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Cyclotides: a natural combinatorial peptide library or a bioactive
sequence player?
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Rome, Italy, and 3Dipartimento di Farmacia, Università di Napoli ‘‘Federico II’’, Naples, Italy

Abstract

In this perspective review, we focalized our attention on the application of cyclotides in drug
discovery. To date, two principal approaches have been explored since now: (i) the use of
cyclotides as scaffold in which bioactive peptides can be grafted to improve stability, oral
bioactivity and binding to GPCRs; (ii) their application as natural peptides library. For these
reasons, cyclotides probably represent today a step further in the development of new tools in
drug design.
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Introduction

Peptides are a class of organic substances widely diffused in the
biosphere. They act as hormons, neurotransmitters and structural
biopolymers. Medicinal chemists are constantly learning from
nature how peptide signaling works and how to use natural
peptide messengers as lead compounds for the development of
new molecular entities. One of the most important step further in
this field was the discovery of a rational hierarchical approach to
the peptidomimetics design developed several years ago by
eminent scientists such as V. J. Hruby, F. Albericio, D. Seebach,
C. Toniolo, etc1.

This approach consists in the identification of the natural
bioactive peptide sequence followed by a series of studies aimed
to find the minimum pharmacophore (Ala scan, residues deletion,
substitution, truncations) and its optimization to maximize the
biological activity and stability. In a physiological environment
native peptides are usually synthesized (or released) and
degradated directly at the site of action, thus they are very
sensitive to cleavage and poorly selective. Then the optimization
process usually is based on the introduction of conformational
restrictions on the backbone and on the amino acids side chains,
in order to stabilize a rigid bioactive structure, with the aim to
gain the resistence against the enzymatic degradation. Cyclization
was found to be a major tool to stabilize a peptide in a certain

bioactive conformation. Many techniques have been developed for
peptide cyclization, but the most common are:

(i) The formation of a disulphide bridge between two cysteine
residues (–S–S–).

(ii) The amide bond formation (–C(¼O) –NH–), namely:
‘‘head-to-tail’’, ‘‘side chain-to-tail’’ and ‘‘side chain-to-
side chain’’ cyclizations.

Lately the double bond (–C¼C–) formation between two
allylglycine residues has also been explored by several researchers
since the Grubbs catalyst became easily available2.

In particular, nature itself is a source of ispiration for the use of
disulphide bonds as feature to stabilize complex structures, due to
the amazing multitude of native peptides such as insuline,
vasopressine, oxytocin, various proteins and polypeptides
(Figure 1).

In 1970 Gran et al. discovered cysteine-rich cyclopeptides in
Oldenlandia affinis3. The African women used the decotion of
this plant for its oxytocic activity. The plant extract contained
many cyclopeptides and some linear fragments then from the
analysis of the bioactive extract, a new class of peptides was
identified: the cyclotides.

Other cyclotides were found in the violet family (Violaceae),
coffee family (Rubiaceae), cucurbit family (Cucurbitaceae) and
recently in the Fabaceae and Solanaceae4.

The great biodiversity and abundance of cyclotides (it has been
estimated that there are more than 50 000 different molecules)4

allows them to be considered, with a good approximation, as a
natural combinatorial peptide library.

Today, it is not clear the exact role of these complex
compounds in plants but their insecticidal, antimicrobial
and cytotoxic activities could suggest an involvement in
plant’s defence against external attacks. Cyclotides were also
tested for a number of human pathologies, i.e. for their potential
pharmaceutical properties against cancer and HIV, with good
results.
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The good bioactivity and oral bioavailability, together with the
high enzymatic stability, make cyclotides good candidates for
pharmaceutical applications3,5,6, and excellent starting point for
the de-novo peptidomimetics design.

Structure

Cyclotides are head-to-tail cyclized peptides, with six cysteine
residues oxidized into three disulphide bonds forming a conserved
tertiary supra-organization called cystine-knot motif (CCK)7, a
well-defined 3D shape that confers to the entire molecule great
stability against chemical and enzymatic degradation8. Although
they are interesting scaffolds for drug design in medicinal
chemistry9, unfortunately the screening process for the occurrence
of cyclopeptides is often trivial and laborious due to the great
differentiation of plant species and the scarse availability of
samples10.

