious

beneficial effects in men undergoing prostatectomy for early-

stage prostatic neoplasia, while Petrich et al. (2008) showed

that a short-term treatment with doxercalciferol has limited

activity in patients with MDS. These conflicting results

suggest that further clinical studies are needed to better

define the clinical effectiveness of this molecule in cancer

chemoprevention.

Calcipotriol

Calcipotriol, or calcipotriene (Figure 2), is a synthetic Vit D

analogue that exhibits a vitamin D-like effect by competing

for VDR displaying minimal effects on calcium homeostasis

(Binderup & Bramm, 1988). The intraperitoneal or oral

administration of calcipotriol to rats showed that the

compound was at least 100 times less active than

1,25(OH)2D3 in determining hypercalcemia and hypercal-

ciuria (Binderup & Bramm, 1988; Kissmeyer & Binderup,

1991). Experimental observations show that this molecule

exerts important effects on cellular differentiation and prolif-

eration in vitro while its effect on calcium metabolism in vivo

is negligible (Binderup & Bramm, 1988; Cho et al., 1996).

In vitro studies showed that this molecule may regulate cell

differentiation and proliferation and exhibits growth-inhibit-

ing effects against several human cancer cell lines including

HL-60 and HL60/MX2 promyelocytic leukemia, U937

histiocytic lymphoma, MCF-7, T47D human breast cancer,

HT-29 human colon cancer, and human SCC (Colston et al.,

1992; Meephansan et al., 2012; Milczarek et al., 2013a,

2014). Regarding the possible mechanisms underlying the

growth inhibiting and pro-differentiating effects of calcipo-

triol on tumor cells, in vitro studies highlighted the fact that a

20-h exposure of LNCaP prostate cancer cells and MCF-7

breast cancer cells to this analogue or to BGP-15, a new

calcipotriene-derived vitamin D3 analogue, generated procas-

pase-3 cleavage and ultimately, apoptosis (Berkovic et al.,

2010). In addition, Wang et al. (2010b) recently reported that

calcipotriol significantly suppressed in vitro colon carcinoma

cell invasion and enhanced the cytotoxicity of the anticancer

regimen FOLFIRI (folinic acid, 5-FU, irinotecan) to cells in

culture or in anchorage-independent growth. These effects

appeared to be the consequence of a suppression of gene

transcriptional activities and protein expression of survivin

and thymidylate synthase, to the enhanced E-cadherin local-

ization in cell membranes and the complex formation of E-

cadherin and b-catenin, and repression TCF4 transcriptional

activation. Consistent with these observations, on one hand,

recent findings by Milczarek et al. (2014) showed that

calcipotriol may potentiate the antitumor activity of 5-FU in

HT-29 colon tumor-bearing mice. These studies also showed

that the mechanism of potentiation of 5-FU antitumor was

related to the increased expression of p21 and decreased

expression of pERK1/2 level which may lead to a decreased

expression of thymidylate synthase. On the other hand,

Meephansan et al. (2012) highlighted the fact that calcipotriol

affects in vitro the invasive potential of DJM human

squamous carcinoma cells by reducing the production of

matrix-metalloproteinases MMP-9 and MMP-13 through

inhibition of the ERK and p38 phosphorylation. The

antitumor activity of calcipotriol was also investigated

in vivo using rats transplanted with breast cancer induced

by N-methyl-nitrosourea (Colston et al., 1992a). These studies

showed how the administration of calcipotriol (50 mg/kg)

resulted in an inhibition of tumor progression without

development of severe hypercalcemia. On one hand, more

recent in vivo investigation by Pommergaard et al. (2013)

demonstrated that in mice with UVB-induced non-melanoma

skin cancer (NMSC), the topical treatment with calcipotriol

combined with diclofenac and difluoromethylornithine for

17 weeks significantly reduced the number of mice with

tumors as well as tumor area size compared with placebo.

On the other hand, early clinical studies reported that in 15

out of 19 patients with localized breast cancer or skin

metastases, the topical treatment with calcipotriol (100 mg/d

for 6 weeks) caused a reduction of 65% of the diameter of

the lesions, a reduction of 50%, in 3/19 patients while one

patient showed a minimal response (Bower et al., 1991). It is

worth noting that only two patients developed hypercalcemia

during treatment. Interestingly, recent observations by Al-

Jaderi and Maghazachi (2013) suggested that calcipotriol

may influence the activity of cells of the innate immune

system. In fact, these authors showed that calcipotriol may

increase IL-2-activated NK cell lysis of K562 and RAJI

tumor cell lines as well as immature and mature dendritic

cells and may down-regulate the expression of the killer

inhibitory receptor CD158. These findings make calcipotriol

of potential interest as another novel chemopreventive agent

in cancer treatment.
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Maxacalcitol (22-oxa-1a,25-D3)

Maxacalcitol (1a,25-dihydroxy-22-oxacalcitriol) (OCT)

