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Abstract

The aim of this study is to propose an improved computational methodology, which is called
Compressed Images for Affinity Prediction-2 (CIFAP-2) to predict binding affinities of
structurally related protein–ligand complexes. CIFAP-2 method is established based on a
protein–ligand model from which computational affinity information is obtained by utilizing 2D
electrostatic potential images determined for the binding site of protein–ligand complexes. The
quality of the prediction of the CIFAP-2 algorithm was tested using partial least squares
regression (PLSR) as well as support vector regression (SVR) and adaptive neuro-fuzzy ınference
system (ANFIS), which are highly promising prediction methods in drug design. CIFAP-2 was
applied on a protein–ligand complex system involving Caspase 3 (CASP3) and its 35 inhibitors
possessing a common isatin sulfonamide pharmacophore. As a result, PLSR affinity prediction
for the CASP3–ligand complexes gave rise to the most consistent information with reported
empirical binding affinities (pIC50) of the CASP3 inhibitors.
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Introduction

Significant progress has been made by scientists towards under-
standing diseases at molecular levels by developing new methods
in the field of genomics, proteomics as well as medicine.
Increasing stored knowledge of drug actions at a molecular level
renders development of some novel drugs which are safer and
more efficient in medical treatments1. Experimental drug discov-
ery and development is a time-consuming and expensive process
which may involve testing a large library of compounds that
frustratingly yield many failures in drug discovery. Understanding
protein–ligand interactions at a molecular level is important to
design new drugs which are safe and efficient. Computational
methods such as docking and molecular dynamics have become
powerful, time-saving and cheaper methods for providing detailed
information on protein–ligand interactions. However, docking
energy functions provided by docking programs are not always
reliable as majority of docking energy functions do not include
electrostatic and non-electrostatic contributions to solvation. In
other words, docking energy functions mostly employ electro-
static and Van der Waals energy terms determined in space,
but not in aqueous media. Intelligent computational methods
have recently become popular in drug design2–10. It is possible to

search for or predict specific properties of new drugs by using
information from known ligand–receptor interactions in associ-
ation with bioinformatics and machine learning methods11.

We previously reported12 a novel pharmacophore-based
drug development algorithm for data representation, namely
Compressed Images for Binding Affnity Prediction (CIFAP), to
predict binding affinities for an array of different ligands (carrying
a common pharmacophore) interacting with the binding site of a
protein. CIFAP is implemented in two phases: In the first phase,
CIFAP involves preperation of orthogonal 2D-compressed grid
images of experimentally determined or docked coordinates of
ligand–receptor complexes. The second phase of CIFAP predicts
binding affinities by filtering the 2D images by Sequential
Forward Selection (SFS) technique13 to find certain patterns,
followed by application of regression and learning methods such
as the Support Vector Regression (SVR)14 and Adaptive Neuro-
Fuzzy Inference System (ANFIS)15 methods to make a correlation
between observed and predicted binding affinites.

CIFAP has two major drawbacks due to the choice of feature
selection and prediction algorithms. The first drawback is the
irreversible feature selection of the SFS method. Once a feature is
selected by SFS, it cannot be removed from the feature set.
However, a previously selected feature may reduce performance
when it is used in combination with other selected features. The
second drawback is about an expensive parameter tuning process
applied by the SVR and ANFIS algorithms. For finding the
optimal parameters, SVR uses an exhaustive grid search, while
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ANFIS uses a neural network which takes a long time to train.
Moreover, both algorithms do not guarantee globally optimized
parameters since there is a trade-off between generalization
ability and prediction performance of the algorithms.

In this study, CIFAP-2, an improved version of CIFAP12, is
proposed based on some fine-tunings applied on two main phases
taken to implement CIFAP. While the first phase of CIFAP-2 is
identical to that of CIFAP, the second phase of CIFAP-2 utilizes
the sequential forward floating selection (SFFS) method16, but not
SFS as in CIFAP. That follows a predicition step which involves
using the partial least squares regression (PLSR) algorithm17 as
well as SVR and ANFIS. The aforementioned algorithms selected
for CIFAP-2 is hoped to overcome the drawbacks of CIFAP. SFFS
method extracts more predictive features than SFS because the
method can eliminate features that are not found useful in later
steps. Furthermore, PLSR, which does not need time-consuming
parameter search, provides a more simple linear fit between the
data model and binding activities.

