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Introduction

Protein kinases (PKs) play a vital role in cellular pro-
cesses such as cell signaling, survival and proliferation. 
Approximately 518 protein kinases have been identified 
in the human kinome and their importance in disease 
progression led to their identification as novel structural 
targets1,2. Vascular endothelial growth factor (VEGF) is an 
important angiogenic agent that mediates the formation 
of new blood vessels and enhances the growth, prolifera-
tion, migration and differentiation of endothelial cells3. 
The pathogenicity of angiogenesis in disorders such 
as cancer, proliferative retinopathies and rheumatoid 
arthritis has been proved experimentally4. VEGF fam-
ily of secretory proteins modulate the cellular effects 
by interacting specifically with high-affinity transmem-
brane tyrosine kinase receptors (RTKs): VEGFR-1 (Flt-
1), VEGFR-2 (KDR human/Flk-1 mouse) and VEGFR-3 
(Flt-4) which then triggers effective downstream cell 
proliferation leading to angiogenesis5. Expression of 
VEGFR-1 and VEGFR-2 is responsible for angiogenesis 

while the expression of VEGFR-3 is responsible for lym-
phangiogenesis. The level of expression of VEGFR-2 in 
cell proliferation and differentiation is found to be higher 
when compared to that of VEGFR-1. Hence the inhibition 
of VEGFR-2 signaling pathway by small molecule inhibi-
tors has become an attractive strategy for the treatment 
of cancers6.

VEGFR-2 is a transmembrane receptor with 1356 
amino acids and secreted by the VEGFR-2 gene located 
on chromosome 4q11-q12. The extracellular region 
consists of seven immunoglobulin-like domains (46–753 
aa) followed by a short transmembrane domain (765–789 
aa) and an intracellular kinase domain (834–1162 aa). The 
binding of VEGF with the extracellular immunoglobulin 
(Ig)-like domains 2 and 3 induces receptor dimerization 
and autophosphorylation of tyrosine residues 1054 and 
1059 in the kinase domain7,8. Crystal structure of complete 
VEGFR-2 including the extracellular, transmembrane 
and intracellular kinase domains has not been solved 
yet. Individual structures of Ig-like C2 type-2, type-3 and 
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the intracellular kinase domain have been crystallized 
by various groups9–12. The kinase domain possesses an 
N-terminal and C-terminal lobes which are connected 
by the residues Glu915, Phe916, Cys917. The important 
regions of the kinase domain like glycine rich region 
(GXGXXG), HRD motif, ATP binding site and DFG loop 
influence the substrate and inhibitor binding7. Studies 
have also shown that inhibitors interacting with this 
hinge region through H-bonds are biologically active.

The Federal drug administration of US has approved 
sorafenib (Bay 43–9006), sunitinib (SU-11248), pazo-
panib (GW786034), and vandetanib (ZD6474) as 
inhibitors of VEGFR-2. A series of small molecules with 
antiangiogenic property is in clinical studies, which 
includes cerdiranib (AZD-2171)], brivanib (BMS-
582664), axitinib (AG013736), tivozanib (KRN-951) 
and vatalanib (pTK787)13,14. All these inhibitors pos-
sess a broad range of activities towards protein kinases. 
Therefore, it is necessary to develop new inhibitors with 
high selectivity towards VEGFR-2 kinase and also to over-
come drug resistance.

The effort by Huang et al.15,16 to develop small-
molecular ATP-competitive VEGFR-2 inhibitors has led 
to the discovery of 4-aminopyrimidine-5-carbaldehyde 
oximes. The 4-aminopyrimidine-5-carbamate which is 
considered as an open form of quinazoline forms the 
backbone for these structures. Substitution of a phenoxy 
group at the 6th position of this pyrimidine increased the 
activity. Substitution of a urea group at the 1st position of 
the phenoxy ring further enhanced the activity.

An in-house database screening by Kubo et al.17 against 
a database of tyrosine kinase inhibitors led to the iden-
tification of a series of N-Phenyl-N’-{4-(4-quinolyloxy) 
phenyl} urea derivatives with high specificity to VEGFR-2 
than other kinases (PDGFR α, c-KIT FGFR-2 EFGR, 
HGFR). The 4-aminopyrimidine group in the former 
series has been replaced by a quinoline group in this 
series where urea and phenoxy group substitutions were 
studied and are tested for VEGFR-2 inhibitory activity. 
Among all these VEGFR-2 inhibitors, the N-Phenyl-N’-
{4-(4-quinolyloxy) phenyl} urea derivatives were found 
to be the most active compounds.