(Figure 2) is another non-calcemic Vit D analogue and

VDR ligand that has been shown to promote cell differenti-

ation and to inhibit cell proliferation, without inducing

hypercalcemia (Abe et al., 1991; Nishii & Okano, 2001;

Funato et al., 2002). This molecule contains an oxygen in

place of a carbon in position 22 of the side chain (Figure 2)

and is less calcemic than 1,25(OH)2D3. However, it retains

considerable potency to suppress PTH in vitro and in vivo

(Nishii & Okano, 2001). In vitro studies show that

maxacalcitol could block the G1/S transition and induce

tumor cell growth inhibition in responsive pancreatic tumor

cells (Kawa et al., 2005). The antiproliferative effect of

maxacalcitol on these cells appears to be due to the up-

regulation of p21 and p27 induced by this molecule (Kawa

et al., 2005). Interestingly, Funato et al. (2002) also report that

the co-administration of OTC with Vitamin K2 induces an

accumulation of the cells in the G0/G1 phase but suppresses

apoptosis. The growth inhibitory effects of 22-oxa-calcitriol

were also reported in breast cancer cells. In fact, in vitro

studies showed that this molecule inhibited, in a dose- and

time-dependent fashion, the proliferation of ER(+) breast

cancer cells (MCF-7, T-47D, and ZR-75-1) and ER(�) breast

cancer cells (MDA-MB-231 and BT-20) (Abe et al., 1991). In

line with these findings, in vivo studies on athymic mice

transplanted with MCF-7/ER(+) or MX-1/ER(�) breast cancer

cells showed that the administration of OCT elicited a potent

antitumor effect in both ER(+) and ER(�) tumor cells (Abe-

Hashimoto et al., 1993). These studies also demonstrated that

the degree of therapeutic effectiveness of OCT was compar-

able with that of tamoxifen in ER(+) tumors or to that of

adriamycin in ER(�) tumors. Furthermore, in MCF7/ER(+)

tumors, the co-administration of OCT and tamoxifen resulted

in a synergistic antitumor effect (Abe et al., 1991; Abe-

Hashimoto et al., 1993). Interestingly, on one hand, other

in vivo studies reported that in mice transplanted intraven-

ously with Lewis Lung Carcinoma cells (LLC), the admin-

istration of OTC was highly effective in reducing lung

metastasis formation (Nakagawa et al., 2005). These authors

suggested that this effect was likely related to ability of this

compound to affect tumor-induced angiogenesis in vitro and

in vivo (Nakagawa et al., 2005). On the other hand, the results

of these studies are consistent with those of Matsumoto et al.

(1999) reporting that the administration of OTC to mice

transplanted with MDA-MB-231 ER(�) human breast cancer

cells partially suppresses tumor growth by inhibiting the

expression levels of the vascular endothelial growth factor

(VEGF) and, ultimately, tumor neovascularization. More

recent observations by Seubwai et al. (2010) showed that

OTC effectively suppressed the growth of cholangiocarci-

noma (CCA) cell lines in a time-dependent and dose-

dependent manner by blocking tumor cells in the G1 phase

of the cell cycle and the transition of CCA cells from G1 to S

phase by suppressing or up-regulating the expression of

genes, i.e., cyclin D1 and p21, respectively, which regulate

this transition. Moreover, supplementation of OTC to CCA-

inoculated NOD/Scid/Jak3-deficient mice (NOJ) significantly

inhibited tumor growth without hypercalcemia or other

serious side effects. This treatment also induced cellular

apoptosis in tissue samples from patients with CCA. The

effects of maxacalcitol were also investigated in rats treated

with five carcinogens (Otoshi et al., 1995). In this study, 25

rats were administered intraperitoneally with maxacalcitol

(30 mg/kg), three times a week for 24 weeks from the initial

exposure to carcinogens. At the end of a 30-week observation

period, none of the rats that had received maxacalcitol after

the carcinogens developed cancerous lesions in the small

intestine while the incidence was higher in control animals.

The incidence of colon carcinoma in the group that received

only maxacalcitol showed a great tendency to decrease

(Otoshi et al., 1995). These studies, although not clarifying

the mechanisms of action, suggest that the maxacalcitol may

be of potential clinical value in the prevention of breast cancer

and colorectal cancer.

EB1089 (seocalcitol)

EB1089, also known as seocalcitol (Figure 2), is a Vit D

analogue which has been shown to inhibit either in vitro or

in vivo the growth of several types of tumor such as breast

cancer (Colston et al., 1992a; Macejová et al., 2011; Valrance

et al., 2007; VanWeelden et al., 1998), prostate cancer (Bhatia

et al., 2009; Chen et al., 2003; Oades et al., 2002), colon

cancer (Akhter et al., 1997; Oh et al., 2001), and

hepatocellular carcinoma (Ghous et al., 2008; Zhang et al.,

2013). In vitro observations showed that EB1089 was more

effective than 1,25(OH)2D3 in inhibiting the cell proliferation

of MCF-7 breast cancer cells (VanWeelden et al., 1998).