Craik and co-workers defined the Möebius and bracelet
subfamilies for the classification of cyclopeptides11, which
differ for the presence of a cis amide bond (Möebius type)
centered at the Pro residue in loop five (Figure 2). Approximately
2/3 of the total known cyclotides belong to the bracelet subfamily,
however, there are other non-classical structures with character-
istics from both the families.

Until now, cyclotides’ structures are not completely clear,
expecially for the CCK motif which has been wide elucidated by
NMR3,7,12, with the help of total synthesis13 and X-ray
crystallography14.

Structure–activity relationships

Natural cyclotides are formed by 28–37 residues and possess a
variable net charge (from �2 to +3). The positive charge confers
generally a certain affinity for the cell membranes, with a possible
lytic or cytotoxic activity15. Cationic residues in the bracelet
family, are the most responsible for the membrane interaction of
cyclotides, as demonstrated by the progressive charge neutraliza-
tion on cycloviolacin O2 (Figure 2), followed by a decreasing in
tumor cell cytotoxicity16. The side chain of glutamine residue
presents in the bracelet family, is important for membrane
adsorption and aggregation acting on the structure of the cyclotide
itself; in fact the Gln residue interacts with the backbone of loop 3
through hydrogen bonds, stabilizing a helical structure; in case of
the möebius type, these interactions are also present but loop 3
has a polar nature and is not directly involved in membrane
interactions. Structural studies revealed that the glutamate residue
interacts with the center of the cyclotide and is responsible for the
overall structure of the peptide rather than electrostatic
interactions4.

The Ala insertion in the highly conserved sequence of loop 1
(including Glu) abolished the lytic activity of kalata B1, similarly
to the substitutions of lipophilic residues17 in loop 5. The
tryptophan residue (at loop 2 in bracelet type and in loop 5 in
Möebius family) acts as a membrane interface anchoring residue
and is responsible of the membrane adsorption process.

Synthetic approach

Disulphide-rich cyclic peptides synthesis still remains a challen-
ging task due to the complexity level imposed by the 3D
structure-stabilizing disulphide cross-links18.

Recently Cheneval et al19. described a straightforward solution
cyclization approach to obtain 26–34 size complex disulphide-
rich cyclic peptides, using the mild-acid cleavable 2-chlorotrityl
linker to generate partially protected peptides, which have been
cyclized head-to-tail in solution using well established protocols,
resulting in good yields (�10%, based on quantity set up to be
cyclized) of isolated peptide (Figure 3). The use of latest
generation uronium-type coupling reagents (HATU) and sterically
hindered bases (DIPEA) reduces racemization (epimerization) of
the C-terminal residue during the cyclization step.

The products were folded by random oxidation of cysteines
yielding the correct disulphide-bonded isomer in modest yield.
In some cases additional isomers were observed and for
[L6-RGDS]kalata B1 only the misfolded product was recovered.

Figure 2. Sequences of significative
cyclotides belong to the two subfamilies
Möebius type and Bracelet type.

Figure 1. Pymol generated view of the uterotonic polypeptide kalata
B1structure characterized by three disulphide bonds.
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In general, the presence of more than one set of disulphide-
bond pairings during oxidation is quite common, as peptides
containing six cysteine residues can potentially give rise to 15
different disulphide bonded arrangements19.

In most cases orthogonally protecting strategies are not
essential for the synthesis of Möebius and trypsin inhibitor
cyclotides because the major isomer normally contains the desired
native connectivity. The orthogonal approach to the synthesis of
cyclotides involving different pairs of Cys-protecting groups was
recently proposed and reviewed by Burman et al8.

The role of cyclotides in drug discovery process is dual and
must be considered under two different points of view:

(i) As natural peptides library. The identification of a bioactive
fragment presents in the isolated cyclotide can be used as
lead compound for futher modification as new lead
compound;

(ii) As a bioactive sequences player. A bioactive peptide
previously optimized can be inserted into the scaffold of a
cyclotide, in order to maintain its activity and to improve
stability and oral bioavailability.

These two approaches (Scheme 1) will be separately discussed
in sections ‘‘Cyclotide bioactive sequences as lead compounds for
the design of novel GPCR ligands’’ and ‘‘Peptide-grafting
strategy’’ of this article, citing few examples.