Ligand based drug design methods like Quantitative 
Structure Activity Relationship (QSAR) and pharma-
cophore modeling have proven their efficiency in (i) 
designing/predicting the activity of new compounds 
and (ii) searching chemical databases to identify novel 
lead scaffolds18–20. The pharmacophore model is a collec-
tion of chemical features which are common to a set of 
compounds with similar inhibition mechanism, and are 
necessary for their inhibitory activity against a particular 
target21–23. The chemical features like H-bond acceptors 
and donors, charged or ionisable groups, hydrophobic 
or aromatic rings along with their spatial arrangement 
in terms of distance, angles and dihedrals constitute the 
pharmacophore model/hypothesis24.

A number of computational methods are available 
to calculate the binding free energy of a protein-ligand 

complex, such as thermodynamic integration (TI), linear 
response (LR), free energy perturbation (FEP), fluctua-
tion–dissipation theorem (FDT), molecular mechan-
ics Poisson–Boltzman surface area (MMPBSA) and 
molecular mechanics generalized Born surface area 
(MMGBSA)25. The MMGBSA method has been applied 
successfully in the recent years, for the estimation of 
binding free energy26–31. In silico drug design techniques 
aid the experimental evidence with a clear picture of 
biomolecular sensing at the atomic level and methods 
like docking and molecular dynamics claim their merit. 
Docking methods define the stable conformation of a 
ligand with respect to the receptor’s binding cavity and 
use only the static image of the bound conformation 
to define the binding energy. In free energy analysis, a 
conformational sampling from an unbound to bound 
state is performed to generate thermodynamic averages. 
MMGBSA, an end-point method, which calculates the 
binding free energy as a difference between the energies 
of complex, receptor and ligand has been used in addi-
tion with molecular dynamics simulation.

In this study, we attempt to develop a pharmacophore 
model for a set of 81 structurally diverse VEGFR-2 inhibi-
tors belonging to N-Phenyl-N’-{4-(4-quinolyloxy) phe-
nyl} urea and 4-aminopyrimidine-5-carbaldehyde oxime 
using the PHASE module of Schrödinger. Molecular 
docking of inhibitors into the binding cavity of VEGFR-2 
has been performed to study their mode of interaction. 
Molecular dynamics simulation for a period of 7 ns was 
performed using AMBER11 package. The binding free 
energy of VEGFR-2 in complex with active and inactive 
compounds was calculated as an average over a series of 
snapshots obtained from the molecular dynamics simu-
lation trajectory using the MMPBSA program available in 
AmberTools 1.5.

Materials and methods

Data set
A set of 81 novel compounds belonging to 4-amino-
pyrimidine-5-carbaldehyde oxime and N-Phenyl-N’-
{4-(4-quinolyloxy) phenyl} urea were used for this 
analysis. The experimentally reported pIC

50
 (i.e. the 

negative logarithm of the measured IC
50

) values of these 
compounds measured for the inhibition of VEGFR-2 in 
a cell-based assay were obtained from Huang et al.15,16 
and Kubo et al.17. A flowchart depicting the computa-
tional approaches used in this study has been shown as 
Supplementary Figure S1.

Pharmacophore modeling
Pharmacophore based alignment and atom based 
3D-QSAR studies were performed using PHASE32 mod-
ule of Schrödinger. The 3D structures of 81 compounds 
were generated using Maestro’s Model Builder and pre-
pared using LigPrep 2.5 (Schrödinger Inc.) module of 
PHASE. The activity (pIC

50
) of these ranges from 4.706 to 

9.699 and were categorized into active (above 8.70) and 
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inactive (below 6.50) compounds. All possible conform-
ers were generated for the prepared structures by conf-
gen method. Around 100 possible conformations per 
rotatable bond were generated using a rapid torsional 
search, followed by 100 steps of pre-processing and 50 
steps of post-processing minimization using OPLS-2005 
force field in a continuum solvent model33. The conform-
ers possessing RMSD less than 1.2 Å were eliminated.

Generation of common pharmacophore hypothesis
PHASE identifies six different pharmacophoric features 
(specified as SMARTS queries) defined by the chemical 
structure patterns and are hydrogen bond acceptor (A), 
hydrogen bond donor (D), hydrophobic group (H), nega-
tively charged group (N), positively charged group (P) and 
aromatic ring (R). The pharmacophores that are common 
in all the active compounds were identified using a tree 
based partitioning algorithm and studied further. A tree 
depth of 5 and the tolerance to match a pharmacophore 
(defined in terms of grid size), set as 1 Å was used to iden-
tify the common five variant pharmacophores.