Caspase enzymes (CASP) play an important role in the process
of apoptosis18, a programmed-cell-death playing a major role in
cell damage and immune system activities19. Caspase activity is
related to a number of diseases including neurodegenerative
diseases, stroke, cardiomyopathy, ischemia and cancers18,20,21.
For instance, CASP3 becomes active in Alzheimer’s disease,
triggering neural apoptosis18. Controlling cell death by capase
enzyme inhibition is thought to be effective in the treatment of the
aforementioned diseases21.

Recent experimental studies report that isatin sulfonamide
analogues could be promising inhibitors of CASP3 in medical
therapy22–24. In this study, the applicability of CIFAP-2 is
evaluated by implementation on 35 isatine sulfonamide derivatives
in complex with human CASP3 enzyme, whose half maximal
inhibitory concentrations (IC50) as well as their pIC50 values are
defined in literature20,25, hoping that CIFAP-2 will have a future in
the design and development of novel CASP3 inhibitors.

Methods

Data modeling methods

Ligand preparation and docking

Chemical structures of 35 Caspase 3 (CASP3) inhibitors used in
this study, carrying an isatine sulfonamide pharmacophore, and

their experimental pIC50 values were published by Hasegawa
et al. (Table 1 therein)25. X-ray coordinates for human CASP3, the
receptor, in a complex with compound 1 were obtained from the
Protein Data Bank, PDB ID: 1GFW26. Ligands were constructed
and minimized by the MM2 force field using HyperChem v.5.1
(Hypercube, Inc., Gainesville, FL), which were then saved in
MOL2 format. The ligands were then converted to Protein Data
Bank (PDB) format by Discovery Studio Visualizer v.1.727.

Compound 1, the reference compound, was initially removed
from the binding site of CASP3. MGL Tools v.1.5.428 was used to
prepare the ligands and the receptor for docking, which were then
saved in PDBQT format. AutoDock Vina v.1.1.229 was used to
dock the ligand flexibly into the binding site of the rigid
coordinates of human CASP3. Ligands were docked in a confined
grid box, set by MGL Tools v.1.5.4, encapsulating the binding site
of CASP3. The most suitable docked coordinates of ligands were
selected based on the lowest RMSD coordinates of the isatine
sulfonamide pharmacophore in reference to the X-ray coordinates
of compound 1, PDB ID: 1GFW26. Protons of docked ligands
were added by MGL Tools v.1.5.4, which were then saved in PDB
format.

Generation of 2D compressed ımages from 3D cubic grids

A cubic frame with dimensions of 37 Å� 37 Å� 37 Å that centers
the binding site of the receptor was set by MGL Tools v.1.5.4.
Center coordinates for the cubic frame was determined by
averaging the center coordinates of all ligands. Electrostatic
potential grid map files in ASCII format were generated for all
ligand–receptor complex structures within the cubic frame by the
AutoGrid v4.2 module of AutoDock v4.2 suite of programs30.
Each cubic grid contains 37 electrostatic potential grid points
separated by 0.5 Å in all dimensions. It is worthy of note here that
the grid cube should be preferentially as small as possible,
including only the ligand and the binding interface, so that more
significant grid points are focused on.

3D electrostatic potential matrices for the binding site of the
complexes were constructed by MATLAB31 using the corres-
ponding electrostatic potential grid map files as input. The
matrices were then compressed through the X, Y, and Z directions
into 2D images by summing up the electrostatic potential values
at the subsequent grid points in orthogonal dimensions, which
gave rise to three 2D images for each complex: namely, the

Table 1. RMSE comparison between observed binding affinities (pIC50) for 35 CASP3 inhibitors, published by Wang
et al.20, and the corresponding binding affinities (pIC50) predicted by the PLSR, SVR, and ANFIS determination of leave-
one-out cross-validation for the X-feature vectors of the testing data sets.