In vivo, the antitumor effects of EB1089 were investigated in

rats with mammary cancer induced by N-methyl-nitrosourea

(Colston et al., 1992) orally administered with two different

dose levels. The administration of the lower dose resulted in a

significant inhibition of tumor growth while, an equivalent

dose of 1,25(OH)2D3 had no effect on tumor growth but

induced hypercalcemia. Conversely, at the higher dose,

EB1089 determined tumor regression. In addition, on one

hand, experimental evidence showed that the combination of

EB1089 with cytotoxic agents and/or ionizing radiation

resulted in additive antitumor effects on breast cancer tumor

cells either in vitro or in vivo (Demasters et al., 2006;

Koshizuka et al., 1999; Sundaram et al., 2003; Valrance et al.,

2007). On the other hand, Oades et al. (2002) showed that

EB1089 also inhibited the growth of prostate adenocarcinoma

in the Dunning prostate model and in athymic nude mice

transplanted with LNCaP. Similar effects were recently

reported in an in vivo study by Bhatia et al. (2009). These

authors showed that EB1089 inhibited prostate cancer cell

proliferation and reduced tumorigenesis as well as tumor

metastases. Furthermore, in vitro studies on U937 histiocytic

lymphoma cells showed that EB1089 was 50–100 times more

effective in inhibiting cell proliferation and in inducing cell

differentiation than 1,25(OH)2D3 but less effective than

calcitriol in affecting in vivo calcium metabolism in rats

(Mathiasen et al., 1993). These data match those reported by

Gulliford et al. (1998) showing that EB1089 was significantly

less calcemic than 1,25-dihydroxyvitamin D3 when adminis-

tered at a maximum-tolerated dose (7 mg/m2) to patients with

breast cancer or colorectal cancer. Other in vitro observations
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on HT-29 colon adenocarcinoma cells showed that EB1089

was more effective than Vit D in inhibiting HT-29 prolifer-

ation (Oh et al., 2001). In particular, immunoblot analysis

showed that EB1089 inhibited the secretion of IGF-2 and

stimulated the production IGFBP-6. More recently Lu et al.

(2008) reported that EB1089 inhibits the proliferation of Hep-

2 human laryngeal squamous carcinoma cells. The growth-

inhibiting activity of this molecule appeared to be due to an

increase of p57 cyclin-dependent kinase inhibitor at mRNA

and protein levels induced by this molecule. EB1089 brought

about tumor cell death by a mechanism, not related to caspase

activation, which consisted in the induction of chromatin

condensation and DNA fragmentation (Høyer-Hansen et al.,

2005). Furthermore, recent findings by Ghous et al. (2008)

showed that EB1089 may inhibit either in vitro or in vivo the

growth of hepatocellular carcinoma (HCC). Interestingly,

Zhang et al. (2013) recently reported that a combination of

retinoic acid (RA) and EB1089 exerted a synergistic growth

inhibition and apoptosis induction in HCC cells. Furthermore,

in vivo studies carried out in rats with prostate cancer showed

that the administration of EB1089 decreased the tumor size

and the number of lung metastases (Chen et al., 2003).

Although these experimental observations are encouraging,

clinical studies aimed at evaluating the therapeutic effective-

ness of this molecule in cancer patients have generated

controversial results. In particular, phase I and II studies in

patients with breast cancer, colorectal cancer, hepatocellular

carcinoma, or pancreatic cancer failed to demonstrate any

therapeutic response of patients to EB1089 treatment (Dalhoff

et al., 2003; Evans et al., 2002; Gulliford et al., 1998).

However, it cannot be ruled out that patients’ characteristics

(i.e., presence/absence of VDR in tumor tissue, previous

treatments, low number of enrolled patients, dose-limiting

hypercalcemia, etc.) might, in part, account for this phenom-

enon. Therefore, further studies are needed to better define

the potential clinical effectiveness and toxicity of EB1089.

Analogues of 20-epi vitamin D

The 20-epi-vitamin D3 analogues including CB-1093, KH-

1060 (lexicalcitol), BXL-628 (elocalcitol), and 2MD are

molecules characterized by an altered stereochemistry at

carbon 20 in the side-chain (Binderup et al., 1991) (Figure 2).

These molecules except 2MD (2-methylene-19-nor-(20S)-1-

,25(OH)2D3) have been shown to possess chemopreventive

activity. 2MD has been shown to stimulate bone formation

in vivo and in vitro (Ke et al., 2005; Mäenpää et al., 2001) but

it appears to be devoid of antitumor activity (Ke et al., 2005).