The obtained Common Pharmacophore Hypotheses 
(CPHs) were aligned with the active molecules and were 
scored for matching the actives (survival score) with an 
RMSD cut-off, 1.2 Å. The scoring process was performed 
with default parameters, except the ligand activity which 
was incorporated with a weight of 0.3 using the equation 
shown below.S W S W S W S

W S W W E W A
site site vec vec vol vol

sel sel rew
m

act

= + + +

+ − +∆

�

(1)

Where W’s are the weights and S’s are the scores.
The derived CPHs were subsequently scored for 

matching the inactives similar to the calculation of sur-
vival score of the actives. In addition to the inactive score, 
an adjusted survival score is calculated as a difference 
between the survival scores of actives and inactives using 
a weight of 1.0 for the inactives score.

S S W Sadj actives inactives inactives= −
�

(2)

3D QSAR model
Pharmacophore based QSAR model considers the ligand 
features that are used to derive the pharmacophore vari-
ants. In such situations, an atom based 3D-QSAR is more 
advantageous. The selected 81 compounds were ran-
domly classified as training (60 compounds) and test (21 
compounds) set and were ensured to have proper distri-
bution of chemical and structural diversity. The training 
set compounds are aligned based on the best scoring 
CPH and the aligned compounds are enclosed in a rect-
angular grid. Every atom of the ligand is classified into 
any one of the six classes namely: (i) D – hydrogen bond 
donor (hydrogens bonded to N, O, P, S), (ii) H – hydropho-
bic/non-polar (C, H–C, Cl, Br, F, I), (iii) N – negative ionic 
(formal negative charge), (iv) P – positive ionic (formal 

positive charge), (v) W – electron-withdrawing (N, O), 
and (vi) X – miscellaneous (all other types of atoms). The 
rectangular grid is divided into uniformly-sized cubes 
of dimension 1 Å which is occupied by van der Waals 
spheres whose radii depend on the atom type in a ligand. 
Each ligand is represented by a set of bit values (0 or 1) to 
indicate the occupancy of the cube from different class 
of atoms. These occupancies of cubes and atom classes 
can be used as independent variables in the generation 
of partial least squares (PLS) regression based QSAR 
model. PHASE evaluates the generated QSAR models by 
leave-n-out (LNO) cross-validation method and gives a 
stability value to indicate the sensitivity of the generated 
model towards changes in the training set. The param-
eters defining the statistical significance of the training 
(r2) and test set (q2) are calculated using equation (3).

r Y Y Y Ypred obs obs mean
2 2 21= − − − ∑ ∑( ) / ( )

�
(3)

Where, Y
pred

, Y
obs

 and Y
mean

 are the predicted, observed 
and mean biological activity values. The value obtained 
from ∑(Y

pred
-Y

obs
)2 is the predicted residual sum of squares 

(PRESS). The predictive correlation coefficient (r2
pred

) 
calculated using equation (4) for the test set compounds 
reflects the reliability of the prediction.

r Y Y Y Ypred pred obs obs mean
training2 2 21= − − − ∑ ∑( ) / ( )

�
(4)

Molecular dynamics simulation
The crystal structure of VEGFR-2 kinase domain (PDB 
entry: 1YWN)11 complexed with the inhibitor 4-amino-
furo [2, 3-d] pyrimidine was taken as the starting structure 
for docking and molecular dynamics simulation studies. 
The missing residues in the VEGFR-2 crystal structure 
were added using the procedure adopted by Papakyriakou 
et al.34. The protein and inhibitors were prepared for 
docking using Schrödinger. The prepared ligands were 
docked using the GLIDE35 module of Schrödinger with 
default parameters. The docked conformation of the 
most active (compound 51) and inactive (compound 75) 
compounds were extracted and their conformational 
stability/time evolution was analyzed through all atom 
molecular dynamics simulation for a period of 7 ns. 
Molecular dynamics simulations were carried out using 
PMEMD module of AMBER 1136. Amberff99SB force field 
was used for proteins37. The ligand charges derived at 
AM1 level were used by the antechamber38 program to 
generate a Generalized Amber Force Field (GAFF) com-
patible force field for the ligand39. The hydrogen atoms 
present in the protein-ligand complex were removed, 
and new hydrogen atoms were added using tleap pro-
gram. The complex was solvated using TIP3P40 water box 
that extends upto 10 Å in all directions from the solute. 
The protein-ligand complex was minimized in two steps. 
First, the water molecules were relaxed by restraining the 
complex, which is followed by the minimization of the 
entire system. The long-range electrostatic interactions 
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were governed using particle-mesh Ewald procedure41. 
The system was heated to 300 K for 50 ps at constant 
volume with harmonic restraints of 2 kcal/mol/Å2 on 
the protein-ligand complex. The temperature was main-
tained at 300 K using the Langevin dynamics with a col-
lision frequency of 2.0 ps–1. The hydrogen bonds were 
constrained using the SHAKE algorithm42. Density of the 
system was equilibrated gradually for a period of 80 ps. 
Then the entire system was equilibrated and simulated 
for a period of 7 ns.

