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Introduction

Cisplatin (cis-diamminedichloroplatinum(II)) is one of the 
most effective anticancer drugs in the treatment of a variety 
of human tumors1,2, and is currently being used clinically. 
Unfortunately, its usefulness is limited due to the develop-
ment of resistance in tumor cells and its significant side 
effects3. The search for new metal-based complexes with low 
toxicity and improved therapeutic properties has attracted 
considerable attention4,5. However, all the research that 
has involved direct structural analogs of cisplatin have not 
shown improved clinical efficacy in comparison with the 
parent drug, most likely because all cis-[PtX

2
(amine)

2
] com-

pounds show similar DNA-binding modes, thereby resulting 
in similar biological consequences. One approach to over-
come this shortcoming is to look past the structure–activity 
of cisplatin analogs and identify novel materials that can 
be utilized as building blocks with different DNA-binding 
modes from that of cisplatin6,7. Recently, complexes of the 
transition metals have been reported to intercalate between 
DNA base pairs, behaving as artificial DNA nucleases and 
generating nicks at different DNA sites8–11. Furthermore, it is 
reported that this series of complexes produce significantly 

more cytotoxic and antiproliferative effects compared with 
controls12.

Because of the similar coordination modes and chemi-
cal properties of palladium(II) and platinum(II), they both 
adopt dsp2 orbital hybridization, forming a square planar 
complex. Based on the structural analogy between Pt(II) and 
Pd(II) complexes, the present article includes the synthesis, 
structural characterization, and preliminary biological activ-
ity studies of four complexes of the general formula [M(L)(L

1
)

Cl]·4H
2
O,where L is a quinolinic acid ligand and L

1
 is a bipy 

(bipy = 2,2’-bipyridyl) or phen (phen = 1,10-phenanthroline) 
ligand (Figure 1).

Materials and methods

All chemicals and reagents purchased were of reagent grade 
and used without further purification unless otherwise 
noted. The starting material for synthesis of the title com-
plexes, K

2
[PdCl

4
], K

2
PtCl

4
[Potasslum tetrachloroplatinate(II)] 

was obtained from Sinopharm Chemical Reagent Co.,Ltd., 
was synthesized by us, and PdCl

2
, HCl and KCl, quinolinic 

acid, and 2,2’-bipyridyl were obtained from commercial 

(Received 20 September 2009; accepted 22 September 2009)

ISSN 1475-6366 print/ISSN 1475-6374 online © 2010 Informa UK Ltd
DOI: 10.3109/14756360903357635 http://www.informahealthcare.com/enz

O R I G I N A L  A R T I C L E

Synthesis, characterization, DNA interaction, and  
cytotoxicity of novel Pd(II) and Pt(II) complexes

Enjun Gao, Fuchun Liu, Mingchang Zhu, Lei Wang, Yun Huang, Hongyan Liu, Shuang Ma,  
Qunzhi Shi, and Ni Wang

Laboratory of Coordination Chemistry, Shenyang Institute of Chemical Technology, Shenyang, China 

Abstract
Four complexes [Pd(L)(bipy)Cl]·4H2O (1), [Pd(L)(phen)Cl]·4H2O (2), [Pt(L)(bipy)Cl]·4H2O (3), and [Pt(L)(phen)
Cl]·4H2O (4), where L = quinolinic acid, bipy = 2,2’-bipyridyl, and phen = 1,10-phenanthroline, have been syn-
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suppliers. Fish sperm (FS)-DNA and pBR322 plasmid DNA 
were purchased in China. HeLa (human cervix epitheloid 
carcinoma) cells, Hep-G2 cells, KB cells, and AGZY-83a 
(human lung carcinoma) cells were obtained from the 
American Type Culture Collection.

