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In silico modeling of b-carbonic anhydrase inhibitors from the fungus
Malassezia globosa as antidandruff agents
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Abstract

A quantitative structure–activity relationship (QSAR) study of sulfonamide inhibitors targeting
the b-carbonic anhydrase (CA, EC 4.2.1.1) from the fungus Malassezia globosa is reported.
A large set of PRECLAV descriptors has been used to obtain four parametric models. This study
presents QSAR data on a pool of 28 compounds. The quality of prediction is high enough
(SE¼ 0.3446, r2¼ 0.8687, F¼ 39.6921, Q¼ 0.7446). A heuristic algorithm selected the best
multiple linear regression (MLR) equation which showed the correlation between the observed
values and the calculated values of activity. The proposed prediction set included new, not yet
synthesized, 23 molecules having various structures. Many compounds in the prediction
set seem to possess higher computed activity compared to the presently available M. globosa
b-CA inhibitors.
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Introduction

Dandruff is a disease that has been around for centuries despite of
several treatment options which are generally not very effective1.
Irritation by the scalp-dwelling fungus Malassezia globosa is the
main cause of dandruff. A number of medicated shampoo and
other dandruff treatments are available in the market for the cure
of dandruff. Hewitson et al. showed that dandruff involves
an enhanced shedding of dead skin cells from the scalp and
identified an enzyme in M. globosa which is essential for the
fungus’s growth. The molecular cloning, characterization and
in vitro/in vivo inhibition studies of a b-carbonic anhydrase (CA,
EC 4.2.1.1) from M. globosa, denominated MG-CA was reported
by Hewitson et al., who also proposed inhibitors of this enzyme as
an alternative for developing better antidandruff medicines and
thus, a novel antidandruff target2.

The goals of this quantitative structure–activity relationship
(QSAR) study are the identification of relevant descriptors,
statistically significant models and molecular features (significant
molecular fragments included) having largest influence on
biochemical activity and the estimation of activity for some not
yet synthesized molecules in prediction set. Thus, attempts have
been made to design and develop potent MG-CA inhibitor for the
treatment of dandruff.

Methods and materials

Calibration set

A group of molecules containing a known structure and a known
value for the inhibitory activity are taken in the calibration set to
develop a QSAR model. Recently, Supuran and co-workers2 have
reported the inhibition study against newly b-carbonic anhydrase
(M. globosa fungal) MG-CA with a novel series of aromatic/
heterocyclic sulfonamide derivatives. The inhibition data of
investigated aromatic/heterocyclic sulfonamide compounds
(1–28) are presented in Table 1 and their structures are shown
in Figure 1. The experimental in vitro inhibition data of
recombinant purified MG-CA (KI in nM) are converted in ‘‘A’’
by means of equation A¼ log(c/KI), where c is taken as to 630 000
in order to obtain a large values of ‘‘A’’. The inhibitory activity
value ‘‘A’’ of the molecules under the study which spanned
a range from 1 to 4 is more suggestive.

Prediction set (design of new compounds)

The discovery of novel bioactive molecule is the primary goal of
computational drug discovery. compounds 17 and 18 of calibra-
tion set were better potent MG-CA inhibitors. The prediction set
contains 23 not yet synthesized novel aromatic sulfonamide
derivatives of the analog of potent MG-CA inhibitors compounds
17 and 18 shown in Figure 2; generated by BROOD3 software
having unknown observed values of activity presented in Table 1
(compounds 29–51). Brood uses the shape and attachment
geometry of the query fragment to identify a family of similar
fragments. The structures of the prediction set molecules
(compounds 29–51) were selected mainly due to their possibility
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to be synthesized in laboratory conditions and taking into account
the commercial availability of the raw materials.