MM-GBSA calculation
The MM-PBSA program implemented in AmberTools 1.5 
package was used for the binding free energy analysis of 
the complex43. Electrostatic interactions were governed 
using Generalized Born method developed by Onufriev 
et al.44. From the molecular dynamics trajectory, confor-
mational frames were extracted from the last 3 ns with an 
interval of 10 ps, and the binding free energy was calcu-
lated as an average of these frames. The equation used to 
calculate the binding free energy (ΔG) is:

∆ ∆ ∆ ∆G G G Gbind complex receptor ligand= − +( )
�

(5)

where,

∆ ∆ ∆ ∆G E G T Smm sol= + −

∆ ∆ ∆ ∆E E E Emm ele vdW= + +int

∆ ∆ ∆G G Gsol pol nonpol= +

∆G SASAnonpol = +γ β

The average free energies of complex, receptor and 
ligand are represented as ΔG

complex
, ΔG

receptor
, and ΔG

ligand
, 

respectively. ΔE
mm

 is the energy derived using gas phase 
molecular mechanics. ΔG

sol
 is the solvation energy with 

polar and non polar terms. The polar contribution to 
the binding energy was calculated using Generalized 
Born approximation with a grid spacing of 0.5 Å and the 
dielectric constants, 1.0 and 80.0 were used for solute 
and solvent, respectively. The non-polar contribution is 
calculated from solvent accessible surface area (SASA) 
using a probe of radius, 1.4 Å.

Results and discussion

A ligand based drug design approach was carried 
out for a diverse set of 81 novel VEGFR-2 inhibitors 
(Supplementary Table S1) to study their mode of bind-
ing and interaction. All possible conformers of these 
inhibitors were generated using the confgen module of 
Macromodel. Pharmacophore modeling was carried out 
by classifying these 81 inhibitors into 16 active, 56 moder-
ately active and nine inactive compounds based on their 
pIC

50
 value. Pharmacophore features were identified for 

these inhibitors and aligned with all 16 active molecules 

using a tree-based partitioning algorithm. A total of 1784 
five-featured CPHs were generated and subjected to 
scoring function analysis with the default parameters 
for site, vector and volume and a weight of 0.3 on the 
ligand activity. Subsequently, the hypotheses were also 
scored with respect to the nine inactives, and an adjusted 
survival score was calculated. The top 10% of the hypoth-
eses which survived this scoring process were selected 
to build an atom based 3D-QSAR model. The statistical 
parameters of five best CPHs are listed in Table 1. The 
CPH1 (AADRR) with two hydrogen bond acceptors (A), 
one hydrogen bond donor (D) and two aromatics rings 
(R) as pharmacophoric features is considered for further 
studies due to its statistical significance. Figure 1 illus-
trates the distance between the various pharmacophore 
features. The two hydrogen bond acceptor features of 
CPH1 maps onto the nitrogen of quinoline group and an 
oxygen of urea group. The hydrogen bond donor feature 
is located on the urea nitrogen and the aromatic feature 
maps onto the middle phenyl group which connects the 
quinoline and urea moieties Figure 2A and 2B.

Statistical parameters such as r2, cross validation 
co-efficient (q2), Standard Deviation (SD), root mean 
square error (RMSE) and F-value were used to validate 
the 3D-QSAR model. The 81 compounds were divided 
into training and test sets of 60 and 21 compounds 
respectively. The QSAR model built for the CPH1 using 
five PLS factors exhibits good statistical significance for 
both training (r2 = 0.947, SD = 0.251, F = 193, P = 3.85E-33) 
and test sets (q2 = 0.8447, r2

pred
 = 0.8453, RMSE = 0.417, 

Pearson-R = 0.925). The observed and predicted biologi-
cal activity of training and test set compounds are given 
as Supplementary Table S1 and Figure 3 depicts the 
agreement between the reported as well as predicted 
activity values.