Synthesis of complexes
The complex [Pd(L)(bipy)Cl]·4H

2
O (1) was synthesized 

as follows. K
2
[PdCl

4
] (32.6 mg, 0.1 mmol) was dissolved in 

water (10 mL), and in a separate beaker, ligand L (20.9 mg, 
0.1 mmol) was dissolved in water (10 mL). The palladium 
solution was slowly added dropwise to the solution contain-
ing ligand L while stirring, and the mixture was allowed to 
react for 7 h at room temperature. Then a 10 mL solution 
of ethanol and water (1:5), containing bipy (2,2’-bipyridyl) 
(15.6 mg, 0.1 mmol), was added and the mixture was stirred 
for 6 h under the same conditions. The solution was then 
filtered and kept in air. Three weeks later, the resulting 
red-brown crystals were removed, filtered, washed with 
ether, and dried in vacuo. Complex 1 was prepared with 
a relatively high yield (55.3 mg, 80%). Anal. calcd. (%) for 
C

20
H

17
ClN

3
O

3.50
Pd (1): C, 48.27; H, 3.02; N, 8.45. Found (%): 

C, 48.05; H, 2.93; N, 8.34; IR (cm−1, s, strong; m, medium; 
w, weak): ν(O-H) 3420 (m); ν(=C-H) 3081 (w); ν(C=O) 1624 
(m); ν(C=C) 1560 (m), 1448 (m); ν(C-N) 1345 (m); ν(C-O) 
1169 (w); ν(C-H) 776 (m).1H NMR (DMSO-d

6
, 300 MHz): 

7.48 (tt, J = 4.8 Hz, 2H, H
b
, H

b1
), 7.82 (t, J = 6.71 H, H, H

h
), 7.96 

(t, J = 7.5 Hz, 1H, H
i
), 7.98 (tt, J = 7.5 Hz, 2H, H

c
, H

c1
), 8.38 (d, 

J = 7.8 Hz, 1H, H
j
), 8.41 (d, J = 7.8 Hz, 1H, H

g
), 8.57 (d, J = 8.1 

Hz, 1H, H
e
), 8.60 (dd, J = 8.1 Hz, 2H, H

a
, H

a1
), 8.69 (d, J = 7.5 

Hz, 1H, H
f
), 9.13 (dd, J = 4.2 Hz, 2H, H

d
, H

d1
).

The compound [Pd(L)(phen)Cl]·4H
2
O (2) was prepared 

in a similar method as described for 1 with phen (19.8 mg, 
0.1 mmol) in place of bipy. The product was obtained as 
a white powder. Yield: 54.9 mg, 75%. Anal. calcd. (%) for 
C

22
H

15
N

3
O

2
PdCl·4H

2
O (2): C, 46.56, H, 4.06, N, 7.41. Found 

(%): C, 46.45; H, 3.92; N, 7.34; IR (cm−1, s, strong; m, medium; 
w, weak): ν(O-H) 3391 (m); ν(=C-H) 3037 (w); ν(C=O) 1616 
(s); ν(C=C) 1559 (m), 1461 (m); ν(C-N) 1338 (m); ν(C=O) 1253 
(w); ν(C-H) 774 (m).1H NMR (DMSO-d

6
, 300 MHz): 7.93(t, J = 

7.1 Hz, 1H, H
h
), 8.07 (tt, J = 8.4 Hz, 2H, H

b
, H

b1
), 8.11 (t, J = 7.5 

Hz, 1H, H
i
), 8.13 (dd, J = 5.7 Hz, 2H, H

d
, H

d1
), 8.15 (d, J = 8.1 

Hz, 1H, H
j
), 8.27 (d, J = 7.2 Hz, 1H, H

g
), 8.31(d, J = 8.1 Hz, 1H, 

H
e
), 8.96 (tt, J = 7.8 Hz, 2H, H

c
, H

c1
), 8.98 (d, J = 7.8 Hz, 1H, H

f
), 

9.36 (dd, J = 5.4 Hz, 2H, H
a
, H

a
).

The compound [Pt(L)(bipy)Cl]·4H
2
O (3) was prepared in 

a similar method as described for 1 with K
2
[PtCl

4
] (41.5 mg, 

0.1 mmol) in place of K
2
[PdCl

4
]. The product was obtained 

as a yellow powder. Yield: 56.9 mg, 73%. Anal. calcd. (%) 
for C

20
H

15
N

3
O

2
PtCl·4H

2
O (3): C, 37.97, H, 3.64, N, 6.65. 

Found (%): C, 37.88; H, 3.58; N, 6.54; IR (cm−1, s, strong; m, 
medium; w, weak): ν(O-H) 3440 (m); ν(=C-H) 3078 (w); 
ν(C=O) 1669 (m); ν(C=C) 1561 (w), 1471 (m); ν(C-N) 1328 
(m); ν(C-O) 1243 (w); ν(C-H) 775 (m).1H NMR (DMSO-d

