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Introduction

Mammals possess 16 different carbonic anhydrase (CA, 
EC 4.2.1.1) isoforms, which are involved in many crucial 
physiological processes connected with respiration and 
transport of CO

2
/HCO

3
−, pH and CO

2
 homeostasis, elec-

trolyte secretion in a variety of tissues/organs, biosynthetic 
reactions, bone resorption, etc1–6. Some of the isozymes 
are cytosolic (CA I, CA II, CA III, CA VII and CA XIII), two 
are mitochondrial (CA VA and CA VB), one is secreted (CA 
VI), and others are membrane-bound (CA IV, CA IX, CA 
XII and CA XIV)1–11. In a recent preliminary work from our 
group, we investigated the interaction between natural 
phenolic compound, antioxidant phenolic compounds, 
hydroxy/metoxy organic compounds and salicylic acid 
derivatives with two cytosolic catalytically active isoforms 
(CA I and II) of the metalloenzyme CA1–8. Indeed, phenol 12 
binds to CA in a diverse manner compared to the classical 

inhibitors of the sulfonamides/sulfamates/sulfamides, 
which coordinate to the Zn2+ ion from the enzyme active 
site by substituting the fourth, non-protein ligand, a water 
molecule or hydroxide ion12–15. Recently, Christianson’s 
group then reported the X-ray crystal structure for the 
adduct of human carbonic anhydrase II (hCA II) with phe-
nol12, showing indeed this inhibitor to bind to hCA II by 
anchoring its OH moiety to the zinc-bound H

2
O/hydrox-

ide ion of the enzyme through a hydrogen bond as well as 
to the NH amide of Thr199, an amino acid conserved in 
all α-CAs and critically important for the catalytic cycle of 
these enzymes4–6,12–15. Furthermore, the phenyl moiety of 
this inhibitor was found to lay in the hydrophobic part of 
the hCA II active site, where presumably CO

2
, the physi-

ologic substrate of the CAs, binds in the precatalytic com-
plex, explaining thus the behaviour of phenol as a unique 
CO

2
 competitive inhibitor1–3,13–16.
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Inhibitory effects of different phenols, metoxyphenol 
derivatives, anions, metal ions and drugs have been inves-
tigated up to now against many mammalian, fish, bacterial 
and fungal CAs12–20. CA II is the physiologically most rel-
evant isoenzyme. CA inhibitors (CAIs) are used for several 
applications, in particular for the treatment of glucoma, 
epilepsy, as diuretics etc. Other compounds, targeting iso-
forms IX and XII, have applications as antitumor agents/
diagnostic tools1–11. Therefore, discovery of novel CAIs 
targeting various isoenzymes has gained attention nowa-
days1–10. Cyclic diols were developed treatments of type II 
diabetes, Gaucher disease and also as an anti-HIV drug21–24. 
In the current study, we aimed to synthesize cyclic diols 5, 
7 and 9 using carbonic anhydrase enzyme and determine 
the inhibitory effects of cyclic diols and sulfate esters on 
four α-CA isozymes, hCA I, hCA II, hCA IV and hCA VI.

Results and discussion

Chemistry
It is known that carboxylate/phosphate esters are hydro-
lyzed by α-CAs, although 4-nitrophenylsulfate was shown 
not to be a substrate for the cytosolic isoforms hCA I, II and 
XIII1–6. Recently, one of our groups reported kinetic study 
on the hydrolysis of 4-nitrophenyl acetate 1 and phosphate 
in the presence of three cytosolic CA isozymes, hCA I, hCA 
II and hCA XIII1–6. In solution, these esters are hydrolyzed 
by the nucleophilic attack of water (or hydroxide ions) to 
the central atom (carbonyl CO for acetate 1, phosphorus for 
phosphate) with formation of a transition state from which 
the 4-nitrophenoxide is released. Considering the fact that 
CAs contain the equivalent of a strong base (hydroxide ions, 
HO− coordinated to the zinc ion) at neutral pH, due to the 
powerful activation of H