Visualization of 3D QSAR models
3D visualization of the QSAR model in the context of 
active and inactive compounds provides useful insights 
into their inhibitory activity. PHASE generates PLS 
regression based contours (in the form of cubes) to dis-
play the regions important for hydrophobic, hydrogen 
bond donor and electron-withdrawing (hydrogen bond 

Table 1.  Summary of the statistical parameters obtained from the 
PLS analysis of five best CPHs are listed below.
Statistical 
parameters CPH1 CPH2 CPH3 CPH4 CPH5
Variants AADRR AAADR AADRR ADRRR AADRR
Survival 
score

6.67 6.67 6.66 6.69 6.66

SD 0.25 0.25 0.26 0.28 0.27
r2 0.94 0.94 0.94 0.93 0.93
F 193 183 168 143 164
P 3.851E-33 1.405E-32 1.269E-31 7.375E-30 2.439E-31
RMSE 0.41 0.39 0.45 0.40 0.45
Q2 0.84 0.86 0.8 0.85 0.81
Pearson-R 0.92 0.93 0.90 0.93 0.91
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acceptor) properties. Figure 2 depicts these contours 
generated for active compound 51 and inactive com-
pound 75.

The favorable and unfavorable regions for hydrogen 
bond donor property are shown in Figure 2C and 2D 
as blue and red cubes, respectively. In the most active 
compound 51, favorable regions are found close to the 
substituted NH of the urea group. Whereas the inactive 
compound, 75 inherits unfavorable regions due to the 
lack of urea group and the improper orientation of phenyl 
substituted NH. Also the alignment of active and inactive 
compounds shows that the amino group substituted in 
the pyrimidine ring is located in an electrophilic environ-
ment and hence shows an unfavorable region.

The nature of electron withdrawing property and its 
influence on various regions of the inhibitor is shown in 
the Figure 2E and 2F. The favorable regions (blue cubes) 
present near the linker O and the O and NH groups of 
urea connected to methyl-phenyl indicate that H-bond 
acceptor features at these positions favor the activity. 
On the other hand, the inactive compound 75 does not 
show any favorable regions for the electron withdrawing 
property.

Figure 2G illustrates the sterically favorable (blue 
cubes) and unfavorable (red cubes) hydrophobic/non 
polar interactions for the active compound 51. The ter-
minal substitution at urea group is highly favorable for 
the activity, which is also supported by the other active 
compounds 58, 52, 56, 60, 61 and 19 having bulkier 
substitutions at this position. Substitution at 3rd posi-
tion of middle phenyl ring is unfavorable for the activ-
ity. The same is true in the case of inactive compound 
75 (Figure 2H) and additional unfavorable contours are 
also observed at the 6th position of middle phenyl ring. 
In the active compound 51, the acceptor pharmacoph-
oric feature A1 is positioned at the quinozoline N-atom 
and the same A1 is observed at the methyloxime O-atom 
in the inactive compound. The active compound has 
no unfavored steric sites in the vicinity of this acceptor, 

whereas, in the inactive compound, the methyloxime 
group expresses unfavored steric sites around the N-O 
atoms. The favorable regions observed at the methyl 
group suggest that hydrophobic substitutions at this site 
would favor for the activity.

In general, the favorable and unfavorable sites identi-
fied for H-bond donor-acceptor and hydrophobic regions 
depict the participation of functional groups in distin-
guishing active and inactive compounds. Electrophilic 
substitution at the phenyl substituted -NH and terminal 
substitutions at the urea group significantly favors the 
activity. In the closed form, quinazoline ring (compound 
51) shows neither favorable nor unfavorable nature 
whereas its open form (compound 75) reveals unfavor-
able regions.

Molecular dynamics simulation
In addition to the pharmacophore model prediction of 
the 81 VEGFR-2 inhibitors, docking and MD simulation 
studies were performed to understand their binding 
mode and stability with VEGFR-2. The inhibitors were 
docked at the ATP binding site of VEGFR-2 using GLIDE. 
The obtained docking scores revealed a good agreement 
with the trend in experimental activity and are reported 
in Supplementary Table S1. The complexes of most 
active and inactive compounds (51 and 75, respectively) 
docked at the ATP binding site of VEGFR-2 were sub-
jected to molecular dynamics simulation for a period of 
7 ns to understand their stable interaction pattern and 
the free energy of binding. The plot of atomic root mean 
square deviation (RMSD) of protein backbone shown in  
Figure 5A depicts the stable dynamics of the protein-
ligand complex formed by active (black lines) and 
inactive (red lines) compound during the course of 
simulation. From this RMSD plot, it is observed that the 
complex-51 (active compound) stabilizes after 2 ns and 
fluctuates around 2.25 ± 0.25 Å, whereas the complex-75 
(inactive compound) attains equilibrium only after 2.5 
ns and fluctuates as 2.75 ± 0.25 Å. The root mean square 

Figure 1.  Distance between the pharmacophore features of CPH1. The features like H-bond donor & electron withdrawing group and the 
aromatic rings are denoted as D, A and R, respectively. 