6
, 

300 MHz): 7.73 (tt, J = 6.9 Hz, 2H, H
b
, H

b1
), 7.85 (t, J = 6.9 

Hz, 1H, H
h
), 7.98 (t, J = 7.8 Hz, 1H, H

i
), 8.12 (tt, J = 6.0 Hz, 

2H, H
c
, H

c1
), 8.34 (d, J = 8.4 Hz, 1H, H

j
), 8.42 (d, J = 8.1 Hz, 

1H, H
g
), 8.53 (d, J = 9.3 Hz, 1H, H

e
), 8.59 (dd, J = 7.8 Hz, 2H, 

H
a
, H

a1
), 8.70 (d, J = 4.8 Hz, 1H, H

f
), 9.50 (dd, J = 5.7 Hz, 2H, 

H
d
, H

d1
).

The compound [Pt(L)(phen)Cl]·4H
2
O (4) was prepared 

in a similar method as described for 1 with phen (19.8 mg, 
0.1 mmol) in place of bipy. The product was obtained 
as a red powder. Yield: 55.1 mg, 67%. Anal. calcd. (%) for 
C

22
H

15
N

3
O

2
PtCl·4H

2
O (4): C, 40.24, H, 3.51, N, 6.40. Found 

(%): C, 40.32; H, 3.49; N, 6.34; IR (cm−1, s, strong; m, medium; 
w, weak): ν(O-H) 3441 (m); ν(=C-H) 3056 (w); ν(C=O) 1670 
(m); ν(C=C) 1582 (w), 1460 (w); ν(C-N) 1332 (m); ν(C-O) 
1272 (w); ν(C-H) 770 (m).1H NMR (DMSO-d

6
, 300 MHz) 

7.89(t, J = 6.9 Hz, 1H, H
h
), 8.05 (tt, J = 6.3 Hz, 2H, H

b
, H

b1
), 

8.11 (t, J = 7.2 Hz, 1H, H
i
), 8.14 (dd, J = 5.4 Hz, 2H, H

d
, H

d1
), 

8.16 (d, J = 3.0 Hz, 1H, H
j
), 8.28 (d, J = 6.6 Hz, 1H, H

g
), 8.34 

(d, J = 7.8 Hz, 1H, H
e
), 8.95 (tt, J = 4.8 Hz, 2H, H

c
, H

c1
), 8.99 (d,  

J = 8.7 Hz, 1H, H
f
), 9.37 (dd, J = 4.8 Hz, 2H, H

a
, H

a
).

Physical measurements
Elemental analyses were carried out for C, N, and H with 
a Finnigan EA 1112 model analyzer. Infrared (IR) spectra 
were run as KBr pellets on a Nicolet IR-470 machine. The 1H 
nuclear magnetic resosnance (NMR) spectra of dimethylsul-
foxide (DMSO) solutions were recorded on a Bruker Avance 
300 MHz spectrometer.

Ultraviolet-visible spectra were recorded on a UV-2550 
double beam spectrophotometer. Absorption values were 
determined in the range 200–400 nm, using a 1 cm quartz 
cuvette. Samples were prepared in buffer (pH 7.4, 50 mM 
Tris-HCl, 10 mM NaCl) and analyzed at room temperature 
(20°C).

Fluorescence measurements were obtained on a 
PerkinElmer LS55 fluorescence spectrofluorometer. For 
all fluorescence measurements, the entrance and exit slits 
were both maintained at 10 nm. The sample was excited at 
526 nm and its emission appeared at 604 nm. The buffer used 
in the binding studies was 50 mM Tris-HCl, pH 7.4, contain-
ing 10 mM NaCl. The sample was incubated for 4 h at room 
temperature (20°C) before spectral measurements. Under 
the experimental conditions, the fluorescence intensity of 
the respective complexes, FS-DNA, and ethidium bromide 
was significantly changed. The interaction of the respective 

N O

O

ab

c
d

e
f

g

h
i j c1

b1

d1

a1
N N

d c

b

a

c1

b1
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a1
N N

d
c

b

a

Figure 1.  Schematic structure of the ligands and the numbering scheme 
for 1H NMR spectroscopy.
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Pd(II) and Pt(II) complexes with DNA in vitro was studied as 
described in the literature12,13.