No. pIC50 PLS SVR ANFIS No. pIC50 PLS SVR ANFIS

1 6.92 6.7321 6.7343 6.813 19 8.08 8.2158 8.1158 8.4373
2 6.62 6.8182 6.8415 6.7979 20 8.41 8.3566 8.3876 7.8571
3 7.91 7.8197 7.8416 7.9236 21 8.44 8.3868 8.3458 8.2555
4 7.84 7.8378 7.7962 8.1298 22 7.69 7.7639 7.6676 6.7577
5 7.92 8.0773 8.0937 7.8266 23 6.54 6.463 6.6568 6.9685
6 7.91 7.8444 7.9712 8.0251 24 7.04 6.984 7.0516 6.6491
7 7.92 7.8539 7.7916 6.5414 25 8.01 7.9913 8.0443 7.7015
8 7.87 7.8612 7.9271 7.8615 26 8.08 8.1287 8.0406 7.8752
9 8.01 7.9563 7.9009 8.0539 27 7.95 7.9886 7.9694 7.8291

10 7.99 8.0808 8.079 8.173 28 8.06 8.0264 8.0028 6.9894
11 7.67 7.6068 7.5624 7.4812 29 8.03 7.9798 7.6096 6.9992
12 8.04 8.1252 7.9809 7.7134 30 7.96 7.8192 7.8758 8.4012
13 8.01 8.193 7.9631 7.7549 31 7.53 7.633 7.7175 7.8267
14 7.23 7.4823 7.5135 7.5139 32 8.24 8.243 8.1979 7.9824
15 7.63 7.4434 7.408 7.1605 33 5.84 5.7997 5.9116 6.829
16 8.28 8.2919 8.3048 8.1005 34 5.99 6.2235 6.4212 7.2851
17 8.41 8.3718 8.3344 8.0606 35 6.94 6.9903 6.9621 6.9803
18 8.36 8.4774 8.4788 8.557 RMSE 0.1097 0.1488 0.5299
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X-image, the Y-image, and the Z-image, respectively. Each image
possesses a total of 1369 pixels of the compressed electrostatic
potential values, which were used as feature sets in the feature
selection step.

Feature selection

Compressed 2D images, possessing a total of 1369 (37� 37)
compressed features (pixels), were further processed to generate
the corresponding X/Y/Z feature vectors. Sequential Floating
Forward Selection (SFFS) method16 was then applied to reduce
the number of features in the vectors to avoid irrelevant and
redundant features. To do so, SFFS algorithm started out with an
empty feature set and applied a forward selection step by
randomly adding a single feature one at a time, whose prediction
error is validated by Multiple Linear Regression32 with leave-one-
out cross-validation33. An added attribute yielding a large error of
prediction is then removed from the future set when necessary by
backward elimination method to ensure the best generalization16.
Cycles of single forward selection followed by backward elim-
ination steps continues until the least prediction error levels off in
the feature set.

Prediction methods

Prediction methods include regression analysis which aims to
discover the relationship between a dependent variable, y 2 R,
and n-dimensional independent variables, xi 2 R

n, in the form of
the function f(x1, . . . , xn)¼ y. Here, xi corresponds to SFFS
features obtained from 2D compressed images while y corres-
ponds to the binding affinity expressed in observed pIC50 values.
In this study, three prediction methods were applied by
MATLAB31 to test CIFAP-2 on CASP3 inhibitors: (1) PLSR17,
(2) Support Vector Regression (SVR)14, and (3) Adaptive Neuro-
Fuzzy Inference System (ANFIS)15. Theoretical background for
the first prediction method is given in details in the following
subsection, while the last two prediction methods were already
described by Erdaş et al.12 as prediction methods utilized in the
development of CIFAP.