Therefore, this compound has been proposed for the treatment

of osteoporosis (Plum et al., 2006). In vitro observation

showed that KH1060 and CB1093 may inhibit cell prolifer-

ation, at lower concentrations and earlier points in time than

calcitriol, by blocking the cell cycle in the G0/G1 phase

(Mäenpää et al., 2001; Ryhänen et al., 2003). This phenom-

enon appeared to be the consequence of an increase in the p27

level and a marked decrease of Cdk2. These phenomena

ultimately contribute to keeping retinoblastoma (Rb) protein

in its hypophosphorylated, i.e., growth suppressing, form thus

preventing cell-cycle progression through the restriction point

(Elstner et al., 1999; Mäenpää et al., 2001; Ryhänen et al.,

2003). These data are consistent with other in vitro studies

showing that CB1093 and KH1060, alone or in combination

with 9-cis-retinoic acid, inhibited the growth of LNCaP

human prostate cancer cells (Elstner et al., 1999) and human

neuroblastoma cells (Gumireddy et al., 2003). It was also

demonstrated that these effects were associated with increased

levels of p21(waf-1) and p27(kip1) protein. The inhibiting

effects of CB1093 on the growth of prostate adenocarcinoma

was also confirmed in vivo by some experimental studies

showing that this analogue inhibited tumor growth in the

Dunning prostate model and in athymic nude mice trans-

planted with LNCaP tumor cells (Oades et al., 2002). Other

studies, performed on MCF-7, T47D, and Hs578T breast

cancer cell lines, showed that CB1093 enhanced the response

of breast cancer cells to TNF-a and the intracellular

production of ceramide which appeared to act as downstream

effectors in Vit D-mediated caspase-independent cell death

(Mathiasen et al., 1993; Pirianov & Colston, 2001).

Interestingly, Danielsson et al. (1998) reported that CB1093

appeared to be very effective in inducing apoptosis in the

early stage in the WM1341 melanoma cell line, but not in the

advanced stage in MeWo melanoma cell line. Other studies

examined the effects induced by BXL-628 analogue or

Elocalcitol in benign prostatic hyperplasia and in prostate

cancer cells (Adorini et al., 2007; Penna et al., 2009; Tiwari,

2009). The results of these studies indicated that the main

mechanism appears to be related to the inhibition of growth

factors and to the interleukin-8 (IL-8) production via a

decrease in COX-2 and PGE2 synthesis (Adorini et al., 2007;

Penna et al., 2009). Elocalcitol was also able to inhibit the

proliferation and invasiveness of prostate cancer cell line,

DU145 by interfering with keratinocytes growth factor

(KGF)-induced proliferation (Marchiani et al., 2006). Based

on these results, these molecules may be of potential clinical

interest as novel chemopreventive agents. Further clinical

studies may better assess their clinical effectiveness in cancer

prevention and treatment.

Tacalcitol and eldecalcitol

Tacalcitol (1,24-dihydroxyvitamin D3, PRI-2191) is an active

metabolite of 1a,25(OH)2D3 (Figure 2) that does not exhibit

the high calcemic activity of the original compound

(Wietrzyk et al., 2004). Studies aimed at assessing the

antitumor activity and toxicity of tacalcitol showed a lower

toxicity of this molecule after its subcutaneous administration

compared with that of calcitriol (Wietrzyk et al., 2004).

Furthermore, the oral administration of tacalcitol increased

calcium serum levels by 47%, while calcitriol increased

these levels by 78%. Interestingly, the treatment of mice with

breast cancer with tacalcitol caused a reduction of the tumor

volume by 41% (Wietrzyk et al., 2004). Moreover, the

co-administration of tacalcitol with antitumor drugs such as 5-

FU and cisplatin or oxaliplatin and irinotecan to mice

transplanted with MC38 (mouse) or HT-29 human colon

cancer induced a tumor growth inhibition significantly greater

than tacalcitol alone and a significant prolongation of the

survival time of mice (Milczarek et al., 2013b,c). Another

study carried out on different cell lines, namely A549 (lung

cancer), B16 (murine melanoma), HL-60 (human leukemia),
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SW707 (human colon cancer), MCF-7 and T47D (breast

cancer), WEHI-3 (murine leukemia), and on normal murine

fibroblasts BALB-3T3 cells, demonstrated that the adminis-

tration of tacalcitol in association with cisplatin or doxorubi-

cin resulted in a significant decrease in the IC50 values of

these antitumor agents (Pelczynska et al., 2006). Furthermore,

Switalska et al. (2012) recently reported that the administra-

tion of tacalcitol enhanced the antiproliferative activity of

imatinib demesilate on HL-60 leukemia cells. Eldecalcitol

(1a, 25-dihydroxy-2b-[3-hydroxypropyloxy] vitamin D3),

(ED-71), is an orally administered analogue of active Vit D

that is mainly used in the clinical treatment of osteoporosis

(Sanford & McCormack, 2011) (Figure 2). Further experi-

mental studies showed that ED-71 is endowed with

chemopreventive activity against tumors and with reduced

hypercalcemic effects (Hatakeyama et al., 2010). Studies on

myeloid leukemia demonstrated the ability of this molecule to

induce tumor cells to differentiate into normal monocyte-

macrophages (Gocek & Studzinski, 2009; Hatakeyama et al.,

2010; Nishii & Okano, 2001). This molecule also inhibited

the proliferation of U937 human, histiocytic lymphoma cells,

and increased osteocalcin concentrations in the human

osteosarcoma cells (MG-63) (Hatakeyama et al., 2010).