2
O by the zinc ion from the active 

site cavity and the hydrophobic environment of the protein, 
in principle, hydrolytic reactions 1–2 of Scheme 1 should 
have the same mechanism as the hydrolysis catalyzed 

by bases in solution. In these studies, Innocenti et  al.1,2 
showed that the hydrolytic processes described by Eqs. 1–2 
of Scheme 1, involve the active site Zn2+(OH)− functionality 
of the enzyme, that is, the same one responsible of the CO

2
 

hydration activity of α-CAs. Probably, compounds 4, 6 and 
8 are hydrolysed by CA II in the same way in the current 
study. It is interesting to note here that the aliphatic, cyclic 
sulfates investigated here, unlike the aromatic activated 
one (ester 2) indeed act as substrates for CAs. The sulfatase 
activity of this enzyme has been in fact discovered earlier 
with a cyclic sulfate ester as substrate, by Kaiser and Lo3.

Furthermore, we report here an inhibition study of 
the four catalytically active human isoforms hCA I, II, IV 
and VI with compounds 4–11. They incorporate sulfate 
esters or cyclis diols in their molecules and scaffolds rep-
resenting thus an interesting starting point for different 
chemotypes belonging to the CAIs. In fact, in an earlier 
study25 we reported micromolar/submicromolar inhibi-
tors of the cytosolic isoforms hCA I and II with a library 
of organic nitrates.

CA purification, assay and inhibition
The purification of hCA isozymes was performed with 
a simple one step method by a Sepharose-4B-aniline-
sulfanilamide affinity column9–11. Inhibitory effects of com-
pounds trans-(1R(S),6R(S))-6-Hydroxycyclohex-3-enyl 
hydrogen sulfate (4), (1R,2R)-cyclohexane-1,2-diol (5), 
trans-(1R(S),8R(S),Z)-8-Hydroxycyclooct-4-enyl hydrogen 
sulfate (6), (2R,3R)-1,2,3,4-tetrahydronaphthalene-2,3-diol 
(7), 9(R(S))-Hydroxy-1,2,3,4-tetrahydro-1,4-methanon-
aphthalen-2(R(S))-yl sulfate (8), 9(R(S))-Hydroxy-1,2,3,4-
tetrahydro-1,4-methanonaphthalen-2(R(S))-diol (9), 
trans-(1R(S),2R(S))-cyclohexane-1,2-diol (10) and trans-
(2R(S),3R(S))-1,2,3,4-Tetrahydronaphthalene-2,3-diol (11) 
on these isoenzyme activities were tested under in vitro 
conditions; K

I
 values were calculated from Lineweaver-

Burk plots and are given in Table 125–29.
The CA isozymes play important roles in different 

tissues1–9,28–32. It is known that CA has been purified many 
times from different organisms and the effects of various 
chemicals, pesticides, anions, metal ions and drugs have 
been investigated on its activity8–20,28–32. We report here a 
study on the inhibitory effects of organic sulfates, diols 
and some phenolic compounds on the CA esterase activ-
ity of isoforms hCA I, II, IV and VI. Data of Table 1 show 
the following, regarding inhibition of hCA I, II, IV and VI 
with compounds 4–11 and with positive controls 12, 13, 
14, Acetazolamide (AZA):

Against the slow cytosolic isozyme hCA I, compounds 1.	
5, 7, 9–10 behave as weak, micromolar inhibitors, 
with K

I
 values the range of 135–188 μM. Compound 

11 was an ineffective hCA I inhibitor (K
I
 of 423 μM). 

A second group of derivative, including 4, 6 and 8, 
showed better inhibitory activity as compared to 
the previously mentioned compounds 5 and 7, with 
K

I
 values of 32.7–77.2 μM, (Table 1). Compound 11 

showed K
I
 value of 423 μM, and various substutions 

Scheme 1.  Reactions 1 and 2 catalyzed by α-carbonic anhydrases 
(CAs). Whereas the 4-nitrophenyl acetate hydrolysis occurs easily, 
the corresponding sulfate 2 is not a substrate for CAs1–3.
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patterns such as the introduction of the hydroxyl and 
sulfate- moieties lead to minor changes in activity, 
compounds 5, 7, 9–11 behaving as rather weak hCA 
I inhibitors (Figure 1). The same effect is observed 
when the inhibition constants are calculated (Table 1) 
by means of Lineweaver-Burk plots, these compounds 
showing K

I
-s in the range of 135–423 μM.