Geometry optimization and calculation of descriptors

The minimum energy geometry for each of the molecule in the
calibration and prediction sets was obtained by the conformational
search ability of the Omega v.2.4.34–6 program. The isomeric
SMILES notation was used as program input in order to avoid any
influences on conformational model generation by presenting 3D
seed structures. The omega employs a rule-based algorithm in the
combination with variants of the MMMF 94. The force field used
was the 94 s variant of the MMMF_NoEstat4–6 that includes all
Merck molecular force field terms except Coulomb interactions.
A more rigorous geometry optimization was subsequently
performed by the semi-empirical PM6 method7 included in the
quantum-mechanics program MOPAC8. The energy minimized
structure was used to calculate different molecular properties,
including virtual fragmentation descriptors and whole molecule
quantum chemical (global) descriptors. For each molecule over
a thousand descriptors were calculated using programs such as
MOPAC8, and PRECLAV9,10.

Chemometric tools

Descriptor calculation and quality of the model

Several criteria were used to reduce the descriptors, while
optimizing the information content of the descriptors set. First,
descriptors for which no value was available for all the
compounds were disregarded. Second, descriptors of which the
value is constant (or near-constant) inside each group of
descriptors were excluded.

Identification of the ‘‘significant’’ descriptors uses specific
criteria11. The ‘‘significant’’ descriptors are those which are
sufficiently correlated with the dependent property. The variables
having high enough diversity of values are considered significant
only if their quality q is high enough.

q4 1, ð1Þ

where q¼ (1�min r2)/(1� r2). Here min r2¼ 0.01 and r2 is the
square of the Pearson linear correlation between the values of the
analyzed descriptor and the values of the dependent property.

The experimental in vitro inhibition data of MG-CA in nM
(after converted in ‘‘A’’) were used as dependent variables in
building a QSAR model. The parameters to be calculated were
various descriptors that are indicative of molecular structure and
used as independent variables. The PRECLAV algorithm9,10 was
used for obtaining the parameters and for the statistical analysis as
reported earlier11–19. Stepwise multiple linear regression (MLR)
technique was used for the QSAR model development using the
entire dataset. Using only the ‘‘significant’’ descriptors9,10

PRECLAV computes thousands of QSAR equations, i.e. multi-
linear formulas of the dependent property. The program combines
successively sets with 2, 3, . . . k significant descriptors
(15k511). A set of descriptors contains only descriptors that
are sufficiently low intercorrelated and fulfill criteria (2).

r2
ij 5N�1=2, ð2Þ

where r2
ij is the square of Pearson linear correlation between the

values of two descriptors present in the same set. N is the number
of molecules in the calibration set (here N¼ 28).

Table 1. The experimental in vitro inhibition data of MG-CA (KI in nM), observed activity A (A¼ log (630 000/KI), estimated activities, residual,
standardized residual, jRStudentj and hat diagonal of the calibration set molecules 1–28 with predicted value (A), hat diagonal and their corresponding
KI in nM of the not yet synthesized ones 29–51.

