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Introduction

Tumour progression locus-2 (Tpl2) is a serine/threonine 
kinase in the mitogen-activated protein kinase signal 
transduction cascade. It functions as an upstream kinase 
of mitogen-activated protein kinase kinase/extracellular 
signal-regulated kinase (MEK/ERK) and MKK4/JNK sig-
nalling. This Tpl2-MEK-ERK signalling module is known 
to regulate inflammatory pathways1–4. Notably, Tpl2 regu-
lates the expression of tumour necrosis factor α (TNF-α), 
which is critical to the initiation and progression of many 
inflammatory disorders including rheumatoid arthritis, 
ankylosing spondylitis and psoriatic arthritis4–8. Growing 
popularity of the Tpl2 kinase is reflected by the number 
of publications on the new Tpl2 kinase inhibitors9–13. The 
clinical success of TNF-α inhibitors (etanercept, inflix-
imab and adalimumab) has validated the use of anti-
TNF-α therapies for treating arthritic and inflammatory 
diseases and they have necessitated the search for small 

molecule inhibitors with similar or related mechanism of 
action14–17. Due to its physiological importance in cytokine 
signalling networks and its key role in the production of 
TNF-α, target specific, small molecule inhibitors of Tpl2 
should constitute an effective therapy for TNF-α driven 
inflammatory disorders14.

The exploratory studies on inhibition of Tpl2 dem-
onstrated the importance of this protein. A series of 
Tpl2 inhibitors, developed by Wyeth research, have 
been evaluated for their ability to inhibit Tpl2-MEK-
ERK-induced inflammation. Quinolin-3-carbonitril 
was identified as a potent and selective Tpl2 inhibitor 
in rheumatoid arthritis18. Hall et  al. demonstrated that 
a small molecule inhibitor of Tpl2 suppressed lipopoly-
saccharide (LPS) and IL-1β-induced production of TNF 
by human monocytes, as well as interleukin (IL)-1β-
induced production of IL-6, IL-8, prostaglandin E2 and 
MMPs19. Further, another quinoline-3-carbonitrile-type  
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Tpl2  inhibitor was showed to inhibit the LPS-induced 
inflammation in rats20. Further, 15-Deoxy-Δ12, 14-
prostaglandin J2 was demonstrated to be efficacious 
in completely inhibiting the Tpl2 activated by LPS or 
Paclitaxel21.

Although small molecule inhibitors exist for the  
targeting of the Tpl2-MEK-ERK pathway, safety might 
be a serious issue with Tpl2 inhibitors. Until now, only 
limited number of compound libraries have been 
reported and a good descriptive quantitative structure-
activity relationship (QSAR) analysis for Tpl2 kinase 
inhibitors is still lacking18–24. However, the number of 
compound library needs to be increased to achieve 
structural diversity with more potent and less toxic 
compounds. Keeping the therapeutic significance of 
this class of inhibitors in mind and our continuing 
interest in the development of Tpl2 kinase inhibitors, 
a 3D-QSAR was proposed on the series of quinoline-
3-carbonitrile derivatives reported for Tpl2 kinase 
inhibition by Hu et al.18. The compounds reported are 
suitable for the purpose of 3D-QSAR modelling since 
they have a common scaffold and the biological assays 
have been carried out in the same laboratory.

3D-QSAR is widely used in the lead optimization stage 
and provides valuable insights about ligand–protein 
interactions. In order to establish a relationship between 
the spatial 3D pharmacophoric features of quinoline-3-
carbonitrile-type Tpl2 kinase inhibitors and their activity, 
a 3D-QSAR analysis was carried out on the combined 
dataset25–27.

Methods and materials

Data set
A set of 38 quinoline-3-carbonitrile derivatives with 
well-defined Tpl2 kinase inhibitory activity was used for 
the QSAR analysis18. In vitro inhibitory concentrations 
(IC

50
) of the molecules against Tpl2 kinase were con-

verted into corresponding pIC
50

 [-log(IC
50

)] and were 
used as dependent variables in the QSAR calculations 
(Table 1).