	   These compounds incorporate moieties leading 
to an acidification of the OH groups form the organic 
sulfates and cyclic diols scaffold (such as OSO

3
H or OH 

group in the 2-or 3-position in compound 4 and 5), as 
well as the bulkier scaffolds present in 6, 7 and espe-
cially 8, 9, 11. These were among the best inhibitors 
in this series of organic sulfates and cyclic diols. Data 
of Table 1 also show that similarly to phenolic com-
pounds9–15, most of the investigated organic sulfates (4, 
6 and 8), act as competitive inhibitors with 4-NPA as 
substrate, i.e. they bind in the same regions of the active 
site cavity as the substrate. However, the binding site of 
4-nitrophenylacetate (NPA) itself is unknown, but it is 
presumed to be in the same region as that of CO

2
, the 

physiological substrate of this enzyme12–15. Similarly 
to salicylic acid derivatives and phenolic compounds 
investigated earlier by us, the investigated compounds 

act as competitive inhibitors with 4-NPA as substrate, 
that is, they bind in same regions of the active site cav-
ity as compared to the substrate.
A better inhibitory activity has been observed with 2.	
compounds 4–6, 10 investigated here for the inhibi-
tion of the rapid cytosolic isozyme hCA II (Table 1). 
Four derivatives, i.e. 7–9, 11 showed moderate hCA II 
inhibitory activity with K

I
-s in the range of 10.4–32.4 

μM (Table 1), whereas the remaining four derivatives 
were quite effective hCA II inhibitors, with K

I
-s in the 

range of 2.13–5.41 μM (Table 1). Structure-activity 
relationship (SAR) is thus quite sharp for this small 
series of tetralin scaffold compounds (8, 9 and 11) 
are ineffective leads. The best hCA II inhibitor in this 
series of derivatives 4.
Compound 11, and some of its congeners such as 3.	
compounds 8 and 9 are also weak inhibitors of CA IV, 
with K

I
-s of 77.9–234 μM. However, again compound 

7 is medium potency inhibitor (K
I
 of 53.8 μM), and 

compounds 4–6 and 10 show a higher affinity for 
this isozyme, with inhibition constant in the range of 
13.7–23.6 μM, AZA with K

I
 of 5.64 μM (Table 1).

Phenol 12 and some of its congeners such as 13 and 4.	
14 are also weak inhibitors of the secreted isozyme 
hCA VI, with K

I
-s of 208–550 μM13. However, again 

the compounds 8 and 9 are medium potency inhibi-
tors (K

I
 of 221–278 μM), and derivatives 4–7, 10 and 

11 show higher affinity for this isozyme, with inhibi-
tion constants in the range of 76.2–145 μM (Table 1).
We hypothesize that CAs (which as we show above, 5.	
possess esterase activity against several substrates), 
hydrolyses these organic sulfates leading to sulfu-
ric acid and cyclic diols, as illustrated in Scheme 2. 
Previously, studies showed the hydrolysis reaction 
of 2-Hydroxy-5-nitro-α-toluenesuIfonic acid sultone 
(Scheme 3)1–3.

Table 1.  K
I
 values obtained from regression analysis graphs for 

hCA I, hCA II, hCA IV, and hCA VI in the presence of different 
inhibitors concentrations (μM).

Inhibitor hCA-I hCA-II hCA-IV hCA-VI
4 41.3     2.13 13.7 93.1
5 163     4.08 23.6 116
6 77.2     5.41 16.3 123
7 188     8.27 53.8 145
8 32.7 10.4 199 221
9 142 23.7 234 278
10 135     4.68 18.8 76.2
11 423 32.4 77.9 127
Phenol (12)   10.2*     5.5*     9.5* 208*
Catechol (13) 4003*     9.9*   10.9* 606*
Resorcinol (14) 795*     7.7* 570* 550*
Acetazolamide 36.2     0.37     5.64     0.34
Mean from at least three determinations. Errors in the range of 
±3% of the reported value (data not shown).
hCA, human carbonic anhydrase.
*From reference 13.