For gel electrophoresis experiments, pBR322 plasmid 
DNA (0.33 μg/μL) was treated with the  palladium(II) and 
platinum(II)complexes. in Tris buffer (50 mM Tris-acetate, 
18 mM NaCl buffer, pH 7.2), and the contents were incubated 
for 1 h at room temperature (20°C). Samples were eletro-
phoresed for 3 h at 90 V on 0.8% agarose gel in Tris-acetate 
buffer. After eletrophoresis, the gel was stained with 1 μg/mL 
ethidium bromide and photographed under UV light.

X-ray crystal structure measurement for complex 1
The crystal structure of complex 1 was determined by singe-
crystal X-ray diffraction. A suitable single crystal of dimen-
sions 0.26 × 0.30 × 0.20 mm was mounted in a glass fiber 
capillary. Crystal data of complex 1 were obtained at 293 
K in the range of 2.53° <  θ  <  26.02°on a Bruker Smart-1000 
CCD diffractometer with MoKα radiation (λ = 0.71073). The 
structure was solved by direct methods using SHELXL-97 
software14 and refined by means of the full-matrix least-
squares procedure on F2 15. All non-hydrogen atoms were 
refined anisotropically. Hydrogen atoms were included at 
ideal geometric positions. Structure solution and refinement 
based on 3971 independent reflections with Ι > 2σ(Ι) gave 
R

1
 = 0.0383, wR

2
 = 0.1193. The CCDC number of this crys-

tal complex 1 is 736056 (unit cell parameters: a 30.151(5), 

b 13.7611(18), c 9.9804(13), beta 102.449(3), space group 
C2/c). Crystal data and structure refinement details are sum-
marized in Table 1.

Cytotoxicity assay
The cytotoxicity of the four complexes was investigated 
on HeLa cells, Hep-G2 cells, KB cells, and AGZY-83a 
cells. IC

50
 (the concentration of tested agent that caused 

50% inhibition of cell growth) was determined using the 
MTT assay. This assay is based on cleavage of the yellow 
tetrazolium salt (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl 
tetrazolium bromide; MTT, Sigma), forming purple for-
mazan crystals by viable cells16. The cell lines were grown 
in 25 cm2 tissue culture flasks in an incubator at 37°C in a 
humidified atmosphere consisting of 5% CO

2
 and 95% air. 

The cells were maintained in logarithmic growth phase in 
complete medium consisting of RPMI 1640, 10% (v/v) heat- 
inactivated fetal calf serum, 20 mM Hepes, 0.112% bicarbo-
nate, and 2 mM glutamine. In short, the cells were seeded in 
a 96-well culture plate at 2 × 105 cells/well in 100 μL culture 
medium and 24 h later they were exposed to tested com-
pounds at different concentrations. The cells were incu-
bated for 72 h. Then, 20 μL MTT solution (5 mg/mL) was 
added to each well and the cells were further cultivated for 
4 h. After removal of the medium, DMSO was added to each 
well to dissolve the formazan crystals, and the absorbance 
was determined at 450 nm. The IC

50
 values were obtained 

from the results of quadruplicate determinations of at least 
three independent experiments.

In another test the effect on cell growth for the four com-
plexes was studied by culturing the cells in medium alone 
for 1 day, and then treating them for 3 days with 3 μg/mL 
concentrations. The viable cells remaining at the end of 
the treatment period were determined by MTT assay and 

Table 1.  Crystal data and refinement for complex 1.

Empirical formula C
20

H
17

ClN
3
O

3.50
Pd

Formula weight 497.22

Temperature (K) 293 (2)

Wavelength (Å) 0.71073

Crystal system Monoclinic

Space group C2/c

a (Å) 30.151 (5)

b (Å) 13.7611 (18)

c (Å) 9.9804 (13)

α (deg) 90

β (deg) 102.449 (3)

γ (deg) 90

Volume (Å3) 4043.6 (10)