Molecular modelling
PHASE 3.0 module of the Schrodinger molecular 
modelling software was used to generate pharma-
cophore models26,27. In the QSAR studies, appropriate 
conformation (lowest energy) of the compound is 
required for accurate calculation of 3D descriptors. All 
the 38 compounds were sketched by Maestro. Further, 
geometry optimization was carried out using the semi 
empirical OPLS_2005 force field. All the molecules 
were divided into a training set (28) and a test set (11) 
to maintain the structure and activity diversity in both  
sets for the QSAR modelling and pharmacophore  
generation and validation.

PHASE incorporates a structure cleaning step uti-
lizing LigPrep, which attaches hydrogens, converts 
2D structures to 3D, generates stereoisomers and 

neutralizes charged structures or determines the most 
probable ionization state at a user-defined pH. It also 
allows for the importation of 3D structures prepared 
outside its own workflow. Because one does not 
generally know the structure that a given molecule 
will adopt if and when it binds to a target protein, it 
is customary to represent each molecule as a series 
of 3D structures that sample the thermally accessible 
conformational states. For purposes of pharmacoph-
ore model -development, PHASE provides two built-in 
approaches, both of which employ the MacroModel 
conformational search engine27,29. The first approach 
involves a rapid torsion angle search followed by 
minimization of each generated structure using 
OPLS_2005 force field, with implicit GB/SA or distance 
dependent dielectric solvent model. The torsion search 
sample’s ring conformations, invertible pseudo-chiral 
nitrogens and all rotatable bonds within a core region, 
which includes everything from the centre of a molecule 
out to, but not including, the last rotatable bond along 
each path. Torsion angles for these terminal groups 
are varied either one at-a-time or simultaneously, 
according to the user’s preference. As torsions are 
sampled, a truncated force field is applied to identify 
dihedral minima, and the overall energy of each 
structure is estimated by combining dihedral poten-
tials with internal ring energies. Structures with high 
estimated energies are eliminated, as are structures 
with close non-bonded contacts.

As an alternative to the rapid torsion search, confor-
mational space may be explored through a combination 
of Monte–Carlo multiple minimum (MCMM) sampling 
and low mode (LMOD) conformational searching27,29. 
MC sampling provides excellent global coverage of the 
potential energy surface, while low mode searching 
facilitates effective treatment of local regions with com-
plex and/or problematic characteristics, such as saddle 
points. Although more computationally demanding, 
the mixed MCMM/LMOD approach is among the most 
powerful and generally applicable conformational 
searching methods currently available.

In the present study, the mixed MCMM/ LMOD 
approach was employed with a defined energetic window 
(10 kcal/mol) to increase the chances of finding the 
representative conformer close to the bound structure. 
The ligands were assigned as actives and inactives by giv-
ing an appropriate activity threshold value (pIC

50
). The 

threshold value for active ligands was set to 7, whereas 
it was 4.5 for inactive ligands (pharma set). The activity 
threshold value was selected on the basis of dataset 
activity distribution (4.389–8.523) and the active ligands 
were chosen to derive a set of suitable pharmacophores. 
The prepared ligands were used for generating common 
pharmacophore and QSAR model building.

Creation of pharmacophore sites
The chemical features of all ligands were defined by six 
pharmacophoric features: H-bond acceptor (A), H-bond 
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Table 1.  Tpl2 kinase inhibition data of quinoline-3-carbonitrile and their analogues.