In general, future sets are grouped into training and test sets
for validation by, for instance, repeat random subsampling
(RRS)12,33. However, RRS is not applied in this study for
validation of CASP3–ligand complexes due to insufficient
number of the ligands. Instead, leave-one-out cross-validation33

was utilized for the validation of the sample sets. The leave-
one-out cross-validation method33 picks up a different X-,Y-,Z-
feature vector as a test set at each step and leaves the remaining
X-,Y-,Z-feature vectors as a training set for implementation of the
prediction method. The performance of the prediction method was

determined by averaging the resulting performance of each
test set.

Partial least squares regression

In this study, PLSR17 was utilized as one of the prediction
methods to test CIFAP-2 on CASP3–ligand complexes. PLSR
aims to find a dependent variable, Y, resulting in independent
variables, X, in order to extract their common statistical
properties.

PLSR employes the leave-one-out cross-validation method33,
see previous section, to test CIFAP-2 on CASP3 inhibitors.
Feature vectors obtained from X-pattern, Y-pattern, and Z-pattern
images by SFFS method16 were used as input to compute a PLSR
model including linear coeffcients of each variable for each
training set. The coeffcients are then used to predict pIC50 values
for the test vectors, which are then validated by the leave-one-out
cross-validation method.

Performance evaluation

General performance terms used in this study for the evaluation of
predicted pIC50 values are root mean square error (RMSE) and
coeffcient of determination (R2), whose equations and their
implementation were previously described by Erdas et al.12.

As far as leave-one-out cross-validation is concerned, a criter-
ion of R2

LOOCV40.5, reported by Tropsha et al.34,35, was used for a
regression model to be predictive.

Results and discussion

In general, the size of the cubic frame (37 Å� 37 Å� 37 Å) used
to generate electrostatic potantial map for docked compounds in
complex with CASP3 gave rise to meaningful 2D features sets
after compression. ‘‘Supplementary Figure S1’’ exemplifies
orthogonal 3D- as well as 2D-compressed views of the grid
cube for the docked coordinate of the CASP3–compound 1
complex.

Feature selection by the SFFS algorithm16 was implemented
before the prediction phase in order to eliminate redundant
features and find out the most informative features. To do that, 2D
X-, Y-, and Z-images were initially converted to feature vectors as
described in Section ‘‘Feature Selection’’. The best RMSE values
determined by SFFS computations were found to be 0.0964,
0.1797, and 0.1421 upon leave-one-out cross-validation of the X-
images, Y-images, and Z-images, respectively. The future vectors
obtained by SFFS were then transformed into 2D pattern images
for visualization as shown in Figure 1, where black pixels
represent informative features used to predict pIC50.

Figure 1. (A) X-, (B) Y- and (C) Z-pattern images of CASP3–ligand complexes obtained by sequential floating forward selection, SFFS. Each image
has 37� 37 pixels. Black pixels represent the selected features.
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SFFS determined 17, 9, and 13 valuable features from the
X-, Y-, and Z-images, respectively, to be used in regression
analysis. It was determined that X-images of isatine sulfonamide
analogues in complex with CASP3 gave rise to the lowest RMSE
values, due probably to the greatest 2D area occupied by the
ligand when looking at the cubic grid in the binding site through
the X-axis as in Figure S1. It should be noted here that, except for
a few patterns in the X-pattern image (Figure S1a), meaningful
features are usually located away from the center, corresponding
to binding interface between the ligands and CASP3.