Eldecalcitol is a CYP24A1-resistant analogue (Ritter &

Brown, 2011). CYP24A1 is expressed in many tissues and

cells, including the prostate, and appear to be implicated in

the resistance of prostate cancer to Vit D (Tannour-Louet,

2014). Therefore, ED-71 may be of clinical usefulness in the

prevention and treatment of prostate cancer (Chen et al.,

2012; Sakaki et al., 2014).

BXL 0124

BXL0124, a new analogue of Vit D, belongs to the deuterated

Gemini Vit D compounds (Figure 2). These compounds have

a C-20 methyl group, a deuterium-substituted side chain, and

a second side chain that has a double or triple bond and a

fluorine. BXL0124 has been shown to possess a chemo-

preventive effect on breast cancer and prostate cancer (Lee

et al., 2008; Spina et al., 2007; Wahler et al., 2014).

Interestingly, in vitro studies on MCF10DCIS cells showed

that this molecule had antiproliferative effects on breast

cancer and markedly decreased the expression of CD44 (So

et al., 2011). Intriguingly, recent observations showed that

BXL0124 inhibited breast cancer cell invasion by targeting

CD44-STAT3 signaling (So et al., 2013a). These findings are

consistent with the observations that the JAK2/STAT3

signaling pathway is essential for growth of the CD44+/

CD24� stem cell-like breast (Marotta et al., 2011). In

contrast, the inhibiting activity of this molecule on tumor

growth observed in vitro was further confirmed by in vivo

studies showing that either the oral (0.03 or 0.1 mg/kg) or

intraperitoneal (0.1mg/kg) administration of Gemini 6 d a

week for 5 weeks to mice-bearing tumor caused a reduction in

the growth of breast cancer and a consistent decrease in the

expression of CD44 protein, without causing hypercalcemia

(So et al., 2011). Consistent with these findings, Wahler et al.

(2014) showed that, in mice inoculated with ductal carcinoma

in situ (DCIS) MCF10DCIS com. cells, the administration of

BXL0124 resulted in a 43% reduction in tumor volume.

Moreover, BXL0124 treatment also decreased the mRNA

levels of MMPs starting at week 3, thus contributing to the

inhibition of invasive transition. These findings indicate that

this molecule may be an important target for the chemopre-

vention and treatment of breast cancer. Consistent with these

findings, a more recent study by So et al. (2013b) reported

that BXL0124 may be effective, in combination with other

molecules, as potential chemopreventive agent, but not for the

treatment, against the tumorigenesis of ErbB2-overexpressing

breast cancer. The same authors highlighted the fact that

BXL0124 (10 nM) induced expression of mRNA coding for

osteopontin, one of the genes regulated by Vit D, thus

contributing to the regulation of cell proliferation (So et al.,

2011). BXL0124 has also been shown to reduce tumor growth

by 50% and to prevent metastasis formation in the MC-26

colon cancer xenograft model while no effect was noted on

calcium homeostasis (Spina et al., 2007). These data warrant

future clinical studies to assess the pharmacological profile of

this analog in humans.

19-nor-1a,25(OH)2D3 analogs: MART-10, MART-11,
paracalcitol, and inecalcitol

MART-10 MART-11

19-nor-Vit D compounds are Vit D analogs in which the ring

A methylene group on C-19 is replaced with two hydrogen

atoms (Chen & Kittaka, 2011) (Figure 2). MART-10 (19-nor-

2a-(3-hydroxypropyl)-1a,25(OH)2D3) and MART-11 (19-

nor-2b-3-hydroxypropyl-1a,25(OH)2D3) are two new syn-

thetic C2-substituted 19-nor-1a,25(OH)2D3 analogs of Vit D

that have negligible effects on calcium plasma levels and that

appear to be effective in the prevention and treatment of

prostate cancer (Chen & Kittaka, 2011; Kittaka et al., 2012).

In vitro studies on the HL-60 cell line showed that compared

with 1,25(OH)2D3, MART-10, and MART-11 are endowed

with a different degree of binding affinity for VDR (100 and

3%). In addition, both analogues were more effective in

inducing cell differentiation, compared with 1,25(OH)2D3

(Arai & Kittaka, 2006; Ono et al., 2003). The discrepancy

between the rate of VDR binding and differentiation activity

was explained, at least in part, by their remarkable ability to

recruit co-activators, such as hTIF-2 and HSRC-1 (Arai et al.,

2007). The antiproliferative activity of MART-10 and MART-

11 was investigated in LNCaP and PC3 human prostate

cancer cells (Chen et al., 2003; Flanagan et al., 2009). These

investigations have shown that both analogues possess

antiproliferative activity comparable with that of

1,25(OH)2D3. However, MART-10 proves about 1000-fold

more active than 1a,25(OH)2D3 in inhibiting LNCaP and PC-

3 prostate cancer cell proliferation (Chen & Kittaka, 2011;