Figure 1.  Structure of compounds 10–14 and (AZA).

Scheme 2.  The hydrolysis reaction of compound 4, 6 and 8 with 
carbonic anhydrase II (CA II) isoenzyme.
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In recent studies, it was reported that phenols and 
natural phenolic compounds act as CAIs, and could rep-
resent the starting point for a new class of inhibitors that 
may have advantages for patients with sulfonamide aller-
gies (thioxolone acts as a prodrug)8–16.

Cyclic diols or cyclitols are receiving considerable 
attention as chemotherapeutic agents against diabetes, 
cancer, and viral infections26–29. Several multiple sulfated 
compounds have been found in biologically active com-
pounds and marine organisms28. For instance, sulfated 
sterols have exhibited effects such as anti-HIV, antiviral 
activity, and inhibition of protein tyrosine kinases26–28. 
Recent studies also showed that sulfo-containing sali-
cylic acid derivatives have inhibitory effects on CA I and 
II isoenzymes9. However, it is critically important to 
explore further classes of potent CAIs in order to detect 
compounds with a different inhibition profile as com-
pared to the sulfonamides and their bioisosteres and to 
find novel applications for the inhibitors of these wide-
spread enzymes, in particular tumor-related isoforms.

Conclusions

Cyclic diols 5, 7 and 9 were synthesized from sulfate esters 
4, 6 and 8 using CA II isoenzyme. Cyclic diols and sulfate 
esters 4–11 affect the activity of CA isozymes due to the 
presence of the functional group (OH) in their cyclic ali-
phatic scaffold. Our findings indicate thus another class 
of possible CAIs of interest, in addition to the well-known 
sulfonamides/sulfamates/sulfamides, although their 
mechanism of CA inhibition remains rather elusive at 
this moment. We have reported several inhibitors of both 
CA and other proteins so far30–44 and discovery of novel 
inhibitors still requires further investigations. Indeed, 
some cyclic diols investigated here showed effective 

CA I, II, IV and VI inhibitory activity, in the micromolar 
range, by the esterase assay method. These findings point 
out that substituted cyclic diols may be used as leads for 
generating more potent CAIs eventually targeting other 
isoforms which have not been assayed yet for their inter-
actions with such agents.

Experimental

Chemicals
Sepharose 4B, protein assay reagents, p-nitrophenol, 
4-nitrophenylacetate and chemicals for electrophoresis 
were purchased from Sigma-Aldrich Co. All other chemi-
cals were of analytical grade and obtained from Merck.

Purification of CA isozymes from human blood by 
affinity chromatography
Fresh citrated human whole blood obtained from 
the Blood Center of the Research Hospital at Atatürk 
University. Cells were washed three times by centrifuga-
tion at 1000xg at 4 ± 6°C, for 20 min in four volumes of 
25 mM Na

2
HPO

4
 (pH 7,4) buffer. Supernatant and fluffy 

coat were removed. The erythrocytes were lysed in 10 vol-
umes of 5 mM Na

2
HPO

4
 (pH 7.4) buffer, containing 1 mM 

EDTA. After 20 min, the haemolysate was centrifuged at 
10,000g for 60 min. The particulate fraction was washed 
four times in the same buffer. The membranes were cen-
trifuged down at 15,000g for 60 min. pH was adjusted to 
8.3 with solid Tris. Sepharose-4B-aniline-sulfanilamide 
affinity column equilibrated with 25 mM Tris-HCl/0.1 M 
Na

2
SO

4
 (pH 8.3). The affinity gel was washed with 25 mM 

Tris-HCl/25 mM Na
2
PO

4
 (pH 8.3). Finally, human car-

bonic anhydrase IV (hCA IV) isozyme was eluted with 
25 mM Tris-HCl/0.5 M NaClO

4
 (pH 7.4)45,46. Fresh non-

citrated human whole blood obtained from the Blood 
Center of the Research Hospital at Atatürk University. The 

Scheme 3.  The hydrolysis reaction of 2-Hydroxy-5-nitro-α-toluenesuIfonic acid sultone3 (3) and cyclic sulfate esters (4).