Cyclotide bioactive sequences as lead compounds for
the design of novel GPCR ligands

A great number of drugs binds to receptors coupled with a G
protein and cyclotides belong to these substances. Recently
Koehbach et al.20 identified a series of peptides from plants
that acts similarly to oxytocin; Kalata B7, a cyclotide of the
Möebius family, has been found to posses a strong oxytocic
activity.

As expected, active peptides contained in the extracts of
O affinis were separated and identified to obtain different
cyclotides. Kalata B7 exerts its oxytocic activity in a similar
way as oxytocin and vasopressin at their clonate receptors, and
activates the G protein cascade associated to the oxytocin
receptors.

Lately, the sequence of loop 3 alone was found to stimulate the
isolated myometrium contractions. After the identification of the
peptide portion responsible for this activity, a certain omology of
this fragment (–CYTQGC–) and oxytocin (CYIQNCPLG)
appeared to be clear (Table 1).

Oxytocin binds to V1a receptors (which are up-regulated
during pregnancy) producing contraction in the pregnant
females21. Kalata B7 acts as a partial agonist at V1a receptors22,
in fact Atosiban, a delaying preterm birth agent is used clinically
as both antagonist of oxytocin receptor and V1a receptor23. The
tyrosine and glutamine residues present in Kalata B7 are
organized in a type II b-turn capable to interact with the oxytocin
receptor. Those residues are also present in oxytocin. Tyrosine at
position 2 is important for receptor–ligand interaction of oxytocin
with Tyr209 and Phe284 of the oxytocin receptor24.

Thus several cyclopeptides were designed using the kalata B7
loop 3 as template, then kB7-OT1 ([G5, T7, S9])-oxytocin
resulted to be a selective agonist at the oxytocin receptor capable
to intact human myometrium in the submicromolar range,
neglecting other subtype related receptors (i.e. V1a, V1b and

O

O

NH2

NH2

1% TFA 
in DCM 

COOH

HATU, DIPEA
DMF

CONH
96% TFA
2% H2O
2% TIPS

SH
SH

SH SH
SH

SH

oxidation
S

S
S

S

S S

side chain protecting groupresin

CCK mo�f

Figure 3. Cyclotides’ synthetic strategy based on the random oxidation of deprotected cysteines.

Scheme 1. Schematic representation of the double use of cyclotides; on
the right: natural sources of bioactive compounds; on the left: scaffold
engineered bearing an external bioactive peptide sequence.
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V2 receptors) at concentrations higher than 10 mM. The
significative similarity in overall structures between kB7-OT1

and oxytocin has been demonstrated by NMR studies. Amino acid
residues Tyr2, Ile3 and Leu8 are important for the binding at the
receptor25 and substitution of Asp5 with Gly does not affect the
binding ability and receptor activation, despite a significative
influence on receptor selectivity22.

Peptide-grafting strategy

Example A: bradykinin C1 receptor antagonist grafted in
Loop 6 of Kalata-B1

The application of cyclotides as scaffold in the study of
biologically active compounds has been recently reported. This
approach consists of grafting an external peptide sequence into a

cyclotide loops, so as to obtain chimeric molecules able to bind G
protein-coupled receptors26,27, e.g. to inactivate VEGF28, to
stimulate angiogenesis29, to block the entry of HIV via
CXCR430, and to inhibit serine proteases31. The exceptional
resistence to enzymatic, chemical and thermal degradation is
conferred by a unique well-defined three-dimensional conform-
ation of cyclotides, making these peptides potent drug templates
for medicinal and therapeutic applications32, as peptide-grafting
(i.e. grafting of bioactive amino acid sequences onto the cyclotide
scaffold)33, resulting in the synthesis of orally bioavailable and
active receptor agonist or antagonist for successful therapeutic use
(Figure 4)34.

Peptide-grafting strategy was successfully performed by
Wong et al26. incorporating bradykinin (BK) antagonist into
Kalata-B1 scaffold. Two original orally bioactive BK-peptide
analgesics were obtained by grafting des-Arg10-[Leu9]-kallidin
(DALK) and des-Arg9-kinestatin (DAK) onto the extended loop 6
of the kalata B1 (ckb) scaffold. (Table 2, part A)

Two new hybrid peptides were synthetized, ckb-kal and ckb-
kin respectively by SPPS (Solid-Phase-Peptide-Synthesis) using
the conventional tert-butoxycarbonyl strategy. The thioester
precursors were purified by RP-HPLC followed by cyclization
at the backbone. The final products with the CCK motif were
obtained in good yields after oxidation. Enzymatic stability was
tested for all the hybrid compounds and was found to be extremely
higher than that of the parent BK antagonists. The engineered BK
antagonists were also tested for bioactivity; ckb-kal resulted to be
a potent antagonist while ckb-kin was the weaker one.

