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Abstract

A new series of chiral thiourea derivatives (5a–5c) and thiourea containing benzimidazole
moieties (9b–9e) were synthesized from different amino acids (L-valine, L-isoleucine, L-
methionine, L-phenylalanine, and D-phenylglycine). The compounds were characterized and
tested against the two most studied members of the pH regulatory enzyme family, carbonic
anhydrase (CA, EC 4.2.1.1). KI values of the novel compounds were measured in the range of
3.4–73.6 mM for hCA I isozyme and 8.7–1.44.2 mM for hCA II isozyme, respectively. Phenol was
also tested as standard in order to understand the structure activity relationship and the
clinically used sulfonamide acetazolamide was tested for comparison reasons. All of the
compounds exhibited competitive inhibition with 4-nitrophenylacetate as substrate.
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Introduction

Benzimidazole derivatives incorporating thiourea moieties play
important roles in medical field with various pharmacological
activities such as antimicrobial, antiviral, antidiabetic, and
anticancer activity1. The potency of these clinically useful drugs
in the treatment of microbial infections and other activities
encouraged the development of some more potent and significant
compounds2,3. Benzimidazoles are remarkably effective com-
pounds, and extensive biochemical and pharmacological studies
have confirmed that these molecules are effective against various
strains of microorganisms. The development of new antimicrobial
and anticancer therapeutic agents is one of the fundamental goals
in medicinal chemistry4,5.

Carbonic anhydrase (CA; carbonate hydrolase, EC 4.2.1.1)
enzymes play important roles in several physiological and
pathological processes6. Sixteen CA isoforms have been identi-
fied in mammals that differ in subcellular localization and
catalytic activity7. CA isoforms take part in several vital
biological processes such as acid–base balance, electrolyte
secretion, carbon dioxide and ion transport, bone resorption,
respiration, ureagenesis, gluconeogenesis, and lipogenesis6–10.
Inhibitors or activators of these enzymes have several medical
applications, such as diuretics, in the treatment of glaucoma, in
the management of several neurological disorders, including
epilepsy, possibly in the treatment of Alzheimer’s disease.
However, it is relatively difficult to design agents (inhibitors or
activators) with specificity or selectivity for any of these isoforms,
and many pharmacological agents belonging to the class of the

CA inhibitors (CAIs) act as promiscuous inhibitors of most
isozymes with physiological/pathological relevance resulting in
undesired side effects10–14. So far inhibitory effects of different
sulfonamide derivatives, phenols, anions, and drugs have been
investigated against many CAs15–19.

However, it is still important to discover further classes of
potential CAIs in order to develop novel compounds with distinct
inhibition profiles as compared to the known molecules.
Therefore, in this study, we focused on the synthesis, character-
ization, and CA inhibitory properties of benzimidazole deriva-
tives of thiourea compounds.

In this study, a new series of chiral thiourea derivatives (5a–c)
(Figure 1) and chiral thiourea containing benzimidazol derivatives
(9b–e) (Figure 2) were synthesized in good yields, and the
structures of the compounds were confirmed by IR, 1H-NMR,
13C-NMR, and elemental analysis. In addition, CA inhibitory
activity of the compounds was evaluated.

General procedure for the synthesis of N-Boc-amide
derivatives (3a–c)

To a solution of N-Boc-amino acid (2a–c) (1 mmol) in 15 ml THF,
2-aminophenol (1 mmol) and a slight excess of N,N0-dicyclohex-
ylcarbodiimide (1.2 mmol) were added. The mixture was stirred
under inert atmosphere at room temperature overnight. The
insoluble dicyclohexylurea was removed by filtration and the
solvent was evaporated. Evaporation of the solvent provided a
residue which was purified by column chromatography using
dichloromethane and methanol (25:1) to give 3a–c.

CA inhibitory activity

Compounds 5a–c and 9b–d, as well as the standard, clinically
used CAI acetazolamide (AZA), have been tested for the
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inhibition of two cytosolic ubiquitous isozymes of human origin,
that is, hCA I and hCA II (Table 1).

The following should be noted regarding the CA inhibitory
data of Table 1:
(1) The thiourea derivatives investigated here showed moderate

to strong inhibitory properties against the slow cytosolic
isoform hCA I. Compound 9b exhibited the lowest inhibition
of this isoform, with KI value of 73.6 mM. Compounds 5a–c
were much more effective inhibitors against hCA I, with KI-s
in the range of 3.4–7.6 mM. These results demonstrate the
contribution of the hydroxyl groups to the inhibition efficacy.
Interestingly, benzimidazole containing compounds 9b–d

were less effective than compound 5c. This trend also shows
the attenuator potency of the benzimidazole moiety. As these
compounds do not possess any of the zincanchoring groups
present in known CAIs, presumably such compounds may
bind in the coumarin/phenol binding site.

(2) Similar to hCA I inhibition data, compound 9b acted as the
weakest inhibitor against the ubiquitous and dominant rapid
cytosolic isozyme hCA II. However, 5a–c derivatives acted
as more effective hCA II inhibitors with a comparable
potency as the reference compounds phenol (KI: 5.5 mM).
The most potent inhibitor was compound 5a (KI: 8.7 mM).
This trend again demonstrates the attenuator potency of the

Figure 1. Synthesis of compounds 5a–c.
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Figure 2. Synthesis of compounds 9b–e.
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benzimidazole moiety. Also, hydroxyl group containing
compounds 5a–c were much more effective compared to
hydrophobic group containing compounds 9b–d.