S.No R1 R2 R3 A pIC50

1 -CH3 -H C 4.398

2 -H -H C 6

3 -H -H C 6.745

4 -H -H C 7.721

5 -H -H C 4.939

6 -H -CH3 C 4.721

7 -H -H C 7.131

8 -H -H N 6.854

9 -H -H C 7

(Continued)
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Table 1.  (Continued).
S.No R1 R2 R3 A pIC50

10 -H -H C 6.194

11 -H -H C 4.398

12 -H -H C 5.658

13 -H -H C 7.854

14 -H -H C 8.523

15 -H -H C 5

16 -H -H C 5.155

17 -H -H C 6.678

19 -H -H C 6.959

20 -H C 5.036

(Continued)
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Table 1.  (Continued).
S.No R1 R2 R3 A pIC50

21 -H -H N 6.886

22 -H C 4.398

23 -H -H C 7.509

24 -H -H C 6.62

25 -H C 4.398

26 -H -H C 4.959

27 -H -H C 7.222

28 -H -H C 6.854

30 -H -H C 7.046

31 -H -H C 6.585

32 -H -H C 6.699

(Continued)
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donor (D), hydrophobic group (H), negatively charged 
group (N), positively charged group (P) and aromatic 
ring (R). An active analog approach was used to identify 
common pharmacophore hypotheses (CPHs), in which 
common pharmacophores were culled from the confor-
mations of the set of active ligands using a tree-based 
partitioning technique that groups together similar 
pharmacophores according to their intersite distances. A 
tree depth of five with an initial box size of 25.6 Å and a 
final box size of 0.8 Å was used27.

Scoring pharmacophores with respect to actives  
and inactives
The resulting pharmacophores were then scored and 
ranked. The scoring was done to identify the best 
candidate hypothesis, which provided an overall 
ranking of all the hypotheses. The scoring algorithm 
included the contributions from the alignment of site 
points and vectors, volume overlap, selectivity, number 
of ligands matched, relative conformational energy and 
activity29.

Table 1.  (Continued).
S.No R1 R2 R3 A pIC50

34 -H -OH C 4.398

35 -H -H N 5.921

36 -H -H C 8.523

37 -H -H C 6.959

38 -H -H C 4.523

S.No R1 XX XX A pIC
50

18 -CH3 XX XX N 4.398
29 -H XX XX S 5
33 -H XX XX O 4.398
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Perceiving common pharmacophores
After careful analysis of the scores and alignment of 
active ligands to the generated hypotheses, a best 
pharmacophore hypothesis ADRRR (Figure 1) was 
selected for further studies (Table 2). The selected 3D 
pharmacophore hypothesis encompassed the follow-
ing features: one H-bond acceptor (A) (pink sphere 
with one arrow), one H-bond donor (D) (blue sphere 
with single arrow), three aromatic rings (R) (grey 
circle). The 2D representation of the pharmacophore 
ADRRR shows the carbonitrile group (pink sphere with 
one arrow) hydrogen bond acceptor (A), the second-
ary amine group depicting a blue sphere with a single 
arrow as H-bond donor (D) and rings R9, R10 and R11 
as the key pharmacophoric elements present in the 
selected pharmacophore.

Building 3D-QSAR models
QSAR modelling was carried out using the selected 
hypothesis by dividing the dataset into a training set 
(70%) and a test set (30%) in a random manner. PHASE 
presents two options for alignment of 3D structure of 
molecules; the pharmacophore based alignment and 
the atom-based alignment27,28. In this study, we have 
used an atom-based QSAR model, which is more use-
ful in explaining the structure-activity relationship. 
In atom-based QSAR, a molecule is treated as a set of 
overlapping van der Waals spheres. Each atom (and 
hence each sphere) is placed into one of six categories 
according to a simple set of rules: hydrogens attached 
to polar atoms are classified as hydrogen bond donors 
(D); carbons, halogens, and C–H hydrogens are clas-
sified as hydrophobic/non-polar (H); atoms with an 

explicit negative ionic charge are classified as negative 
ionic (N); atoms with an explicit positive ionic charge 
are classified as positive ionic (P); non-ionic nitrogens 
and oxygens are classified as electron withdrawing 
(W); and all other types of atoms are classified as 
miscellaneous (X).