The binding affinities (pIC50) of CASP3–ligand complexes
were predicted by ANFIS, SVR, and PLSR using the X-feature,
Y-feature, and Z-feature vectors obtained by the SFFS algorithm.
Three scatter plots in Figure 2 show a correlation between the
experimental and predicted affinities upon application of ANFIS
with leave-one-out cross-validation which utilized 35 distinct test
sets for each of the X-feature, Y-feature, and Z-feature vectors of
CASP3–ligand complexes. The X-scatter and Y-scatter plots in
Figure 2(A) and (B), respectively, indicate better correlations than
that of the Z-scatter plot in Figure 2(C), whose data are
distributed away from the identity (y¼ x) line. Moreover, the
RMSE values obtained by ANFIS determination of leave-one-out
cross-validation (RMSE¼ 0.5299, 0.7992 and 2.7216 for the
X-feature, Y-feature and Z-feature vectors, respectively) indicate
that ANFIS failed to predict the binding affinities from the feature
vectors obtained from Z-images of CASP3–ligand complexes. In
addition to the high RMSE values, the resulting R2 values of
0.3347, 0.1359, and 0.0023 for the X-feature, Y-feature, and
Z-feature vectors, respectively, suggest that the ANFIS determin-
ation of leave-one-out cross-validation was not a suitable method
of prediction in CIFAP-2.

In order to predict binding affinities of the CASP3–ligand
complexes, SVR with RBF-kernel was applied to X-feature,
Y-feature, and Z-feature vectors produced in data modelling
phase. In order to predict binding affinities, the SVR parameters
including C, the trade-off value between error tolerance and
model complexity, ", the radius of the "-tube, and g, the width of
the RBF-kernel, were initially optimized by a grid search using
the leave-one-out cross-validation. The optimal C, ", and g values
for the X-feature, Y-feature, and Z-feature vectors which provided
the lowest RMSE and the highest R2 values were selected for the
SVR models of X-, Y-, and Z-images. The optimal C parameter
for all three models of CASP3–ligand complexes was found to be
100. Values of C lower than 100 was not found to be useful as
these values cause the predictive model to be smooth and general.
Optimal values for the " parameter were computed to be 0.0063
for the X-image, 0.0611 for the Y-image, and 0.0249 for the Z-
image. Moreover, optimal values for the g parameter were
computed to be 0.008 for the X-image, 0.0032 for the Y-image,
and 0.0143 for the Z-image.

SVR with RBF-kernel was applied to predict the binding
affinities (pIC50) of 35 CASP3 inhibitors by using the leave-
one-out cross-validation as well as optimal C, ", and g values.

Correlations between the observed (x-axis) and predicted (y-
axis) binding affinities are shown in Figure 3(A) for the X-feature
vectors, Figure 3(B) for the Y-feature vectors, and Figure 3(C) for
the Z-feature vectors of CASP3–ligand complexes. As seen in
Figure 3, feature vectors in all directions results in good
correlations. Furthermore, it is seen in Figure 3 that the X-feature
and Z-feature vectors led to better correlations with smaller
margins as compared to the Y-feature vectors. All three SVR
models are capable of addressing at least 87% of the variability in

Figure 2. Correlation plots of the observed (x-axis) and predicted (y-axis) binding affinities (pIC50) constructed upon ANFIS determination of leave-
one-out cross-validation (LOOCV), using 35 different testing sets selected from the X-feature (A), Y-feature (B), and Z-feature (C) vectors of the
CASP3–ligand complexes.

Figure 3. Correlation plots of the observed (x-axis) and predicted (y-axis) binding affinities (pIC50) constructed upon SVR determination of leave-one-
out cross-validation (LOOCV), which utilized 35 different testing sets selected from the X-feature (A), Y-feature (B), and Z-feature (C) vectors of the
CASP3–ligand complexes.
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the data. In addition, R2 values of 0.9476, 0.8791, and
0.9213 obtained for the X-feature, Y-feature, and Z-feature
vectors, respectively, verify that all three SVR models are
predictive considering the first Tropsha criterion34,35, see
Section ‘‘Performance evaluation’’.

Finally, PLSR, see section ‘‘Partial Least Squares
Regression’’, was used for regression analysis to predict the
binding affnities of the CASP3 inhibitors, utilizing the X-feature,
Y-feature, and Z-feature vectors produced by SFFS method.
Correlations between the observed (x-axis) and predicted (y-axis)
binding affinities obtained by the PLSR determination of the
leave-one-out cross-validation are illustrated in Figure 4(A–C) for
the X-feature, Y-feature, and Z-feature vectors, respectively. The
X-feature vectors possessing an RMSE of 0.1097 and an R2 of
0.9717 are found to be more informative as compared to the
Y-feature vectors with an RMSE of 0.2576 and an R2 of 0.8429,
and Z-feature vectors RMSE of 0.1562 and an R2 of 0.9422.