Experimental

All chemicals were obtained commercially from Sigma-
Aldrich (Bornem, Belgium). IR spectra were recorded on
a Perkin-Elmer 100 FTIR spectrometer and all 1H-NMR and
13C-NMR spectra were recorded using an Oxford NMR 400 MHz
spectrometer using TMS as the internal standard d-values in ppm
at ambient temperature. Melting points were measured on variable
heater.
Tert-butyl 1-(2-hydroxyphenylamino)-3-methyl-1-oxobutan-2-
ylcarbamate (3a): Yellow oily product, 73% yield, IR (KBr):
3291(–OH), 3070(ArC–H), 2970(C–H), 2934(C–H), 1680(C¼O),
1612(C¼O), 1532(ArC¼C), 1505(ArC¼C), 1499(ArC¼C),
1286(C–O), 1169(N–C), 749(mono subs. Ar). 1H-NMR (CDCl3,
� ppm) 8.67 (s, 1H), 8.59 (bs, 1H), 7.08 (d, J¼ 8 Hz, 2H), 6.98
(dd, J¼ 8.4 Hz and 1.2 Hz, 1H), 6.82 (td, J¼ 8 Hz and 1.2 Hz,
1H), 5.19 (d, J¼ 8 Hz, 1H), 4.42 (t, J¼ 7.2 Hz, 1H), 2.24 (m, 1H),
1.46 (s, 9H), 1.05 (d, J¼ 6.4 Hz, 3H) and 1.01 (d, J¼ 6.8 Hz).
Tert-butyl 1-(2-hydroxyphenylamino)-4-methyl-1-oxopentan-
2-ylcarbamate (3b): Yellow oily product, 53% yield, IR (KBr):
3291(–OH), 3049(ArC–H), 2965(C–H), 2933(C–H), 1694(C¼O),
1660(C¼O), 1524(ArC¼C), 1450(ArC¼C), 1256(C–O),
1168(C–N) and 738(mono subst. Ar). 1H-NMR (CDCl3, � ppm)
8.74 (bs, 1H), 7.08 (m, 2H), 6.98 (d, J¼ 7.6 Hz, 1H), 6.79
(t, J¼ 7.2 Hz, 1H), 5.73 (d, J¼ 8 Hz, 1H), 4.18 (m, 1H), 1.96
(m, 1H), 1.6 (m, 1H), 1.44 (s, 9H), 1.01 (d, J¼ 6.8 Hz, 3H), 0.93
(d, J¼ 7.6 Hz, 3H).
Tert-butyl 1-(2-hydroxyphenylamino)-1-oxo-3-phenylpropan-
2-ylcarbamate (3c): White solid, 51% yield, mp¼ 126–128 �C,
IR (KBr): 3360(N–H), 3311(N–H), 3064(ArC–H), 2978(C–H),
1668(C¼O), 1616(C¼O), 1599(C¼O), 1543(ArC¼C),
1455(ArC¼C), 1279(C–O), 1165(C–N), 750(mono subs Ar).
1H-NMR (CDCl3, � ppm), 8.47 (bs, 1H), 8.22 (bs, 1H), 7.33–7.22
(m, 5H), 7.11–7.07 (m, 1H), 6.97 (dd, J¼ 7.6, 1.2 Hz, 1H), 6.84–
6.77 (m, 2H).

Deprotection reaction of 2-N-Boc-amide derivatives
(4a–c)

About 1 mmol N-Boc-amide (3a–b) was dissolved in 2 ml THF
and 2 ml 85% H3PO4 was added dropwise to the solution. The
reaction mixture was stirred overnight at room temperature.
To terminate the reaction, 5 ml distilled water was added and the
reaction mixture was neutralized with saturated NaOH. The