Pharmacophore based 3D-QSAR modeling  1241

© 2013 Informa UK, Ltd.�  

fluctuation (RMSF) calculated as a function of residue 
number (Figure 5B) for both complexes reveals higher 
fluctuation in the complex-75 than complex-51. This RMS 
fluctuation also discloses the existing compact interac-
tion within the active complex and the free residual 
motions in the inactive complex. The complex-51 shows 
an RMS fluctuation of 7 ± 1 Å whereas the complex-75 
varies as 8 ± 3 Å.

Non-covalent interactions such as H-bond and 
π-interactions play an important role in stabilizing the 
protein-inhibitor complex and are analyzed for both 
the active and inactive complexes. The binding cavity of 

VEGFR-2 is formed by Leu838, Val846, Ala864, Lys866, 
Leu887, Val897, Gly915, Phe916, Cys917 and Leu1033 
residues. Analysis of non-covalent interactions in active 
and inactive complexes revealed the binding of both 
inhibitors to this cavity and express similar site-specific 
interactions (Figure 4). The residues involved in polar 
contacts are depicted in magenta caret and the residues 
participating in non-polar interactions are shown in 
green caret.

The compound 51 formed four H-bonds and four 
π-interactions when docked against VEGFR-2, and 
the compound 75 expressed four H-bonds and two 

Figure 2.  Visualization of 3D contours generated using CPH1 for the most active and inactive compounds (51 and 75). The subsets A and 
B depict the mapping of CPH1 onto the compounds 51 and 75, respectively. Subsets C-H depict the favorable (blue) and unfavorable (red) 
regions derived from the atom based 3D QSAR model for the H-bond donor (C, D), electron withdrawing (E, F) and hydrophobic properties 
(G, H) respectively. 
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π-interactions in the docked conformation. During MD, 
the inhibitor is effectively accommodated in the binding 
cavity via the structural changes of active site residues. 
The observed π-interaction of middle aromatic ring with 
Phe1045 in docked active complex disappeared dur-
ing simulation. The simulated inactive complex failed 
to express interactions like (i) π-interaction between 
Lys866 and middle aromatic ring and (ii) H-bond with 
Asp1044 that were observed while docking. By allow-
ing such ligand induced-fit changes during dynamics, 
the observed stable protein-inhibitor interactions are 
discussed. Figure 4 illustrates the 2D-interaction pattern 
observed before and after simulation (of 7 ns) for both 
active and inactive complexes.

In the complex-51, several H-bonding interactions 
are observed. The N atom (in quinolone group) and O 
atom (in urea group) forms H-bonds with the main chain 
NH of the residues Cys917 and Asp1044, respectively. 
Both the N atoms of urea interact with the side chain of 
Glu883 through a bifurcated H-bond. All these H-bond 
forming moieties of the inhibitor has been recognized as 
the pharmacophoric features (denoted as A1, A4, D6 in 
Figure 1) in the CPH1.

Figure 3.  Plot of experimental activities against predicted 
biological activities of VEGFR-2 inhibitors. The traning and test 
set compounds are in spheres and diamonds, respectively. 

Figure 4.  2D representation of the interaction pattern of VEGFR-2 with active (A, B) and inactive (C, D) compounds before (A,C) and after 
(B,D) a simulation of 7 ns. 
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In addition to these H-bonding interactions, the ter-
minal aromatic rings involve in π-interactions. Both the 
aromatic rings of quinolone moiety involve in π-π inter-
action with Phe916. The phenyl ring substituted at the 
urea group, which is sandwiched between Asp1044 and 
the hydrophobic pocket (lined by the residues Ile886, 
Leu887 and Ile890) expresses a σ-π interaction with 
Asp1044. The aromatic substitution at the urea group is 
a common feature of the active compounds and is also 
recognized as a pharmacophore feature in the CPH1.

The inactive compound 75 possesses an open qui-
nozoline moiety. This compound interacts with Cys917 
through a bifurcated H-bond and with Glu883 via a single 
H-bond. A π-π interaction between the pyrimidine ring 
and Phe916 is also observed. This inactive compound 
fails to express strong interactions due to the absence 
of urea and the subsequent groups which are important 
pharmacophore features. Though the two compounds 
bind to the same pocket, the DFG loop involves in dif-
ferent type of interaction mechanisms like a stronger 
σ-π interaction with active compound and a weaker 
hydrophobic interaction with inactive compound. This 
analysis is further extended to investigate the binding 
free energy and its decomposition in a per-residue basis 
to understand the role of active site residues in stabilizing 
the protein-inhibitor interactions.