Iglesias-Gato et al., 2011). Furthermore, in vitro studies

which compared the expression level of the enzyme

CYP24A1 in LNCaP and PC-3 in response to treatment

with 1,25(OH)2D3 and MART-10 showed that this latter

molecule was able to induce the expression of CYP24A1, one

of the three major enzymes involved in the metabolism of Vit

D (Jones et al., 2012), to a lower concentration than calcitriol

(Flanagan et al., 2009). In vivo, the subcutaneous adminis-

tration of MART-10 was reported to up-regulate CYP24A1

mRNA expression in rat kidneys without affecting their
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plasma calcium levels (Iglesias-Gato et al., 2011). These

findings demonstrated that MART-10 is biologically active

in vivo and may be of clinical usefulness in treating prostate

cancer. Therefore, the induction of the CYP24A1 gene was

used as an index for evaluating the biological potency of new

Vit D analogs (Chen & Kittaka, 2011). These studies

additionally highlighted the fact that MART-10 induced

CYP24A1 gene expression at a lower concentration with a

longer duration compared with 1a,25(OH)2D3, suggesting that

MART-10 is less susceptible to CYP24A1 degradation

(Flanagan et al., 2009; Iglesias-Gato et al., 2011).

Furthermore, the effects induced by MART-10 lasted for a

longer period of time. This phenomenon indicated a low

susceptibility of this molecule to being degraded by

CYP24A1 (Flanagan et al., 2009). Interestingly, MART-10

has been shown to be a potent inhibitor of cancer cell

invasiveness (Chen & Kittaka, 2011). In fact, in vitro studies

on PC-3 prostate cancer cells showed that MART-10

determined down-regulation of matrix metalloproteinase-9

(MMP-9), an enzyme which fosters tumor invasion, angio-

genesis, and metastasis (Chen & Kittaka, 2011). More recent

observations by Chiang et al. (2014) show that MART-10 is

more active than 1a,25(OH)2D3 in preventing MCF-7 cell

invasion and migration, probably mediated through the up-

regulation of E-cadherin, and that of the transcription factors

implicated in epithelial–mesenchymal transition (EMT)

down-regulation, e.g., Snail, Slug, and Twist, as well as

MMP-13. These data further confirm and extend previous

finding of the same authors showing that MART-10 is also

able to inhibit cell proliferation and to induce apoptosis in

MCF-7/ER(+) breast cancer cells (Chiang et al., 2012). These

findings suggest that these analogues and their structurally

related analogues may be good candidates for the treatment of

different human tumors including breast, prostate, and liver

cancers (Kittaka et al., 2012). These observations warrant

further in vivo animal study to better assess the pharmaco-

logical profile and the therapeutic effectiveness of these

molecules in humans.

Paricalcitol

Paricalcitol (19-nor-1a,25-dihydroxyvitamin D2) is a syn-

thetic analog of calcitriol, the active form of Vit D (Figure 2).

Experimental in vitro and in vivo studies have reported that

paricalcitol presents anticancer activity against several hema-

tological and solid tumors including myeloid leukemia,

myeloma, gastric cancer, colon cancer, and pancreatic

cancer and that these effects may be mediated through the

VDR (Kumagai et al., 2003, 2005; Park et al., 2012; Schwartz

et al., 2005, 2008). Interestingly, recent clinical observation

by Lawrence et al. (2013) has shown that paricalcitol, in

combination with taxane-based chemotherapy, appears to be

safe and feasible and may have a clinical benefit for women

with metastatic breast cancer. Unlike these findings, Schwartz

et al. (2005) did not observe any clear response in patients

with advanced prostate cancer. On the other hand, in HL-60

and NB4 myeloid leukemia cell lines, paricalcitol was noted

to suppress proliferation and induce differentiation (Kumagai

et al., 2005; Molnar et al., 2004). In human NCI-H929

myeloma cells, this molecule inhibited cell growth by causing

cell-cycle block and apoptosis indicating its potential as an

antileukemic agent (Molnar et al., 2004). Furthermore, in

patients with all-trans-retinoic acid (ATRA)-resistant myeloid

leukemia a combination therapy consisting of paricalcitol and

arsenic trioxide also appears to be promising (Kumagai et al.,

2005). These findings together with its low calcemic activity

and achievable therapeutic doses strongly support its use in

clinical trials regarding hematological diseases such as MDS

and acute myeloid leukemia.