solution was extracted with ethyl acetate. The organic phase was
dried using Na2SO4 and evaporated under vacuum and pure
products (4a–c) were obtained.
2-Amino-N-(2-hydroxyphenyl)-3-methylbutanamide (4a):
Yellow solid, 77% yield, mp¼ 140–142 �C, IR (KBr): 3411
(–OH), 3329(NH2), 3274(NH2), 2966(C–H), 2918(C–H),
1676(C¼O), 1596(C¼O), 1525(ArC¼C), 1456(ArC¼C),
1284(C–O), 1004(C–N), 751(mono subs. Ar) cm�1. 1H-NMR
(CDCl3, � ppm) 9.81 (s, 1H), 7.11 (td, J¼ 8.4 Hz and 1.2 Hz, 1H),
7.02 (dd, J¼ 8 Hz and 1.2 Hz, 1H) 6.95 (dd, J¼ 8 Hz and 1.6 Hz,
1H), 6.84 (td, J¼ 8.8 Hz and 1.6 Hz, 1H), 3.47 (d, J¼ 3.6 Hz, 1H),
2.46 (m, 1H), 1.07 (d, J¼ 7.2 Hz, 3H) and 0.9 (d, J¼ 6.8 Hz, 3H).
2-Amino-N-(2-hydroxyphenyl)-4-methylpentanamide (4b):
Yellow oily product, 85% yield, IR (KBr): 3287(–OH),
3064(ArC–H), 2963(C–H), 1695(C¼O), 1596(C¼O),
1499(ArC¼C), 1429(ArC¼C), 1282(C–O), 1105(C–N),
750(mono subs Ar). 1H-NMR (CDCl3, � ppm), 9.81 (bs, 1H),
7.12 (td, J¼ 8 Hz and 1.6 Hz, 1H), 7.02 (d, J¼ 8 Hz, 1H), 6.95
(d, J¼ 6.8 Hz, 1H), 6.84 (td, J¼ 7.2 Hz and 0.8 Hz,1H), 3.52
(d, J¼ 3.6 Hz, 1H), 2.16 (m, 2H), 2.09 (s, 1H), 1.37 (m, 1H), 1.15
(m, 1H), 1.05 (d, J¼ 6.8 Hz, 3H) and 0.93 (t, 7.6 Hz, 3H).
2-Amino-N-(2-hydroxyphenyl)-3-phenylpropanamide (4c):
White solid, 86% yield, mp¼ 170–173 �C, IR (KBr): 3399
(�OH), 3296(NH), 3083(ArC–H), 2978(C–H), 1647(C¼O),
1614(C¼O), 1588(ArC¼C), 1542(ArC¼C), 1454(ArC¼C),
1282(C–O), 1102(C–N), 748.6(mono subs. Ar), 700(mono subs.
Ar). 1H-NMR (CDCl3, � ppm), 9.69 (bs, 1H), 7.36–7.23 (m, 5H),
7.11 (t, J¼ 7.6 Hz, 1H), 7.18 (d, J¼ 8 Hz, 1H), 6.93 (dd, J¼ 8,
1.6 Hz, 1H), 6.83 (td, J¼ 8, 1.6 Hz, 1H) 3.81 (s, 1H), 3.35 (dd,
J¼ 14, 3.6 Hz, 1H), 2.85 (J¼ 13.6, 8.8 Hz, 1H).

Synthesis of thiourea derivatives (5a–c)

About 1 mmol of potassiumthiocyanide (KSCN) was stirred in
15 ml dried acetone and 1 mmol benzoyl chloride was added
dropwise under an argon atmosphere. Precipitation was observed
immediately. The reaction mixture was refluxed until the color of
the solution turned yellow (approximately 2 h). Then, the reaction
mixture was cooled to room temperature and an amide (4a–b)
solution in 5 ml dried acetone was added dropwise to the reaction
flask which was then refluxed for 2 h. Reaction was monitored by
TLC. The solution was filtered and evaporation of the solvent
from the filtrate provided a residue which was crystallized from
CH2Cl2: hexane to give bright yellow crystals.
N-(1-(2-hydroxyphenylamino)-3-methyl-1-oxobutan-2-ylcar-
bamothioyl)benzamide (5a): Bright yellow crystal, 79% yield,
mp¼ 164.5–165.8 �C, IR (KBr): 3308(–OH), 3248(N–H),
3071(ArC–H), 2968(C–H), 2981(C–H), 1670(C¼O amide),
1645(C¼O), 1531(ArC¼C), 1520(ArC¼C), 1453(ArC¼C),
1263(C–O), 1162(N–C), 1093(C¼S), 748(mono subs. Ar),
714(mono subs. Ar). 1H-NMR (CDCl3, d ppm) 11.23
(d, J¼ 7.2 Hz, 1H), 9.11 (s, 1H), 8.44 (s, 1H), 7.84 (d,
J¼ 7.6 Hz, 2H), 7.64 (t, J¼ 1.2 Hz, 1H), 7.52 (t, J¼ 8 Hz, 2H),
7.17 (d, J¼ 1.6 Hz, 1H), 7.14 (t, J¼ 6.8 Hz, 1H), 7.09
(d, J¼ 1.6 Hz, 1H), 6.87 (t, J¼ 6.8 Hz, 1H), 4.93 (t, J¼ 7.2 Hz,
1H), 2.52 (m, 1H) and 1.15 (d, J¼ 6.8 Hz, 6H). 13C-NMR
(CDCl3, d ppm) 169.7, 167.3, 148.7, 134.1, 131.6, 129.4, 127.8,
127.4, 125.4, 122.9, 120.8, 119.4, 65.7, 30.6, 19.6, and 18.6. Anal.
Calc. for C19H21N3O3S: C, 61.44; H, 5.70; N, 11.31; S, 8.63.
Found: C, 61.57; H, 5.88; N, 10.60; S, 7.73%.
N-(1-(2-hydroxyphenylamino)-4-methyl-1-oxopentan-2-ylcar-
bamothioyl)benzamide (5b): Yellow solid, 79% yield,
mp¼ 161–163 �C, IR (KBr): 3269(N–H), 3063(ArC–H),
2961(C–H), 2927(C–H), 1666(C¼O), 1599(C¼O)
1520(ArC¼C), 1498(–ArC¼C), 1458(–ArC¼C), 1166(C–O)
1157(N–C), 1084(C¼S), 745(mono subs. Ar), 723(mono subs.

Table 1. hCAs I and II inhibition data with studied compounds, phenol
and acetazolamide, by an esterase assay with 4-nitrophenylacetate as
substrate.