Negative and positive ionizable sites were modelled 
as a single point situated on a formally charged atom, or 
at the centroid of a group of atoms over which the ionic 
charge was shared. Because most commonly occurring 
ionizable centres are automatically recognized by 
PHASE, the structures provided need not be ionized 
explicitly29.

For the purpose of QSAR development, van der Waals 
models of the aligned training set molecules were placed 
in a regular grid of cubes, with each cube allotted zero 
or more ‘bits’ to account for different types of atoms in 
the training set that occupy the cube. This representa-
tion gives rise to binary-valued occupation patterns that 
can be used as independent variables to create partial 
least-squares (PLS) QSAR models. Atom-based QSAR 
models were generated for the selected hypothesis using 
the 27-member training set using a grid spacing of 1.0 Å. 
The best QSAR model was validated by predicting activi-
ties of the 11 test set compounds. A four component (PLS 
factor) model with good statistics was obtained for the 
dataset whereas the maximum number of PLS factors in 
each model can be one-fifth of the total number of train-
ing set molecules. Further increase in the number of PLS 
factors did not improve the model statistics or predictive 
ability25.

Pharmacophore model validation
One efficient approach in drug discovery is the virtual 
screening of the molecular libraries. However, the devel-
oped model needs to be validated before going for virtual 
screening. The validation of the ADRRR model was 
carried out by the receiver operating characteristic (ROC) 
curve calculation. The ROC was calculated by screening 
100 compound database containing 34 known inhibitor24 
and 66 decoys from the ADRRR model.

The ROC curves were used to measure the predic-
tion rate of actives vs. inactives. Two variables, i.e., true 
positive fraction (sensitivity) and false positive fraction 
(1–specificity), were calculated and the graph was 
plotted. The ROC area is a single quantitative measure 
of the predictive ability and varies from 0.5 for random 
prediction to 1.0 for perfect prediction30.

Database screening
The validated pharmacophore hypothesis (ADRRR) 
was used as a 3D query for screening Asinex database. 
The purpose of this screening was to retrieve novel 

Figure 1.  Common pharmacophore for active ligands (three 
aromatic rings (grey circle)), one H-donor (blue sphere with single 
arrow) and one acceptor (pink sphere with one arrow).

Table 2.  The scores of different parameters of the ADRRR hypothesis.

ID Survival
Survival-
inactive Site Vector Volume Selectivity Matches Energy Activity Inactive

ADRRR 3.518 1.276 0.84 0.96 0.716 1.744 9 0.661 7.046 2.243
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and potential leads suitable for further development. 
Conformers were generated for each molecule in the 
database using PHASE. The database screening was car-
ried out using PHASE virtual screening protocol imple-
mented in Schrödinger with best/flexible search option29. 
The retrieved compounds were filtered by fitness value 
(can be maximum 3).

Asinex database was filtered through the common 
pharmacophore (ADRRR) using the following running 
conditions: (a) search in the conformers database, (b) 
do not score in place the conformers into the structure-
based common pharmacophore and refine (i.e., allow 
reorientation of the conformers to determine if they 
match the pharmacophore or not), (c) match at least four 
out of the five sites of the quantitative common pharma-
cophore, (d) do not consider any site as mandatory and 
(e) do not prefer partial matches involving more sites. 
The rest of the options and parameters used during the 
search were the default values.

Results and discussion

The primary objective of the present study was to elu-
cidate the 3D structural features of quinoline-3-carbo-
nitrile-type Tpl2 kinase inhibitors crucial for binding, by 
generating an atom-based 3D-QSAR model. The gener-
ated pharmacophore hypothesis (ADRRR) conveyed the 
relative binding confirmation of the ligands to the active 
site. Therefore, the ADRRR hypothesis was used for 
generating a 3D-QSAR model to identify overall aspects 
of molecular structure of the ligands, which govern their 
Tpl2 inhibitory activity (pIC

50
).