Binding free energy
The binding free energy of complexes 51 and 75 calcu-
lated using the MM/GBSA method is –59.89 and –36.81 
kcal/mol, respectively. The electrostatic, van der Waals, 
non-polar and polar components of binding free energy 
are listed in Table 2. Among the calculated energy com-
ponents of the active and inactive compounds, the E

vdW
 

value is highly negative (–60.88 and –47.22 kcal/mol, 
respectively) and explains the significant role of van der 
Waals interaction during inhibition. The electrostatic 
interaction –35.57 and –24.96 kcal/mol, respectively) 
is the second important factor influencing the binding 
free energy, which is almost half of the van der Waals 
interaction. The non-polar interaction (–7.7 and –5.96 
kcal/mol, respectively) derived by the solvent accessible 
surface area contributes about 5 times lesser than the 
electrostatic interaction. The highly positive polar inter-
action (44.26 and 41.34 kcal/mol, respectively) screens 
the favorable electrostatic interaction into a net electro-
static energy of 8.69 and 16.38 kcal/mol, respectively. 
The strength of favoring binding free energy components 
involved in VEGFR-2 inhibition by both active and inac-
tive compound is ordered as ΔE

vdw
 > ΔE

ele
 > ΔG

nonpol
 > 

ΔG
pol

. Overall, this observation clearly shows that the 
inhibition activity is highly modulated by van der Waals 
interactions.

Decomposition of the binding free energy
The decomposition of binding free energy on a per resi-
due basis of the VEGFR-inhibitor complexes provides a 
detailed insight into the role of non-covalent interactions 
on VEGFR-2 inhibition. This quantitative information could 
reveal the significance of interacting residues and provide 
useful insights in designing new VEGFR-2 specific inhibitors.

Figure 6A shows a plot of total interaction energy of 
the inhibitor-residue pairs. It is clear that both 51 and 
75 bind to the same binding cavity lined by the resi-
dues Leu838, Val846, Glu883, Val 897, Phe916, Cys917, 
Gly920, Cys1043, Asp1044, and Phe1045, in which the 
residue Glu883 interacts strongly when compared to 
others. Glu883 contributes total interaction energy of  

Figure 5.  The RMSD (A) and RMSF (B) of a 7 ns long MD trajectory of VEGFR-2 complexes with active (black lines) and inactive (red lines) 
compounds, respectively. 

Table 2.  Binding free energy and its individual components in kcal/mol calculated by the MMGBSA method.
Inhibitors ΔE

ele
ΔE

vdw
ΔG

nonpol
ΔG

pol
ΔG

ele + pol
ΔG

bind
ΔG

exp
*

Complex-51 –35.57 –60.88 –7.70 44.26 8.69 –59.89 –13.30
Complex–75 –24.96 –47.22 –5.96 41.34 16.38 –36.81 –6.45
*ΔG

exp
 is calculated as RTln(IC

50
).
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–8.72 kcal/mol when complexed with active compound 
and in the case of inactive complex, it is –4.51 kcal/mol. 
Such high energy of binding with 51 is attributed by the 
formation of a bifurcated H-bond whereas, 75 interacts 
via only one H-bond. The other residues such as Leu838, 
Glu883, Phe916, Gly920, Cys1043 and Asp1044 express 
significant interaction energies viz. –2.56, –8.72, –3.17, 
–1.25, –4.26 and –3.73 kcal/mol, respectively in the com-
plex-51 than that with complex-75 (–2.08, –4.51, –2.51, 
–0.13, –2.02, –2.6 kcal/mol, respectively). In contrast 
to this, the residues Cys917 and Phe1045 show weaker 
interaction with 51 (–3.26 and –2.39 kcal/mol, respec-
tively) than 75 (–3.81 and –3.14 kcal/mol, respectively).

The contribution of van der Waals energy for the bind-
ing of active (black lines) and inactive (red lines) com-
pounds is shown in Figure 6B. The compounds 51 and 
75 show van der waals interaction with the residues of 
VEGFR-2 like Leu838, Val846, Ala864, Lys866, Leu887, 
Val897, Val914, Phe916, Cys917, Leu1033, Cys1043, 
Asp1044 and Phe1045. The strength of vdW interaction is 
quite high in complex-51, when compared to complex-75 
except the residues Val846, Val914 and Phe1045 (–1.69, 
–1.34 and –2.58 kcal/mol, respectively). In general, E

vdw
 

shows favorable interaction with both the compounds, 
but with different amplitudes.