KI (mM)*

Inhibitor hCA I hCA II

Phenol 10.2y 5.50y
5a 3.4 8.7
5b 4.3 14.3
5c 7.6 22.1
9b 73.6 44.2
9c 62.3 26.5
9d 46.1 12.9
AZA 36.2z 0.37z

*Mean from at least three determinations. Errors in the range of �3% of
the reported value (data not shown).
yFrom Ref. 7.
zFrom Ref. 23.
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Ar). 1H-NMR (CDCl3, d ppm) 11.22 (d, J¼ 7.6 Hz, 1H), 9.09
(s, 1H), 8.4 (s, 1H), 8.29 (bs, 1H), 7.86 (d, J¼ 8 Hz, 2H), 7.64
(t, J¼ 7.2 Hz, 1H), 7.53 (t, J¼ 8 Hz, 2H), 7.12 (t, J¼ 7.6 Hz, 2H),
7.08 (d, J¼ 7.2 Hz, 1H), 6.86 (t, J¼ 7.6 Hz, 1H), 4.99
(t, J¼ 7.6 Hz, 1H), 2.32 (m, 1H), 1.72 (m, 1H), 1.67 (s, 1H),
1.40 (m, 1H), 1.11 (d, J¼ 6.8 Hz, 3H), and 1.01 (t, J¼ 7.2 Hz,
3H). 13C-NMR (CDCl3, d ppm), 181.3, 169.7, 167.3, 148.8,
134.1, 131.6, 129.4, 127.8, 127.5, 125.4, 122.9, 120.8, 119.6,
64.7, 36.5, 25.4, 15.9, and 11.4. Anal. Calc. for C20H23N3O3S:
C, 63.32; H, 6.01; N, 10.90; S, 8.32. Found: C, 61.93; H, 6.03; N,
10.54; S, 7.72%.
N-(1-(2-hydroxyphenylamino)-1-oxo-3-phenylpropan-2-ylcar-
bamothioyl)benzamide (5c): White solid, 65% yield, mp¼ 164–
167 �C IR (KBr): 3262(N–H), 3063(ArC¼C), 2955(C–H),
2922(C–H), 1667(C¼O), 1600(C¼O), 1580(ArC¼C),
1532(ArC¼C), 1515(ArC¼C), 1498(ArC¼C), 1220(C–O),
1162(C–N), 743(mono subs. Ar), 714(mono subs. Ar). 1H-NMR
(CDCl3, � ppm) 11.31 (d, J¼ 6.8 Hz, 1H), 9.04 (s, 1H), 8.1 (s,
1H), 7.93–6.79 (m, 14H), 5.36 (dd, J¼ 14.8, 8 Hz, 1H), 3.37 (dd,
J¼ 13.6, 6.4 Hz, 1H), and 3.29 (dd, J¼ 14, 8.4 Hz, 1H). 13C-
NMR (CDCl3, � ppm), 180.8, 169.11, 168.85, 149.07, 137.13,
133.72, 132.76, 130.09, 129.27, 129.09, 128.91, 127.38, 126.23,
125.78, 123.56, 119.59, 116.28, 60.39, and 38.12. Anal. Calc. for
C23H21N3O3S: C, 65.85; H, 5.05; N, 10.02; S, 7.64. Found: C,
64.66; H, 5.40; N, 9.14; S, 6.89%.

Synthesis of N-Boc-amide derivatives (6b–e)

The general procedure described for compounds (3a–c) was
carried out by using phenylenediamine (1 mmol). The resulting
residue was purified by column chromatography using (hexane/
ethyl acetate (EtOAc), 3:2) to give product (6b–e).
Tert-butyl 1-(2-aminophenylamino)-3-methyl-1-oxopentan-2-
ylcarbamate (6b): Yellow oily product, 72% yield, IR (KBr):
3488.1, 3419.6, 3354.2, 3304.8, 3033.2, 2966.8, 2632.7, 2310.9,
1673.6, 1660.5, 1625.9, 1592.9, 1525.5, 1460.3, 1392.5, 1314.4,
1165.8, 1020.7, 987.8, 811.9, and 746.2. 1H-NMR (CDCl3,
400 MHz, � ppm) 7.85 (bs, 1H), 7.20 (d, 1H, J¼ 7.2 Hz), 7.03 (d,
1H, J¼ 16 and 7.6 Hz), 6.75 (dd, 2H, J¼ 12 and 7.6 Hz), 5.21 (d,
1H, J¼ 7.6 Hz), 4.79 (t, 1H, J¼ 9.6 and 7.6), 4.06 (t, 1H, J¼ 15.2
and 7.2), 3.85 (s, 2H), 1.99 (m, 1H, J¼ 6.4 and 3.6 Hz), 1.44 (s,
9H), 1.36 (t, 1H, J¼ 7.6 and 4 Hz), and 1.03 (d, 3H, J¼ 6.8 Hz).
13C-NMR (CDCl3, 100 MHz, � ppm) 171.57, 156.63, 141.45,
127.32, 126.19, 118.76, 117.30, 80.16, 60.08, 28.57, 25.20, 37.27,
15.79, and 11.38.
Tert-butyl 1-(2-aminophenylamino)-1-oxo-3-phenylpropan-2-
ylcarbamate (6c): Yellow oily product, 66% yield, IR (KBr):
3283.2, 2963.2, 2935.3, 2852.4, 1663.9, 1661.5, 1527.3, 1366.1,
1342.3, 1332.5, 1256.9, 1167.3, 1019.3, 872.4, and 748.8. 1H-
NMR (DMSO-d6, 400 MHz, � ppm) 9.19 (bs, 1H), 7.29 (dd, 3H,
J¼ 15.2 and 7.6 Hz), 7.20 (t, 1H, J¼ 13.2 and 6 Hz), 7.03 (dd,
2H, J¼ 22 and 8 Hz), 6.89 (dd, 2H, J¼ 15.2 and 7.6 Hz), 6.52 (dd,
2H, J¼ 14.8 and 7.2 Hz), 4.77 (s, 2H), 4.34 (d, 1H, J¼ 5.6 Hz),
3.31 (s, 1H), 3.03 (dd, 1H, J¼ 13.6 and 5.2 Hz), 2.88 (t, 1H,
J¼ 22.4 and 9.2 Hz), 1.34 (s, 9H). 13C-NMR (DMSO-d6,
100 MHz, � ppm) 171.35, 156.21, 143.34, 138.65, 130.01,
128.75, 126.97, 126.63, 123.35, 116.65, 116.22, 78.87, 56.94,
38.14, and 28.86.
Tert-butyl1-(2-aminophenylamino)-4-(methylthio)-1-oxobu-
tan-2-ylcarbamate(6d): Yellow oily product, 71% yield, IR
(KBr): 3285.3, 3072.7, 2976.8, 2934.3, 2928.8, 1664.3, 1634.9,
1533.2, 1500.1, 1457.6, 1366.4, 1250.7, 1166.3, 1049.9, 1042.1,
1018.8, 860.5, and 748.1. 1H-NMR (CDCl3, 400 MHz, � ppm)
8.19 (bs, 1H), 7.17 (d, J¼ 8 Hz, 1H), 7.01 (t, 1H, J¼ 8 and
3.6 Hz), 6.72 (t, 2H, J¼ 8 and 6.8 Hz), 5.53 (bs, 1H), 4.41 (d, 1H,
J¼ 6.8 Hz), 3.86 (s, 2H), 2.59 (t, 2H, J¼ 14.4 and 7.2 Hz), 2.16