Z 8

D
calc

 (mg/m3) 1.633

Absorption coefficient (mm−1) 1.078

F(000) 1992

Crystal size 0.29 × 0.15 × 0.07

θ Range for data collection (deg) 2.53–26.02

Index ranges −31  ≤  h  ≤  37, −16  ≤  
k  ≤ 16, −11 ≤  l  ≤  12

Reflections collected 11,116

Independent reflections (R
int

) 3971

Data/restraints/parameters 3971/0/275

S 1.026

Final R indices [Ι > 2σ(Ι)] R
1
 = 0.0383, wR

2
 = 0.1193

R indices (all data) R
1
 = 0.0427, wR

2
 = 0.1246

Largest diffraction peak and hole  
(Å; e3)

0.903 and −0.577

C(8)
C(9)

C(10)

C(11)

C(12)
C(13)

C(14)

C(15)

C(16)

C(17)
C(18)

C(19)

C(20)C(7)

C(6)C(5)C(4)

C(3)
C(2) C(1)

N(1)

N(2)
N(3)

Pd(1) Cl(1)

O(1)

O(2)

Figure 2.  Independent molecule of complex 1 with numbering of atoms 
(four crystal water and H atoms are omitted for clarity) at 30% probability 
thermal ellipsoids. 
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calculated as a percentage of control, treated with vehicle 
alone (DMSO) under similar conditions.

Results and discussion

Crystallographic structure of complex 1
The single-crystal structure of complex 1 was measured by X 
ray crystallography as shown in Figure 2, and with an atom 
numbering scheme. Selected bond lengths (Å) and angles 
(deg) are enumerated in Table 2.

As shown in Figure 2, the palladium atom is coordinated 
with N(1), N(2), and N(3), which come from the bipy and L 
ligands, and the Cl from K

2
[PdCl

4
]. In fact, only a few crystal 

structures have been reported for Pt(NN) complexes17,18. 
Our group has reported crystal structures of the Pd(NN) 
type complexes19,20, where NN is phen or bipy, that are 

analogous to the present complex 1. The N(2)–Pd–Cl angle 
measures 173.07° and the N(1)–Pd–N(3) angle measures 
176.03°, and therefore the coordination geometry of the Pd 
atom is square planar, with rather small deviations of the 
ligating atoms from the coordination plane. The plane is 
determined by four atoms N(1), N(2), C(5), and C(6) from 
the bipy ligand, and the others consisting of C(12), C(19), 
C(20), and N(3) from ligand L are almost perpendicular 
(dihedral angle 85.59°). The L ligands are stacked (centroid-
to-centroid distances of 3.639 Å) in an offset face-to-face 
mode arrangement with a dihedral angle of 11.07°, con-
forming to an approximate interaction21. Through the π–π 
weak interaction, a one-dimensional chain is constructed, 
as shown in Figure 3. In Figure 3, there are also CH–π inter-
actions. In the CH–π interactions of the complex, the dis-
tance from the closest hydrogen to the plane of the phenyl 
ring is 2.890. The three-dimensional structure of complex 
1 through π–π stacking and CH–π interactions is shown in 
Figure 4.

Electronic absorption titration
The electronic absorption spectrum is one of the most 
important means for determining DNA binding of metal 
complexes22–24. The absorption spectra of the four com-
plexes in the absence and presence of FS-DNA are illus-
trated in Figure 5. In the UV region, the complexes exhibit 
two intense absorption bands around 230 nm and 275 nm, 

Table 2.  Selected bond lengths (Å) and angles (deg) for complex (1).

Pd(1)–N(1) 2.014 (3) Pd(1)–N(2) 2.021 (3)

Pd(1)–N(3) 2.040 (3) Pd(1)–Cl(1) 2.2953 (10)

N(1)–Pd(1)–N(2) 80.47 (13) N(1)–Pd(1)–N(3) 176.03 (12)

N(2)–Pd(1)–N(3) 96.25 (13) N(1)–Pd(1)–Cl(1) 95.65 (9)

N(2)–Pd(1)–Cl(1) 173.07 (9) N(3)–Pd(1)–Cl(1) 87.84 (9)

C(1)–N(1)–Pd(1) 125.7 (3) C(5)–N(1)–Pd(1) 114.5 (3)

C(20)–N(3)–Pd(1) 119.9 (2) C(6)–N(2)–Pd(1) 114.9 (3)

C(10)–N(2)–Pd(1) 125.6 (3) C(12)–N(3)–Pd(1) 120.4 (2)

Figure 3.  One-dimensional chain of complex 1 through π–π weak interac-
tion (H atoms are omitted for clarity). 