Electrostatic interaction plays a major role in deter-
mining the activity of a compound when complexed with 
the receptor. The role of electrostatic interactions in the 
inhibition of VEGFR-2 can be evidenced by H-bond and 
π-π interactions (Figure 6C). In this analysis, the residue 
Glu883 of VEGFR-2 is found to impart higher attractive 
energy (–13.17 kcal/mol) when complexed with 51 than 75 
(–8.39 kcal/mol). The other favoring sites such as Phe916, 
Cys917, Cys1043, Asp1044 and Phe1045 contribute –1.36, 
–2.28, –2.81, –1.74 and –0.55 kcal/mol, respectively in the 
complex-51. The contribution of these residues is com-
paratively less in the inactive complex, except Cys917, 
which contributes higher. The Lys866 contributes unfa-
vorable electrostatic energy with both the compounds 
which is 1.25 kcal/mol higher in the active complex.

As the ligand binding site of VEGFR-2 also possesses 
polar residues, it is note-worthy to understand the role of 
polar interactions. The polar solvation free energy ana-
lyzed from the ΔG

pol
 reveals that the favorable electro-

static interactions are screened by the unfavorable polar 
solvation energies and vice versa (Figure 6D). Despite 
this polar screening, the net electrostatic contribution of 
the residues Glu883, Phe916, Cys917, Leu1033, Cys1043, 
Asp1044 and Phe1045 is considerably higher to influence 
electrostatic interaction.

Figure 6.  The decomposition of binding free energy into inhibitor-residue pairs. The contribution of total (A), vdW (B), electrostatic (C) and 
polar solvation (D) energies in the active (black lines) and inactive (red lines) complexes, respectively. 
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Binding free energy analysis using molecular dynam-
ics simulations finds merit in designing novel VEGFR-2 
inhibitors based on the knowledge of receptor’s binding 
specificity. Further decomposition of binding free energy 
into per residue analysis provides a clear understanding 
on the active participation of binding site residues in 
inhibiting receptor function. The active site of VEGFR-2 
is hydrophobic in nature and its role in stabilizing the 
ligand is quantitatively highlighted by ΔE

vdw
 component 

of binding free energy, which is also envisaged by the per 
residue contribution. In addition to this interaction, the 
compound 51 forms four H-bonds and three π interac-
tions with VEGFR-2 whereas the compound 75 interacts 
via three H-bonds and one π interaction. The amino 
acid residues Glu883, Phe916, Cys917 and Asp1044 that 
express strong electrostatic interactions play a major role 
in ligands activity. The identified acceptor and donor 
pharmacophoric features of CPH1 interact with these 
important residues via hydrogen bond. The compound 
51 is identified as an active ligand since the urea group 
participates in explicit interactions (like hydrogen bonds 
and π-interactions) as well as encompasses the derived 
pharmacophoric features (A4 and D6) of CPH1. On 
the other hand, the features A4 and D6 are not accom-
modated by the inactive compound and this reveals the 
ability of CPH1 in discriminating active and inactive 
compounds.

Precisely, the present analysis explains the importance 
of binding site residues like Glu883, Phe916, Cys917 and 
Asp1044 and proposes to design the inhibitors that could 
establish electrostatic interactions with these residues 
for efficient inhibition against VEGFR-2. The generated 
phramacophore model (CPH1) also represents these 
interactions pattern and demonstrate as a statistically 
significant model with high predictivity and hence, could 
serve as a template model in screening databases to 
identify novel inhibitor scaffolds.

Conclusion

In this present work, an attempt has been made to derive 
a 3D-QSAR model for VEGFR-2 inhibitors using phar-
macophore based alignment. A five featured hypothesis, 
AADRR has been identified as the best hypothesis as it 
distinguishes the active and inactive compounds. The 
H-bond donor-acceptor and hydrophobic properties 
identified using this pharmacophore model witnessed the 
role of favorable and unfavorable sites of interaction. The 
QSAR model built using this hypothesis showed statistical 
significance in determining the most active and inactive 
compounds and were docked into VEGFR-2. Molecular 
dynamics simulations for 7 ns were performed to inves-
tigate the structural dynamics and complex stability. The 
binding free energy analysis revealed that the binding 
affinity of compound 51 (–59.89 kcal/mol) with VEGFR-2 
is more than compound 75 (–36.81 kcal/mol). The 
decomposition of free energy into ligand-residue interac-
tion pairs revealed Glu883, Phe916, Cys917 and Asp1044 

as the significant interacting residues. From Figure 6, 
it is clear that the complexation with VEGFR-2 is highly 
driven by van der Waals interactions and the only residue 
imparting electrostatic interaction is Glu883 (–13.17 kcal/
mol). Thus, this pharmacophore modeling, docking and 
simulation studies highlight the important pharmacoph-
oric features that mediate VEGFR-2 inhibition and pro-
vide further insights in designing new VEGFR-2 inhibitory 
scaffolds with higher inhibition activity.
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