Example B: graft of melanocortin agonists

A second exemplificative paper on the insertion of a bioactive
peptide sequence in the Kalata-B1 was carried out by

Table 1. Kalata B7 and loop 3 fragment analogues with oxytocic and
vasopressin like activity20.

Name Sequences

Kalata B7

[T3,G5,T7,
S8,S9]-OT

[T3,P4,G5,S7,
S8,T9]-OT

[P4,G5,S7,T9]-OT

kB7-OT1 [Y2A]

kB7-OT1 [Q4A]

Oxytocin

Vasopressin

Figure 4. Bioactive peptide (new sequence) grafting in place of the native loop 6 of cyclotide scaffold.

Table 2. Part A26: two relevant requences used for grafting in place of
loop 6 with bradychinin activity. Part B27: four sequences used for
grafting in place of loop 6 of Kalata B1 with MCR activity.

Example Name Sequence

Kalata B1

A ckb-kal KRPPGFSPL
ckb-kin QIPGLGPLG

B Graft 1 GHFRWGV
Graft 2 GHfRWGV
Graft 3 THFRWPV
Graft 4 THfRWPV
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Eliasen et al27. Melanocortin receptors (MCR)35, namely,
MCR1–536 are involved in homeostasis; targeting the MCR4
with an agonist represents an alternative approach for the
treatment of obesity. MCR4 has been studied for years in order
to develop a drug for weight control, against obesity. Several
agonists of MCR4 have been developed and revealed to be
effective in rodent models, even if actually no compounds have
been approved for the market or clinical trial37. Probably, the low
selectivity and the intrinsic poor stability of peptide molecules are
the main problematic steps for the development of chemical
entities for clinical trials38.

Recently, the discovery of cyclotides stimulates the use of their
features to solve some of the pharmacokinetic limitations related
to peptides; inspired by the use of kalata B1 as scaffold for
bradikinine analogues (example A), Eliasen et al.27 proposed
Kalata-B1 for the insertion of previously optimized melanocortin
agonist sequences (Table 2, part B).

Four melanocortin analogues were synthesized, taking into
account that a direct replacement of the native sequence with a
new sequence different in lenght could force the bioactive
(tetrapeptide) in a non-active conformation. Thus other similar
sequences were chosen for grafting and two terminal glycine
residues were also added. The analogue kB1(GHFRWG) showed
the higher selectivity for MCR4, confirming the potential appli-
cation of this method for targeting specific bioactive molecules
implicated in many physiological processes. The observation that
kB1(GHFRWG) is very stable to chymotrypsin digestion, demon-
strates that the strong stability toward enzymatic cleavage of kalata
B1 is systematically transferred to the grafted analogues.

Conclusions

With the recent growth of the research activity in the field of
peptides, the concept of proteins as fragile biomolecules is
profoundly changed in the last decade. The cyclic backbone and
the CCK motif confer to cyclotides a non-common structural
rigidity and stability, thus cyclotides have been manipulated by
researchers in many ways. In this mini-review, we have described
the dual use of the cyclotides: the grafting approach and their use
as natural source of bioactive compounds.

Due to the extremely high biodiversity, there are thousands of
cyclotides with different bioactivity, just waiting to be tested,
similarly to the library-guided drug discovery process, adopted by
pharmaceutical corporations, consisting of testing large small-
molecules libraries at new biological targets. The interesting point
is that in the past, cyclotides can be only derived with enormous
difficulties from plant extracts and then tested, whereas today,
thanks to the perfectioning of SPPS, HPLC purification and Mass
spectroscopy advances, the epitopes responsible for the bioactiv-
ity can be isolated, analyzed, synthesized and used as lead
compounds for further developments.

However other critical aspects about cyclotides need to be
elucidated other than the enzymatic stability, biological profile
and the possible immunogenicity of these compounds after oral
administration.
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