(t.d, 1H, J¼ 14, 6.8 and 7.2 Hz), 2.00 (t.d, 1H, J¼ 13.6, 6.8 and
3.6 Hz), and 1.44 (s, 9H). 13C NMR (CDCl3, 100 MHz, � ppm)
170.79, 156.29, 141.10, 127.50, 125.82, 123.52, 119.18, 117.58,
80.76 54.41, 31.59, 30.54, 28.57, and 15.59.
Tert-butyl 2-(2-aminophenylamino)-2-oxo-1-phenylethylcar-
bamate (6e): Yellow oily product, 69% yield, IR (KBr): 3324.7,
3274.3, 2976.9, 2964.3, 2930.3, 1685.1, 1498.1, 1458.6, 1366.2,
1246.9, 1167.5, 1052.6, 886.2, and 698.7. 1H-NMR (CDCl3,
400 MHz, � ppm) 8.04 (s, 1H), 7.42 (d, 2H, J¼ 7.6 Hz), 7.32
(d, 3H, J¼ 5.6 Hz), 7.09 (d, 1H, J¼ 7.6 Hz), 6.98 (t, 1H, J¼ 15.6
and 7.6 Hz), 6.68 (dd, 2H, J¼ 14 and 7.6 Hz), 5.94 (d, 1H,
J¼ 6.4 Hz), 5.37 (bs, 1H), 3.66 (s, 2H), and 1.41 (s, 2H).
13C-NMR (CDCl3, 100 MHz, � ppm) 169.61, 155.70, 141.24,
138.14, 137.35, 128.71, 129.30, 128.71, 127.65, 127.48, 126.09,
123.40, 117.65, 80.64, 59.28, and 28.56.

Synthesis of 2-N-Boc-amide derivative of benzimidazoles
(7b–e)