For the generation of pharmacophore model, we 
have considered 9 compounds having activity >7 
against Tpl2 kinase as active, as they contain important 
structural features crucial for binding to the active site. 
We have used 4 minimum sites and 5 maximum sites 
in order to have optimum combination of sites or fea-
tures common to the most active compounds. A total of 
626 common pharmacophore models were generated 
with different combination of variants (supplementary 

data). Among 626 pharmacophores, only those models 
which are showing superior alignment with the active 
compounds were identified by calculating the survival 
score29. The survival scoring function of the PHASE 
module identifies the best candidate hypothesis from 
generated models and provides an overall ranking 
of all the hypotheses. The scoring algorithm includes 
contributions from the alignment of site points and 
vectors, volume overlap, selectivity, number of ligands 
matched, relative conformational energy and activity 
(Table 2)29.

The PHASE module of Schrodinger has special fea-
ture to differentiate between the active (most active) 
and inactive (less active) molecules. To identify the 

Figure 2.  Common pharmacophoric sites of active ligands with 
distance.

Figure 3.  Alignment of active and inactive ligands to the 
pharmacophore.

Figure 4.  Fitness graph between observed activity vs. Phase 
predicted activity for training and test set compounds.
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pharmacophore models with more active and less inac-
tive features, all models were mapped to inactive com-
pounds and scored. If inactives score well, the hypothesis 
could be invalid because it does not discriminate between 
actives and inactives. Therefore, adjusted survival score 
was calculated by subtracting the inactive score from the 

survival score of these pharmacophores (supplemen-
tary data). Finally, the models with maximum adjusted 
survival score and lowest relative conformational energy 
were selected for generating pharmacophore (atom) 
based alignment of Tpl2 kinase inhibitors. Further, 
the ADRRR model was selected since it rendered the 

Table 4.  Fitness and predicted activity data for the test and training set of compounds.
Ligand name QSAR Set Activity PLS factors Predicted activity Pharm set Fitness
1 Training 4.398 4 4.59 Inactive 2.49
3 Training 6.745 4 6.04  2.18
4 Training 7.721 4 7.52 Active 2.38
5 Training 4.939 4 4.88  2.46
6 Training 4.721 4 4.76  2.26
7 Training 7.131 4 6.92 Active 2.74
9 Training 7 4 6.97 Active 2.43
11 Training 4.398 4 4.31 Inactive 1.92
12 Training 5.658 4 5.77  1.35
13 Training 7.854 4 7.91 Active 2.25
16 Training 5.155 4 6.04  2.18
17 Training 6.678 4 6.61  2.83
19 Training 6.959 4 6.87  2.42
20 Training 5.036 4 5.16  2.42
21 Training 6.886 4 6.86  2.13
22 Training 4.398 4 4.27 Inactive 2.38
24 Training 6.62 4 6.74  2.64
25 Training 4.398 4 4.34 Inactive 2.37
26 Training 4.959 4 5.01  1.52
27 Training 7.222 4 7.02 Active 2.57
28 Training 6.854 4 6.86  2.64
31 Training 6.585 4 6.67  2.48
32 Training 6.699 4 7.02  2.55
34 Training 4.398 4 4.4 Inactive 2.26
35 Training 5.921 4 5.97  2.03
36 Training 8.523 4 8.52 Active 2.56
38 Training 4.523 4 4.37  2.22
2 Test 6 4 5.39  2.23
8 Test 6.854 4 6.99  2.08
10 Test 6.194 4 6.26  2.52
14 Test 8.523 4 8.17 Active 2.57
15 Test 5 4 5.73  2
18 Test 4.398 4 5.15 Inactive 2.11
23 Test 7.509 4 7.15 Active 2.75
29 Test 5 4 4.9  2.15
30 Test 7.046 4 7.16 Active 3
33 Test 4.398 4 5.69 Inactive 2.17
37 Test 6.959 4 6.39  2.43

Table 3.  PLS statistical parameters of the selected 3D-QSAR model.
ID PLS factors SD R-squared F P RMSE Q-squared Pearson-R
ADRRR 1 0.668   0.734   68.8 1.203e–008 0.874   0.5388 0.8996