Inecalcitol

Inecalcitol is a novel Vit D 19-nor analogue (19-nor-14-epi-

23-yne-1,25 dihydroxyvitamin D3) that differs from

1,25(OH)2D3 through epimerization of C14, deletion of

C19, and 23-yne modification in the side chain (Figure 2)

(Verlinden et al., 2000). This analogue appears to be less

inclined to induce hypercalcemia while it remains a potent

stimulant of VDR (Verlinden et al., 2000). Inecalcitol has

been shown to suppress both in vitro and in vivo the growth of

human LNCaP prostate cancer and that of SCC (Ma et al.,

2013a,b; Okamoto et al., 2012). The antitumor activity of

inecalcitol, at least in SCC, appears to be the consequence of

(a) the arrest of tumor cells in G0/G1 transition phase of the

cell cycle, (b) the triggering of the apoptosis cascade through

the activation of caspase 8/10–caspase 3 pathway, and (c) the

inhibition of expression of c-IAP1 and XIAP. Inecalcitol has

also been shown to repress cyclin D1 and cyclin C gene

expression and to induce p21 and p27 gene expression more

efficiently than calcitriol (Ma et al., 2013a). Inecalcitol has

been utilized in clinical studies in association with the

classical antitumor agent docetaxel (Medioni et al., 2014).

The results of the phase II trial in castration-resistant prostate

cancer showed that this drug combination had a better PSA

response than docetaxel alone. These data provide support for

further evaluation of inecalcitol in cancer treatment.

Conclusions

On one hand, epidemiological observations highlight the fact

that high levels of vitamin D may offer protection against

many types of cancer (Leyssens et al., 2013; Pilz et al., 2013).

On the other hand, many experimental studies provide

evidence for the growth inhibiting, anti-inflammatory, and

pro-differentiation effects of Vit D in vitro on human cancer

cell lines and in vivo on tumor-bearing animals (Krishnan &

Feldman, 2011; Meeker et al., 2014; Trump et al., 2010;

Vanoirbeek et al., 2011). Therefore, the use of vitamin D or its

semisynthetic analogues in cancer therapy could provide

effective chemopreventive effects against tumor progression

(Byers et al., 2012; Krishnan & Feldman, 2011; Meeker et al.,

2014; Trump et al., 2010; Vanoirbeek et al., 2011). The

possible mechanisms by which vitamin D mediates these

effects have been, only in part, identified. Although the

preclinical data are striking and the epidemiologic data are

encouraging, no well-designed clinical trial on the optimal

administration of vitamin D as a cancer therapy has ever been

undertaken (Krishnan & Feldman, 2010; Leyssens et al.,

2014). Future clinical investigations may better define the

clinical role of Vit D or its analogues in cancer prevention and

treatment. Another relevant feature of the paradigm Vit D/
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cancer needing further investigation is related to tumor

resistance as this phenomenon may affect the synthesis of the

active metabolite of Vit D and, consequently, its potential

therapeutic activity (Ajibade et al., 2014; Giardina et al.,

2012; Larriba & Muñoz, 2010; Tannour-Louet, 2014).

Therefore, many studies are currently directed to find new

molecules which may circumvent tumor resistance to Vit D

analogues (Deeb et al., 2007; Fischer et al., 2012; Ritter &

Brown, 2011; Solomon et al., 2014).
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Dröge W. (2003). Autophagy and aging – Importance of amino acid
levels. Mech Ageing Dev 225:161–8.

Edfeldt K, Liu PT, Chun R, et al. (2010). T-cell cytokines differentially
control human monocyte antimicrobial responses by regulating
vitamin D metabolism. Proc Natl Acad Sci USA 107:22593–8.

Eide MJ, Johnson DA, Jacobsen GR, et al. (2011). Vitamin D and
nonmelanoma skin cancer in a health maintenance organization
cohort. Arch Dermatol 147:1379–84.

Elstner E, Campbell MJ, Munker R, et al. (1999). Novel 20-epi-vitamin
D3 analog combined with 9-cis-retinoic acid markedly inhibits colony
growth of prostate cancer cells. Prostate 40:141–9.

Engel P, Fagherazzi G, Boutten A, et al. (2010). Serum 25(OH) vitamin
D and risk of breast cancer: A nested case-control study from the
French E3N cohort. Cancer Epidemiol Biomarkers Prev 19:2341–50.

Engeset D, Alsaker E, Lund E, et al. (2006). Fish consumption and breast
cancer risk. The European Prospective Investigation into Cancer and
Nutrition (EPIC). Int J Cancer 119:175–82.

Escaleira MT, Brentani MM. (1999). Vitamin D3 receptor (VDR)
expression in HC-11 mammary cells: Regulation by growth-
modulatory agents, differentiation, and Ha-ras transformation.
Breast Cancer Res Treat 54:123–33.

Evans TR, Colston KW, Lofts FJ, et al. (2002). A phase II trial of the
vitamin D analogue Seocalcitol (EB1089) in patients with inoperable
pancreatic cancer. Br J Cancer 86:680–5.

Fedirko V, Bostick RM, Flanders WD, et al. (2009). Effects of vitamin D
and calcium on proliferation and differentiation in normal colon
mucosa: A randomized clinical trial. Cancer Epidemiol Biomarkers
Prev 18:2933–41.