N-Boc-amide derivative (6b–e) was dissolved in 20 ml of acetic
acid and the solution was stirred at 72 �C for 8 h. The acetic acid
was removed under reduced pressure and the crude compound
was purified by column chromatography (hexane/EtOAc, 3:2 by
volume) to afford a white solid.
Tert-butyl 1-(1H-benzo[d]imidazol-2-yl)-2-methylbutylcarba-
mate (7b): White solid product, 75% yield, m.p¼ 226–228 �C, IR
(KBr): 3202.9, 3060.8, 2966.8, 2985.8, 2877.5, 1674.8, 1623.3,
1584.7, 1487.5, 1456.1, 1318.2, 1173.4, 1011.6, 930.9, 877.8,
and 740.5. 1H-NMR (DMSO-d6, 400 MHz, � ppm) 12.10
(bs, 1H), 7.55 (d, 1H, J¼ 6.8), 7.45 (d, 1H, J¼ 7.2 Hz), 7.13
(dd, 2H, J¼ 12 and 5.6 Hz), 4.63 (t, 1H, J¼ 16.4 and 8 Hz),
1.95 (s, 1H), 1.48 (m, 1H, J¼ 13.6, 6.8 and 4 Hz), 1.37 (s, 9H),
0.85 (t, 3H, J¼ 14.8 and 7.6 Hz), and 0.74 (d, 3H, J¼ 6.8 Hz).
13C-NMR (CDCl3, 100 MHz, � ppm) 156.70, 155.32, 122.51,
137.52, 117.25, 80.22, 54.88, 38.83, 28.54, 25.82, 15.86,
and 11.19.
Tert-butyl 1-(1H-benzo[d]imidazol-2-yl)-2-phenylethylcarba-
mate (7c): White solid product, 68% yield, IR (KBr): 3315.7,
2930.2 2916.8, 1677.9, 1634.9, 1530.1, 1522.4, 1455.3, 1367.2,
1363.8, 1273.5, 1169.4, 1017.2, 730.1, and 697.9. 1H-NMR
(DMSO-d6, 400 MHz, � ppm) 8.19 (bs, 1H), 7.49 (dd, 2H, J¼ 6
and 3.6 Hz), 7.32 (d, 1H, J¼ 4 Hz), 7.23 (d, 4H, J¼ 4 Hz), 7.12
(dd, 2H, J¼ 3.6 and 1.2 Hz), 4.99 (d, 1H, J¼ 5.6 Hz), 3.34 (dd,
1H, J¼ 14 and 5.2 Hz), 3.08 (dd, 1H, J¼ 9.6 Hz), 1.71 (s, 1H),
and 1.28 (s, 9H). 13C-NMR (CDCl3, 100 MHz, � ppm) 155.93,
155.83, 138.81, 129.89, 128.72, 126.86, 122.13, 78.76, 51.53,
34.04, and 28.84.
Tert-butyl 1-(1H-benzo[d]imidazol-2-yl)-3-(methylthio)pro-
pylcarbamate (7d): White solid product, 82% yield, IR (KBr):
3298.3, 3072.7, 2916.8, 1634.9, 1527.4, 1457.6, 1439.5, 1367.1,
1362.4, 1307.8, 1270.5, 1250.7, 1165.2, 1043.4, 1171.4, 1024.7,
867.5, and 760.1. 1H-NMR (DMSO-d6, 400 MHz, � ppm) 12.15
(bs, 1H), 7.33 (d, 2H, J¼ 8 Hz), 7.12 (d, 2H, J¼ 3.6 Hz), 4.90 (d,
1H, J¼ 6.4 Hz), 3.32 (s, 1H), 2.50 (t, 2H, J¼ 14.4 and 6.8 Hz),
2.19 (td, 1H, J¼ 14, 6.4 and 6.8 Hz), 2.07 (t, 1H, J¼ 15.2 and
7.6), 1.37 (s, 3H) and 1.21 (s, 9H). 13C-NMR (CDCl3, 100 MHz, �
ppm) 156.05, 143.69, 134.87, 122.43, 121.67, 112.00, 78.89,
49.17, 34.13, 30.50, 28.88, and 15.38.
Tert-butyl 1-(1H-benzo[d]imidazol-2-yl)-3-(methylthio)pro-
pylcarbamate (7e): White solid product, 76% yield, mp¼ 195–
198 �C, IR (KBr): 3408.7, 2975.8, 2964.8, 2874.5, 1671.2, 1622.4,
1585.6, 1439.6, 1247.8, 1163.9, 1052.6, 750.1 and 740.5.
1H-NMR (DMSO-d6, 400 MHz, � ppm) 12.22 (bs, 1H), 7.76 (s,
1H), 7.54 (d, 1H, J¼ 6.8 Hz), 7.41 (d, 1H, J¼ 6.4 Hz), 7.25 (td,
1H, J¼ 8.4, 7.2 and 6.4 Hz), 7.23 (dd, 2H, J¼ 12.8 and 6 Hz),
7.12 (d, 2H, J¼ 0.8 Hz), 5.99 (d, 1H, J¼ 3.6 Hz) and 1.37 (s, 9H).
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13C-NMR (DMSO-d6, 100 MHz, � ppm) 157.34, 154.97, 140.86,
129.04, 128.16, 127.96, 122.36, 79.27, 28.84, and 53.95.

Deprotection of 2-N-Boc-amide derivative benzimidazoles
(8b–e)

The general procedure described for compound (4a–c) was
carried out with benzimidazole derivative (8b–e).