2 0.426   0.896 103.3 1.615e–012 0.678   0.7223 0.9123
3 0.331   0.940 119.3 3.655e–014 0.601 0.782 0.9203
4 0.276 0.96 131.9 4.871e–015 0.584   0.7945 0.9088

SD, standard deviation of the regression; R, squared value of R2 for the regression; F, variance ratio.
Large values of F indicate a more statistically significant regression; P, significance level of variance ratio. Smaller values indicate a greater 
degree of confidence; RMSE, root-mean-square error; Q, squared value of Q2 for the predicted activities; Pearson-R, Pearson-R value for 
the correlation between the predicted and observed activity for the test set.
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good predictive power over other models (Figure 2).  
As depicted in the figure, out of three aromatic ring 
features, two were mapped to the quinoline ring of all 
nine active inhibitors. The other aromatic ring feature 
was mapped to the substituted phenyl group at the sixth 
position of quinoline ring. The H-bond donor feature 
was mapped to the NH group, substituted at the sixth 
position of quinoline ring. Further, the acceptor feature 
was mapped to the electron rich nitrogen of CN group, 
substituted at the third position of quinoline ring.

For generating an atom-based 3D-QSAR hypothesis, 
a dataset of 29 training-set compounds having inhibi-
tory activity against Tpl2 kinase was used. The model 
was validated using 9 test-set compounds, which 
covered a wide range of Tpl2 kinase inhibitory activity. 
The alignment generated by the ADRRR hypothesis 
was used for QSAR model generation (Figure 3). A four 
PLS factor model with good statistics and predictive 
ability was generated for the dataset (Table 3). The 
incremental increase in the statistical significance and 

Figure 5.  QSAR visualization of various substituents effect: (A) Electron withdrawing feature, (B) Hydrogen-bond donor, (C) Hydrophobic 
features, (D) Positive ionic and (E) Negative ionic.

Table 5.  The ROC and a few performance measures derived from the number of true positives, true negatives, false positives and false 
negatives by confusion matrix.
Number of total  
cases used

Number of cases 
correctly detected Accuracy Sensitivity Specificity Empiric ROC area

100 98 98.0% 97.1% 98.5% 0.978



568  M. K.Teli and Rajanikant G. K.

� Journal of Enzyme Inhibition and Medicinal Chemistry

predictivity was observed for each incremental increase 
in the incorporated PLS factors up to four (Table 3). The 
model expressed 96% variance exhibited by quinoline-
3-carbonitrile derivatives, which was near to one, 
signifying a close agreement of fitting points on the 
regression line for the observed and PHASE predicted 
activity (Figure 4 and Table 4).

A 3D-QSAR analysis was performed on the series 
of quinoline-3-carbonitrile derivatives to understand 
the effect of spatial arrangement of structural features 
on their Tpl2 kinase inhibition. The large value of F 
(131.9) suggested a statistically significant regression 
model, which was further supported by the small value 
of the variance ratio (P), an indication of a high degree 

of confidence. The small value of standard deviation 
(0.28) and root-mean-square error (RMSE = 0.58) 
established that the data used for model generation 
was best for the QSAR analysis. The validity of the 
model was further demonstrated by the cross validated 
correlation coefficient (q2 = 0.79). The q2 is more reli-
able and robust statistical parameter than r2 because 
it is obtained by external validation (test set). Figure 
3 depicted the good alignment of the active ligands 
and scattered alignment of the inactive ligands to the 
developed ADRRR model.

The contribution maps obtained from model ADRRR 
show how 3D-QSAR methods can identify features 
important for the interaction between ligands and their 

Figure 6.  The ROC curve between the true positive fraction and false positive fraction.

Figure 7.  The structure of six potential Tpl2 kinase inhibitors with their Asinex ID, fitness value and predicted activity.