In terms of CIFAP-2, all the aforementioned regression models
presented in this section provide more valuable information with
the X-feature vectors of the CASP3 inhibitors. Table 1 lists the
observed binding affinities (pIC50) of 35 CASP3 inhibitors
published by Wang et al.20 and the predicted binding affinities
obtained by PLSR, SVR, and ANFIS determination of leave-one-
out cross-validation of the X-feature vectors. As compared to both
the SVR (RMSE¼ 0.1488) and ANFIS (RMSE¼ 0.5299) deter-
mination of leave-one-out cross-validation, it is clearly seen in
Table 1 that predicted pIC50 obtained by PLSR (RMSE¼ 0.1097)
determination of leave-one-out cross-validation are in better
agreement with the experimental binding affinities. The PLSR
determination of the leave-one-out cross-validation using the
X-feature vectors provided the best correlation during the
evaluation of the X-feature vectors, giving rise to a R2 value of
0.9717, while the other two regression models SVR (R2¼ 0.9476)
and ANFIS (R2¼ 0.3347) yielded lower R2 values.

We determined here that CIFAP-2 performs better with the
X-feature vectors of the CASP3 inhibitors as compared to CIFAP
[1]. CIFAP possesses some drawbacks. CIFAP uses an irreversible
feature selection method, called SFS, having a risk of selecting
less relevant features while filtering out more relevant features. In
addition, CIFAP possesses exhaustive non-linear prediction
methods such as SVR and ANFIS, consuming excessive time
for predictive model construction and parameter optimization.
The PLSR prediction algorithm utilized in CIFAP-2 is more
advantageous than the prediction methods used in CIFAP in that
PLSR produces a highly correlated predictive model and saves up
a substantial amount of computational time.

As a result, the X-images seem a better choice for predicting
binding affnities of recently developed isatine sulfonamide

derivatives that inhibit CASP3. Although the coordinate system
and the angular view may vary from one system to another, the
X-images are assigned here as the best shots of information to be
used by the CIFAP-2 algorithm as far as the CASP3–ligand
complexes are concerned.

Here, the ANFIS method was not found to produce reliable
predictions for any of the X-feature, Y-feature, and Z-feature
vectors. Nevertheles, both the PLSR and SVR methods produce
lower RMSE and higher R2 for the X-feature vectors. All the
models generated by PLSR and SVR methods are found to be
predictive since they satisfy the first criteron of Tropsha34, which is
R2

LOO40.5 for the leave-one-out cross-validation. Besides the
better results of PLSR, the fast implementation of PLSR approves
the fact that the utilization of PLSR for the X-feature vectors is
superior to the SVR and ANFIS methods. Therefore, PLSR is the
preferred method here for predicting the binding affinities of
CASP3 inhibitors by CIFAP-2 as well as the development of novel
ligands derived from an isatine sulfonamide pharmacophore.

Conclusion

Applicability of CIFAP-2, an improved version of a previously
reported data representation model CIFAP12, by analysis of 3D
electrostatic maps for protein–ligand complexes is proposed and
exemplified here to be succesful on predicting binding affinities
of CASP3–ligand systems. The CIFAP-2 algorithm possesses two
sequential phases. The first phase is the data modeling phase,
which involves modeling the 3D structure of the binding site of a
receptor–ligand complex into 2D images and selecting relevant
features from 2D images to form feature vectors. The second
phase is the prediction phase, which involves predicting binding
affinities by using the 2D images.