1-(1H-Benzo[d]imidazol-2-yl)-2-methylbutan-1-amine (8b):
White solid product, 70% yield, mp¼ 162–164 �C, IR (KBr):
2965.4, 2928.7, 1625.9, 1592.8, 1519.9, 1447.9, 1392.3, 1342.4,
1311.3, 1272.9, 1149.7, 1016.5, 839.6, 768.1, 742.1 and 609.8.
1H-NMR (CDCl3, 400 MHz, � ppm) 7.54 (d, 2H, J¼ 5.2 and
2.8 Hz), 7.16 (dd, 2H, J¼ 7.2 and 4 Hz), 5.75 (bs, 2H), 4.21
(d, 1H, J¼ 6 Hz), 2.01 (s, 1H), 1.54 (m, 1H) and 1.24 (s, 1H).
13C-NMR (CDCl3, 100 MHz, � ppm) 157.35, 138.49, 122.42,
115.19, 55.67, 40.82, 24.82, 15.76, and 11.69.
1-(1H-Benzo[d]imidazol-2-yl)-2-phenylethanamine (8c): White
solid product, 88% yield, mp¼ 169–172 �C, IR (KBr): 3167.2,
2930.4, 2776.3, 1452.8, 1274.8, 1121.5, 764.3, 751.2, 749.8 and
700.09. 1H-NMR (CDCl3, 400 MHz, � ppm) 8.20 (bs, 1H), 7.48
(s, 2H), 7.22 (d, 2H, J¼ 7.2 Hz), 7.12 (dd, 5H, J¼ 18.4 and
6.8 Hz), 7.10 (dd, 2H, J¼ 3.2 and 1.2 Hz), 4.27 (t, 1H, J¼ 7.6 and
5,6 Hz), 3.25 (dd, 1H, J¼ 13.2 and 6 Hz), 2.96 (dd, 1H, J¼ 13.2
and 7.6 Hz). 13C-NMR (DMSO-d6, 100 MHz, � ppm) 159.32,
139.45, 129.94, 128.80, 126.74, 121.83, 43.81, and 52.67.
1-(1H-Benzo[d]imidazol-2-yl)-3-(methylthio)propan-1-amine
(8d): Yellow oily, 66% yield, IR (KBr): 3321.3, 2922.1, 2966.4,
2918.8, 1675.3, 1575.5, 1437.2, 1271.8, 1252.4, 1022.1, 752.4,
and 743.4. 1H-NMR (CDCl3, 400 MHz, � ppm) 7.55 (dd, 2H,
J¼ 6 and 3.2 Hz), 7.21 (dd, 2H, J¼ 7.2 and 2.8 Hz), 4.99 (s, 2H),
4.42 (t, 1H, J¼ 13.6 and 6.8), 2.80 (td, 1H, J¼ 14.8 and 2.8 Hz),
2.56 (t, 2H, J¼ 7.2 and 2.8 Hz), 2.30 (td, 1H, J¼ 13.2 and 6.8),
2.16 (s, 1H), and 2.03 (s, 3H). 13C-NMR (CDCl3, 100 MHz, �
ppm) 157.27, 138.47, 122.70, 115.27, and 49.92.
(1H-Benzo[d]imidazol-2-yl)(phenyl)methanamine (8e): White
solid product, 65% yield, mp¼ 201–203 �C, IR (KBr): 3380.7,
2935.3, 2925.1, 1564.2, 1413.6, 1275.3, 1312.4, 1019.7, 1012.2,
750.1, 742.1 and 653.1. 1H-NMR (DMSO-d6, 400 MHz, � ppm)
7.84 (dd, 4H, J¼ 6.8, 3.2 and 3.6 Hz), 7.30 (dd, 2H, J¼ 7.6, 2 and
1.2 Hz), 7.20 (m, 1H, J¼ 6.8, 2 and 1.2 Hz), 7.11 (dd, 2H, J¼ 6.8,
4 and 3.2 Hz), 5.74 (s, 1H), 5.29 (s, 2H), 2.48 (t, 1H, J¼ 4.4 and
2 Hz). 13C-NMR (DMSO-d6, 100 MHz, � ppm) 158.99, 144.59,
128.86, 127.60, 121.91, and 55.36.

Synthesis of thiourea derivatives (9b–e)

2-N-Boc-amide derivative benzimidazole (1 mmol) (8b–e) was
dissolved in 5 ml of dry THF. Then 1-isothiocyanato-3,5-
bis(trifluoromethyl)benzene (1 mmol) was added at 0 �C to the
solution. The mixture was stirred for 10 min at 0 �C then allowed
to reach room temperature, and stirred for a further 24 h. The
solvent was removed in vacuum and the resulting material was
purified by column chromatography (hexane/EtOAc, 3:2 by
volume) to get a bright viscous product.
1-(1-(1H-Benzo[d]imidazol-2-yl)-2-methylbutyl)-3-(3,5-bis(tri-
fluoromethyl)phenyl) thiourea (9b): Bright yellow oily product,
65% yield, mp¼ 195–197 �C, IR (KBr): 3027.8, 2874.2, 1738.1,
1541.5, 1457.3, 1381.5, 1357.8, 1276.2, 1180.1, 1131.3, 886.3,
764.3 and 680.9. 1H-NMR (DMSO-d6, 400 MHz, � ppm) 12.42
(bs, 1H), 10.32 (s, 1H), 8.76 (d, 1H, J¼ 7.6 Hz), 8.29 (s, 2H), 7.75
(s, 1H), 7.59 (d, 1H, J¼ 6.8 Hz), 7.47 (d, 1H, J¼ 6.8 Hz), 7.21
(dd, 5H, J¼ 8 and 7.6 Hz), 7.19 (dd, 2H, J¼ 8 and 6.8 Hz), 4.04
(t, 1H, J¼ 7.6 and 6.8 Hz), 3.45 (dd, 1H, J¼ 14 and 6.8 Hz) and
3.34 (dd, 1H, J¼ 13.6 and 6.8 Hz). 13C-NMR (DMSO-d6,
100 MHz, � ppm) 180.88, 154.38, 142.34, 137.80, 131.10,