Figure 4.  Three-dimensional structure of complex 1 through π–π stacking 
and CH–π interactions. 
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respectively. These absorption bands are attributed to the 
π–π* transition of the L and bipy ligands25. With increas-
ing concentration of FS-DNA, the absorption bands of the 
complexes are affected, resulting in the slight tendency of 
reduction in absorbency and red shift. The finding indi-
cates a strong stacking interaction between the aromatic 
group and the base pairs of FS-DNA, when the complexes 
intercalate to the FS-DNA. For determining the enucleating 
action instance between the four complexes and FS-DNA, 
the intrinsic binding constant K

b
 of the title complex with 

FS-DNA was calculated according to the following equa-
tion26, through a plot of [DNA]/(εa – εf ) versus [DNA]: 
[DNA]/(εa – εf ) = [DNA]/(εb – εf ) + 1/K(εb – εf ). Intrinsic 
binding constants K

b
 of the four complexes were calcu-

lated to be about 3.5 × 104 M−1, 3.9 × 104 M−1, 6.1 × 104 M−1, 
and 1.4 × 105 M−1, respectively. These K

b
 values are much 

smaller than those reported for typical classical interca-
lators (EtBr–DNA, 3.3 × 105 M−1 in 50 mM Tris-HCl/1.0 M 
NaCl buffer, pH 7.5)27. The results are indicative of a weaker 
binding of DNA with the complexes than with the classical 

intercalators. It is reasonable to speculate that interac-
tion is comparatively strong between the complexes and 
FS-DNA.

Fluorescence spectroscopic studies
Fluorescence quenching measurements can be used to 
investigate metal binding28. Ethidium bromide (EtBr) 
emits intense fluorescence in the presence of DNA due to 
its strong intercalation between the adjacent DNA base 
pairs. It has been reported that the enhanced fluorescence 
can be quenched by the addition of another molecule29,30, 
and quenching of DNA–EtBr fluorescence by the addition 
of complexes causes a reduction in the emission intensity, 
indicating competition between the complex and EtBr in 
binding to DNA31. The emission spectra of EtBr bound to 
DNA in the absence and presence of the four complexes 
are shown in Figure 6. The addition of each Pd(II) and Pt(II) 
complex to DNA pretreated with EtBr results in an appreci-
able reduction in fluorescence intensity, denoting that the 
complexes compete with EtBr to bind with DNA. This is in 
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Figure 5.  Absorption spectra of four complexes 1, 2, 3, and 4 in the absence and presence of increasing amounts of FS-DNA ([complex] = 10 μM,  
[DNA] = 0–48 μM). Arrow shows absorbance changes upon increasing DNA concentration. Insets: plots of [DNA]/(εa – εf ) versus [DNA] for titration of 
DNA with the four complexes.
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Figure 7.  Stern–Volmer quenching plots of complexes 1, 2, 3, and 4 with 
values of slope 0.228 (1), 0.282 (2), 0.307 (3), and 0.341 (4). 
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Figure 6.  Fluorescence spectra of binding of EtBr to DNA in the absence (line 1) and presence (lines 2–8) of increasing amounts of complexes.  
λ
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Figure 8.  Cleavage of pBR322 DNA (10 μM) in the presence of complexes. 
Lane 0, DNA alone; lanes 1–5, in different concentrations of complex: 1, 
3.5; 2, 7.0; 3, 14.0; 4, 21.0; 5, 28.0 μM. Quantitation % of Form II: a (0–5): 
40.60, 0, 3.84, 3.11, 4.03, 3.99; b (0–5): 41.74, 0, 1.788, 2.82, 3.24, 2.57; c 
(0–5): 13.81, 7.38, 10.63, 19.58, 40.63, 90.01; d (0–5) 15.74, 9.92, 13.35, 23.91, 
41.75, 90.84. a: complex 1, b: complex 2, c: complex 3, d: complex 4.
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accordance with the classical Stern–Volmer equation30: I
0
/I = 