In order to test CIFAP-2, CASP3 protein complexes along with
its published 35 inhibitors possessing a common isatine sulfona-
mide pharmacophore20,25 were selected. In the first phase, all
inhibitors were docked into the protein based on the isatine
sulfonamide pharmacophore with the lowest RMSE of superpos-
ition with that of the X-ray coordinates of Compound 1 in
complex with CASP3, PDB ID: 1GFW26. The binding interaction
sites were then isolated in the form of electrostatic potential grid
cubes. The resulting cubes were compressed into 2D images by
summing up the sequential grid-point values in orthogonal
directions. The resulting three 2D images contained average
electrostatic potential values in each pixels. In the second phase of
CIFAP-2, feature selection was applied by extracting the most
correlative pixels from the resulting 2D images in order to
eliminate redundant variables that make it difficult to predict the
binding affinity. The feature selection phase gave rise to more

Figure 4. Correlation plots of the observed (x-axis) and predicted (y-axis) binding affinities (pIC50) constructed upon PLSR determination of leave-
one-out cross-validation (LOOCV), using 35 different testing sets selected from the X-feature (A), Y-feature (B), and Z-feature (C) vectors of the
CASP3–ligand complexes.
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informative pixel values around the surface of the ligand. The
prediction phase tested the performance of the data model by
applying promising prediction methods of machine.

CIFAP-2 utilizes SFFS (as a replacement of SFS used in
CIFAP) for feature selection in the first phase and PLSR (as a
replacement of ANFIS and SVR as in CIFAP) for prediction in
the second phase. As expected, the PLSR method used by CIFAP-
2 gave rise to a linear correlation between predicted and
experimental binding affinities. ANFIS, which is a rule based
system using fuzzy relations and neural networks, was found out
to be complicated for addressing the relation between the
compressed binding site images and the binding affinities.
Meanwhile, SVR was also found to be a successful predictor
although it was outperformed by PLSR.

It was found that feature vectors generated from X-images
gave rise to better correlations with experimental binding
affinities as compared to Y-images and Z-images. Moreover,
the X-feature vectors produced by the SFFS method provide
more significant information at the margins of the binding
interface. The PLSR determination of leave-one-out cross-
validation was found to be the most successful prediction
method, working best on the X-feature vectors of the CASP3–
ligand complexes. The SVR determination of leave-one-out
cross-validation of the X-feature vectors of the CASP3–ligand
complexes may perhaps be regarded as a less promising method
as compared to the PLSR method. Finally, ANFIS determination
of leave-one-out cross-validation failed to reliably predict
binding affinities for the CASP3–ligand complexes. Therefore,
it is suggested that the PLSR implementation of leave-one-out
cross-validation should be the best choice of prediction method
for CIFAP-2 development of novel isatin sulfonamide carrying
inhibitors of CASP3.

We think that it is yet early to generalize the application of the
SFFS implementation of the feature selection step in CIFAP-2 on
all kinds of receptor–ligand systems as CIFAP-2 was only tested
to work on the aforementioned 35 CASP3–ligand complexes.
Nevertheless, the SFFS implemention of CIFAP-2 could be the
first choice to apply on other receptor–ligand systems while other
linear and non-linear regression methods should also be tried in
order to compare and determine the most suitable method that
lead to optimal RMSE and R2 values in prediction.

In this study, a pharmacophore-based docking algorithm was
applied to dock 35 isatine sulfonamide pharmacophore derivatives
into the binding site of the CASP3, assuming that the pharma-
cophore of all ligands possesses binding coordinates very
similar to that of the X-ray coordinates of compound 1, PDB
ID: 1GFW26. Unfortunately, except for Compound 1, there are
currently no X-ray structures for the rest of the isatine sulfona-
mide derivatives in complex with CASP3. Therefore, we are
unable to make a comparison between the docked and empirical
coordinates of the 34 CASP3–ligand complexes. Also, it has not
been tested so far how RMSE values would differ if different
docked conformations of CASP3 inhibitors are used.
Nevertheless, the docked coordinates of the 35 bound CASP3
inhibitors studied here resulted in the best predicted values in
agreement with empirical pIC50 values.
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