130.78, 129.84, 128.88, 125.26, 122.71, 122.55, 112.12, 54.52,
and 39.86.
1-(1-(1H-benzo[d]imidazol-2-yl)-2-phenylethyl)-3-(3,5-bis(tri-
fluoromethyl)phenyl) thiourea (9c): Bright yellow oily product,
65% yield, mp¼ 175–177 �C, IR (KBr): 3267.4, 2968.9, 1663.7,
1542.1, 1458, 1382.7, 1277.1, 1179.6, 1133.1, 1000.6, 955.4,
886.7, 848.1, 745.1, and 681.3. 1H-NMR (CDCl3, 400 MHz, �
ppm) 8.92 (bs, 1H), 7.43 (s, 3H), 7.32 (d, 2H, J¼ 9.6 Hz), 7.16 (s,
2H), 5.80 (s, 1H), 2.31 (t, 1H, J¼ 6.8 Hz), 2.08 (s, 1H), 1.84 (s,
1H), 1.54 (t, 1H, J¼ 13.6 and 5.6 Hz), 1.26 (m, 1H, J¼ 10.8, 6.8
and 3.2 Hz) and 1.12 (d, 3H, J¼ 6 Hz). 13C-NMR (CDCl3,
100 MHz, � ppm) 182.22, 156.33, 139.49, 131.52, 131.19, 124.32,
124.10, 123.83, 121.60, 118.52, 59.32, 40.13, 26.66, 14.38, and
11.26.
1-(1-(1H-Benzo[d]imidazol-2-yl)-3-(methylthio)propyl)-3-(3,5-
bis(trifluoromethyl) phenyl)thiourea (9d): Bright yellow oily
product, 69% yield, mp¼ 105–108 �C, IR (KBr): 3247.2, 2968.9,
2981.5, 2892.1, 1738.5, 1642.4, 1542.1, 1457.9, 1381.1, 1280.7,
1180.5, 1372.5, 1265.2, 1130.6, 886.9, and 681.1. 1H-NMR
(CDCl3, 400 MHz, � ppm) 9.10 (bs, 1H), 7.99 (s, 1H), 7.63 (s,
1H), 7.47 (s, 1H), 7.34 (s, 1H), 7.20 (dd, 2H, J¼ 5.6 and 3.6 Hz),
6.14 (s, 1H), 2.76 (td, 1H, J¼ 13.2 and 5.6 Hz), 2.65 (td, 1H,
J¼ 12.8 and 6.4 Hz), 2.47 (d, 2H, J¼ 6.8 Hz) and 1.95 (s, 1H).
13C-NMR (CDCl3, 100 MHz, � ppm) 182.23, 156.46, 139.46,
131.64, 131.30, 123.99, 123.60, 121.61, 118.54, 52.79, 34.43,
30.93, and 15.50.
1-((1H-Benzo[d]imidazol-2-yl)(phenyl)methyl)-3-(3,5-bis(tri
fluoromethyl)phenyl)thiourea (9e): Bright yellow oily product,
66% yield, mp¼ 104–106 �C, IR (KBr): 3277.3, 3031.4, 1704.9,
1662.6, 1541.6, 1457.7, 1382.5, 1277.9, 1179.5, 1132.1, 957.8,
885.8 and 739.9. 1H-NMR (CDCl3, 400 MHz, � ppm) 10.18 (bs,
1H), 9.69 (s, 2H), 7.75 (s, 2H), 7.40 (s, 1H), 7.32 (dd, 3H, J¼ 8.8
and 5.6 Hz), 7.22 (dd, 2H, J¼ 6.8 and 4.2 Hz), 7.19 (dd, 4H,
J¼ 8.4 and 2.8 Hz), and 4.10 (d, 1H, J¼ 6.4 Hz). 13C-NMR
(CDCl3, 100 MHz, � ppm) 181.89, 155.07, 140.03, 136.94,
131.98, 131.65, 131.31, 130.97, 129.47, 129.19, 124.48, 123.94,
123.65, 121.78, 118.32, and 57.05.

CA inhibition

Enzyme activity was determined spectrophotometrically by
following the change in absorbance at 348 nm of 4-nitropheny-
lacetate to 4-nitrophenylate over a period of 3 min at 25 �C20–23.
The enzymatic reaction contained 1.4 ml 0.05 M Tris-SO4 buffer
(pH 7.4), 1 ml 3 mM 4-nitrophenylacetate, 0.5 ml H2O and 0.1 ml
enzyme solution, in a total volume of 3.0 ml24. Inhibitory effects
of compounds 5a–c and 9b–d were compared with phenol and
AZA. Different inhibitor concentrations were used and all
compounds were tested in triplicate at each concentration used.
Control cuvette activity was acknowledged as 100% in the
absence of inhibitor. An Activity% – [Inhibitor] graph was drawn
for each inhibitor21–23. The curve-fitting algorithm allowed to
obtain the IC50 values, working at the lowest concentration of
substrate of 0.15 mM, from which KI values were calculated22–23.
The catalytic activity of these enzymes was calculated from
Lineweaver-Burk plots, as reported earlier25, and represents the
mean from at least three different determinations. The CAI and II
isoenzymes used here were purified from human blood as
described earlier8–13,26–28.

Conclusion

In summary, synthesis of chiral thiourea containing benzimidazol
derivatives 5a–c and the first synthesis of 9b–d have been
achieved. In addition, several benzimidazol compounds including
novel derivatives have been assayed for the inhibition of the
physiologically relevant human CA isozymes hCA I and II.
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These compounds showed inhibition constants in the range of
3.4–73.6 mM for hCA I and 8.7–44.2 mM for hCA II. In general,
the compounds had comparable inhibitory activity with the
clinically used sulfonamide AZA. Interaction of most CA
isozymes with several types of phenols, such as simple phenol
and its substituted derivatives, clioquinol, salicyclates, and some
of their derivatives has been recently investigated. Here, we
extend these earlier investigations to a novel series of chiral
thiourea containing benzimidazol derivatives. The novel benzi-
midazols represent a promising class of CAIs and the results
discussed in this study may help medicinal chemists to design new
analogs with enhanced activity and other tailored properties.
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