Pharmacophore generation and atom-based 3D-QSAR  569

© 2012 Informa UK, Ltd.�

target protein. Such maps allow identification of those 
positions that require a particular physicochemical 
property to enhance the bioactivity of a ligand. The QSAR 
model displays 3D characteristics as cubes and the blue 
cubes indicate positive coefficients which are favourable 
while red cubes indicate negative coefficients which are 
unfavourable regions for activity (Figure 5). This might 
give a clue to what functional groups are desirable or 
undesirable at certain positions in a molecule.

Visual analysis of the Figure 5A demonstrates 
that the throng of the blue cubes at the ring R11 and 
amino group in R9 ring site is pointing out the posi-
tive potential of electron withdrawing characteristic of 
the molecules and is prerequisite for the activity at this 
particular place. It can be suggested that the addition 
of appropriate electron withdrawing groups at the ring 
R11 and in R9 ring site will increase the Tpl2 kinase 
inhibition. However, the addition of electron with-
drawing groups at ring R10 position will contribute to 
decreased receptor binding which in turn will result in 
lower potency of compounds since the red colour cubes 
exhibit negative effect of electron withdrawing group. 
Figure 5B depicts that H-donor characteristic is neces-
sary at D5 (NH

2
 group), whereas the red cubes at ring 

R11 represent a negative potential for the compounds. 
It can be deduced from the Figure 5C that hydropho-
bic groups are well tolerated from D5 to R11 side (blue 
cubes), while the substitution of hydrophobic groups 
above ring R9 site (where benzene ring is positioned) 
are unfavourable (red cubes) or may hinder the bind-
ing of the molecules to the active site. Further, Figure 
5D exhibits that the presence of positive ionic group at 
position R10 will have the positive effect (blue cubes) 
while it will contribute negatively (red cube) at R11 
ring. However, the insertion of negative ionic group 
at ring R11 will increase the Tpl2 kinase inhibition 
(Figure 5E).

Virtual screening aims at the maximum enrichment 
of active compounds in a hit list. Therefore, such meth-
ods are usually validated by evaluating the accuracy 
of discrimination between actives and decoys. A good 
pharmacophore model will be able to distinguish a sig-
nificant portion of known active compounds and as few 
decoys as possible. After QSAR modelling, our ADRRR 
hypothesis was used for the validation and virtual 
screening. Our model has detected 33 true positives and 
65 true negatives with 98% accuracy and 98.5% speci-
ficity. A ROC curve is a true positive fraction vs. false 
positive fraction plot and the area under ROC was 0.98 
which is near to one, gives accuracy of the model (Table 
5 and Figure 6). Further, the validated ADRRR pharma-
cophore hypothesis was used as a 3D structural query 
for retrieving compounds from the Asinex database. The 
hits were selected based on their good fitness value to 
the pharmacophoric site and good predicted activity 
(pIC

50
). After considering all these factors, we selected 

six molecules as potential hits (Figure 7), which can be 
further modified to increase their efficacy.

In summary, a ligand based pharmacophore model 
was generated for the series of quinoline-3-carbo-
nitrile-type Tpl2 kinase inhibitors to reveal the struc-
tural features responsible for their biological activity. 
With the help of pharmacophore based alignment, a 
meaningful 3D-QSAR was derived to identify how three 
dimensional arrangements of various substituents will 
affect the Tpl2 kinase inhibition. The selected model 
as shown by the correlation statistics and predictive 
statistics is very much significant to draw unambiguous 
inferences. Further, the generated 3D-QSAR model also 
explains how and at what extent electron withdrawing, 
hydrophobic and H-donor moieties should be modified 
to achieve better Tpl2 inhibition. Finally, six potential 
hits with good fitness value and predicted activity were 
identified by virtual screening, whose activity can be 
further improved by the help of this QSAR model. The 
present study provides a set of guidelines which will 
greatly help in designing the newer and more potent 
quinoline-3-carbonitrile-type Tpl2 kinase inhibitors 
and novel scaffolds.
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