152  H. Çavdar et al.

� Journal of Enzyme Inhibition and Medicinal Chemistry

blood samples were centrifuged at 5000 rpm for 15 min 
and precipitant were removed. The serum was isolated. 
The pH was adjusted to 8.7 with solid Tris. Sepharose-
4B-aniline-sulfanilamide affinity column equilibrated 
with 25 mM Tris-HCl/0.1 M Na

2
SO

4
 (pH 8.7). The affin-

ity gel was washed with 25mM Tris-HCl/22mM Na
2
SO

4
 

(pH 8.7). The hCA-VI isozyme was eluted with 0.25 M 
H

2
NSO

3
H/25 mM Na

2
HPO

4
 (pH 6.7). All procedures were 

performed at 4°C16,47.

Enzyme mediated synthesis of cyclic diols
The reactions were performed in the presence of hCA II 
in water at pH 7.5. A 10-fold excess of the starting sul-
phate esters 4, 6, 8 was used to limit side reactions. Three 
reactions were performed with and without enzyme in a 
sodium phosphate solution at pH 7.4 (20 mM phosphate 
buffer). Stock solution in dimethyl sulfoxide of three sul-
phate esters (10 mM) were added to three aqueous solu-
tions in order to reach the final concentration of 0.08 mM. 
The clear mixture was incubated at 25°C for 5 min, for 4 
and 6 and for 10 min, for 8. The sulphate esters yielded the 
corresponding diols in 100% yield in 5–10 min although 
4 and 6 hydrolyzed without enzyme solution in approxi-
mately 150 min whereas 8 was not hydrolyzed without 
the enzyme (Table 2). Prior to analyzing the products, the 
mixture was left for 2 h to be separated from CA by decan-
tation. The thermal denaturation of the enzyme (2 min at 
80°C) was also tested to ensure the release from casting 
site of some possible tightly bound ligands.

CA inhibition
CA activity was assayed by following the change in 
absorbance at 348 nm of 4-NPA to 4-nitrophenylate 
ion over a period of 3 min at 25°C using a spectropho-
tometer (Shimadzu UV-VIS) according to the method 
described by Verpoorte et  al.48 The enzymatic reaction, 
in a total volume of 3.0 mL, contained 1.4 mL 0.05M Tris-
SO

4
 buffer (pH 7.4), 1 mL, 3 mM NPA, 0.5 mL H

2
O and 

0.1 mL enzyme solution. A reference measurement was 
obtained by preparing the same cuvette without enzyme 
solution. The inhibitory effects of compounds 4–11 were 
examined. All compounds were tested in triplicate at 
each concentration used. Different inhibitor concentra-
tions were used. Control cuvette activity in the absence 
of inhibitor was taken as 100%. For each inhibitor an 
Activity%- [Inhibitor] graph was drawn. To determine 
K

I
 values, three different inhibitor concentrations were 

tested. In these experiments, NPA was used as substrate 
at five different concentrations (0.15–0.75 mM). The 
Lineweaver-Burk curves were drawn49.

Protein determination
Protein during the purification steps was determined 
spectrophotometrically at 595 nm according to the 
Bradford method, using bovine serum albumin as the 
standard50.

Sodium dodecyl sulfate (SDS) polyacrylamide gel 
electrophoresis
SDS polyacrylamide gel electrophoresis was performed 
after purification of the enzymes. It was carried out in 10% 
and 3% acrylamide for the running and the stacking gel, 
respectively, containing 0.1% SDS according to Laemmli51.

Synthesis of sulfate esters
Detailed synthetic procedures for the preparation of all 
derivatives can be found in: Ref 37.
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