1 + K
sq

r, where I
0
 and I represent the fluorescence intensities 

in the absence and presence of the complex, respectively, 
and r is the concentration ratio of the complex to DNA. K

sq
 is 

a linear Stern–Volmer quenching constant dependent on the 
ratio of the bound concentration of EtBr to the concentra-
tion of DNA. The K

sq
 value is obtained as the slope of the I

0
/I 

vs. r linear plot. The plots for quenching of DNA–EtBr fluo-
rescence by the four complexes are given in Figure 7. From 
the insets in Figure 7, the K

sq
 values for the four complexes 

are, respectively, 0.228, 0.283, 0.307, and 0.341 (K
sq

4 > K
sq

3 
> K

sq
2 > K

sq
1). Such a value of quenching constant suggests 

that the interaction of the complex with DNA is of moderate 
intercalation31,32. The data also indicate that the intercalation 
ability of the coordinated ligands varies as phen > bipy in 
this series of complexes33. In addition, the Pt(II) complexes 
have a better effect than Pd(II) on the fluorescence intensity 
of EtBr–DNA being quenched. Evidently, the outcome con-
forms to the order of complex 4 > complex 3 > complex 2 > 
complex 1. Thus, it can be confirmed that the reactions of 
the four intercalation complexes between the adjacent DNA 
base pairs have taken place34.

Cleavage of pBR322 DNA by complexes
The ability of complexes to perform DNA cleavage is gen-
erally monitored by agarose gel electrophoresis, usually 
involving pUC19 plasmid DNA, pBR322 plasmid DNA, and 
pUC18 plasmid DNA35–37. The degree to which the four com-
plexes could function as DNA-cleavage agents was measured 

using supercoiled pBR322 plasmid DNA as the aim. Four 
complexes, 1,2,3 and 4, were established to promote the 
cleavage of pBR322 plasmid DNA from supercoiled Form I 
to the nicked Form II (Figure 8). As shown in Figure 8, two 
clear bands were observed for the control, in which the metal 
complex was absent (lane 0). The complexes could induce 
cleavage of the plasmid DNA at the concentration of 3.5 μM. 
The amount of Form I of pBR322 DNA decreased gradually 
due to the concentration increase of the four complexes 
(lanes 1–5), whereas Form II increased. Also, the complexes 
showed different cleaving efficiencies for the plasmid DNA. 
Under comparable experimental conditions, Pt(II) com-
plexes exhibited less effective DNA-cleavage activity than 
Pd(II) complexes. The different DNA-cleavage efficiencies of 
the complexes may be due to the different binding affinities 
of the complexes to DNA20,22,38,39.

Cytotoxicity in vitro study
In vitro cytotoxicity tests of the four complexes using selected 
human tumor cell lines were carried out. The IC

50
 values are 

revealed in Table 3. In addition, Figure 9 shows the effect on 
cell growth after a period of 72 h of treatment with 3 μg/mL 
concentration. Among the complexes investigated here, com-
plex 1 is the least cytotoxic in all four cell lines tested, while 
complex 4 is the most. The Pt(II) complexes were generally 
more active than Pd(II) conjugate analogs, especially against 
HeLa cells, which shows a high level of resistance against 
conventional chemotherapeutic agents (compound 1 is about 
1/16 of cisplatin, compound 2: 1/15, compound 3: 1/10, com-
pound 4: 1/7). A viability rate by day 3 to less than 50% of the 
control values was observed for the complexes. On the whole, 
the complexes were more effective in restraining the growth 
of HeLa than of the other lines, and showed a similar activity 
to cisplatin against the human tumor cell lines.
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Table 3.  Cytotoxicity of the complexes against selected human tumor cells after 72 h of incubation.

Tumor cells

In vitro activity (IC
50

 ± SD, µM)

Complex 1 Complex 2 Complex 3 Complex 4 Cisplatin

Hela 9.28 ± 1.92 8.71 ± 1.35 5.64 ± 0.97 4.37 ± 0.71 0.59 ± 0.11

Hep-G2 12.47 ± 2.14 10.69 ± 1.58 8.72 ± 1.76 6.24 ± 1.54 1.77 ± 0.27

KB 15.82 ± 2.43 12.39 ± 2.76 10.84 ± 1.24 8.15 ± 1.93 1.48 ± 0.35

AGZY-83a 17.24 ± 3.41 15.93 ± 2.71 13.42 ± 2.19 11.73 ± 2.46 2.13 ± 0.48
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Figure 9.  Effect of 3 μg/mL of complexes on breast cancer cell viability 
after 72 h of incubation. All determinations are expressed as percentage 
of control (untreated cells). 
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