Fedirko V, Bostick RM, Long Q, et al. (2010). Effects of supplemental
vitamin D and calcium on oxidative DNA damage marker in normal
colorectal mucosa: A randomized clinical trial. Cancer Epidemiol
Biomarkers Prev 19:280–91.

Feldman D, Krishnan AV, Swami S, et al. (2014). The role of
vitamin D in reducing cancer risk and progression. Nat Rev Cancer
14:342–57.

Fernandez-Garcia NI, Pálmer HG, Garcia M, et al. (2005). 1,25-
Dihydroxyvitamin D3 regulates the expression of ld1 and ld2 genes
and the angiogenic phenotype of human colon carcinoma cells.
Oncogene 24:6533–44.

Fischer J, Wang TT, Kaldre D, et al. (2012). Synthetically
accessible non-secosteroidal hybrid molecules combining vitamin D
receptor agonism and histone deacetylase inhibition. Chem Biol 19:
963–71.

Flanagan JN, Zheng S, Chiang KC, et al. (2009). Evaluation of 19-nor-
2alpha-(3-hydroxypropyl)-1alpha,25-dihydroxyvitamin D3 as a thera-
peutic agent for androgen-dependent prostate cancer. Anticancer Res
29:3547–53.

Flanagan L, Packman K, Juba B, et al. (2003). Efficacy of Vitamin D
compounds to modulate estrogen receptor negative breast cancer
growth and invasion. J Steroid Biochem Mol Biol 84:181–92.

Fleet JC, DeSmet M, Johnson R, Li Y. (2012). Vitamin D and cancer:
A review of molecular mechanisms. Biochem J 441:61–76.

Flores O, Wang Z, Knudsen KE, Burnstein KL. (2010). Nuclear targeting
of cyclin-dependent kinase 2 reveals essential roles of cyclin-
dependent kinase 2 localization and cyclin E in vitamin D-mediated
growth inhibition. Endocrinology 151:896–908.

Flynn G, Chung I, Yu WD, et al. (2006). Calcitriol (1,25-dihydrox-
ycholecalciferol) selectively inhibits proliferation of freshly isolated

tumor-derived endothelial cells and induces apoptosis. Oncology 70:
447–57.

Freedman DM, Looker AC, Chang SC, Graubard BI. (2007). Prospective
study of serum vitamin D and cancer mortality in the United States.
J Natl Cancer Inst 99:1594–602.

Friedrich M, Diesing D, Cordes T, et al. (2006). Analysis of 25-
hydroxyvitamin D3-1alpha-hydroxylase in normal and malignant
breast tissue. Anticancer Res 26:2615–20.

Fukumoto S. (2014). Phosphate metabolism and vitamin D. Bonekey Rep
3:497. doi:10.1038/bonekey.2013.231.

Funato K, Miyazawa K, Yaguchi M, et al. (2002). Combination of 22-
oxa-1,25-dihydroxyvitamin D(3), a vitamin D(3) derivative, with
vitamin K(2) (VK2) synergistically enhances cell differentiation but
suppresses VK2-inducing apoptosis in HL-60 cells. Leukemia 16:
1519–27.

Furigay P, Swamy N. (2004). Anti-endothelial properties of 1,25-
dihydroxy-3-epi-vitamin D3, a natural metabolite of calcitriol.
J Steroid Biochem Mol Biol 89:427–31.

Gandini S, Boniol M, Haukka J, et al. (2011). Meta-analysis of
observational studies of serum 25-hydroxyvitamin D levels
and colorectal, breast and prostate cancer and colorectal adenoma.
Int J Cancer 128:1414–24.

Garcia LA, King KK, Ferrini MG, et al. (2011). 1,25(OH)2vitamin D3

stimulates myogenic differentiation by inhibiting cell proliferation
and modulating the expression of promyogenic growth factors and
myostatin in C2C12 skeletal muscle cells. Endocrinology 152:
2976–86.

Garland CF, Gorham ED, Mohr SB, et al. (2007). Vitamin D and
prevention of breast cancer: Pooled analysis. J Steroid Biochem Mol
Biol 103:708–11.

Gaschott T, Steinmeyer A, Steinhilber D, Stein J. (2002). ZK156718 a
low calcemic, antiproliferative, and prodifferentiating vitamin D
analog. Biochem Biophys Res Commun 290:504–9.
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Massagué J. (2008). TGF beta in cancer. Cell 134:215–30.
Massoner P, Colleselli D, Matscheski A, et al. (2009). Novel mechanism

of IGF-binding protein-3 action on prostate cancer cells: Inhibition of
proliferation, adhesion, and motility. Endocr Relat Cancer 16:
795–808.

Mathiasen IS, Colston KW, Binderup L. (1993). EB1089, a novel
vitamin D analogue, has strong antiproliferative and differentiation
inducing effects on cancer cells. J Steroid Biochem 46:365–71.
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