Compound KI (nM) A (obs.) A (est.) Residual
Standardized

residual jRStudentj
Hat

diagonal Compound
A (predicted

value) KI (nM)
Hat

diagonal

1* 9800 1.808 2.515 �0.707 �1.9589 �2.0989 0.0657 29 3.875 84.012 0.4007
2 245 3.41 3.253 0.157 0.4447 0.4368 0.1003 30 3.843 90.436 0.3173
3 152 3.617 3.872 �0.254 �0.7107 �0.7029 0.0811 31 4.391 25.606 0.3616
4 6740 1.971 2.722 �0.751 �2.1946 �2.4139 0.1589 32 3.816 96.237 0.3457
5* 174 3.559 3.316 0.243 0.683 0.6749 0.0921 33 4.65 14.104 0.5222
6 79 3.902 3.783 0.119 0.3482 0.3414 0.1679 34 4.338 28.929 0.3961
7 116 3.735 3.063 0.671 1.8563 1.9689 0.0615 35 4.731 11.704 0.5233
8 121 3.717 3.163 0.553 1.5198 1.5672 0.0496 36 4.882 8.267 0.5422
9* 349 3.257 3.326 �0.07 �0.1911 �0.1871 0.0415 37 4.779 10.479 0.4976
10 543 3.065 3.347 �0.282 �0.7728 �0.7658 0.042 38 5.094 5.074 0.5362
11 90 3.845 4.251 �0.406 �1.5229 �1.5707 0.4907 39 3.22 379.612 0.3901
12 92 3.836 3.631 0.204 0.595 0.5865 0.1544 40 3.643 143.331 0.3194
13* 79 000 0.902 0.561 0.341 1.1351 1.1426 0.3532 41 5.001 6.285 0.25
14 85 000 0.87 1.067 �0.197 �0.6688 �0.6605 0.3756 42 4.498 20.014 0.1591
15 236 3.426 3.307 0.119 0.3633 0.3563 0.2308 43 4.299 31.647 0.1291
16 104 3.782 3.476 0.306 0.9898 0.9893 0.3123 44 3.602 157.521 0.1188
17 63 4 4.073 �0.073 �0.2311 �0.2263 0.2933 45 4.251 35.346 0.1605
18* 68 3.967 3.97 �0.003 �0.0083 �0.0082 0.2387 46 3.879 83.241 0.1638
19 35 000 1.255 1.586 �0.331 �1.234 �1.2489 0.484 47 4.111 48.791 0.2237
20 234 3.43 3.431 �0.001 �0.0032 �0.0031 0.0807 48 3.6 158.248 0.0867
21 118 3.727 3.754 �0.026 �0.0761 �0.0744 0.1324 49 3.581 165.325 0.1038
22 94 3.826 3.965 �0.138 �0.4341 �0.4263 0.2705 50 4.167 42.888 0.1634
23 4530 2.143 2.138 0.006 0.016 0.0157 0.1416 51 4.185 41.147 0.3741
24* 2560 2.391 2.273 0.118 0.3409 0.3342 0.1439
25 3100 2.308 2.805 �0.497 �1.3891 �1.4194 0.0811
26 650 2.986 2.718 0.268 0.7474 0.74 0.078
27 374 3.226 2.889 0.337 0.9743 0.9732 0.1406
28* 413 3.183 2.888 0.295 0.8504 0.8451 0.1375

*Molecules of test set.
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Each set of descriptors has been used to calculate a multilinear
QSAR equation of type (3).

A ¼ C0 þ
X

Ck � Dk, ð3Þ

where A is represents a dependent property (here the inhibitory
activity defined above), C0 is the free term (intercept), Ck are the
coefficients (weighting factors) of the descriptors, Dk are some
significant descriptors and k is the number of descriptors in
the set.

The relative utility (U) of a certain descriptor on dependent
property values was computed by the specific procedure9. The
descriptor, which presents a high value for U within the range
[0, 1000], may be considered very useful in estimating the activity,
because they correlate very well with activity and do not correlate
with other predictors. Each ‘‘useful’’ descriptor offers ample
information about the variation in activity from molecule to mol-
ecule. The relative utility (U) was computed using Equation (4).

U ¼ R2 � r2

1� r2
, ð4Þ

NH2

H2N

S
O

O

1.
S
O

O
2. 3. S 

O
O

O OH

S

O

O

4.

S

O

O

5.
S
O

O

6.

F

S

O

O

7.

Cl

S

O

O

8.

Br

S

O

O

9.

I

S

O

O

10.

S
O

O

S
O

O
F

F

F

11.

S
O

O

S

O

O 2

Cl

12.

S

N

N

S
OO 13.

N
NH

S

N

S

O

O

14.

N
N

S

S
O O

HN S
O

O

15.

S
O

O

S
O

O

16.

SO O
NH

SO
O

17. S
O

O

HN

N N

18.

Cl

S

N

N

S
OO 19.

S
O

O

HO

20.

S

O

O

OH

21.

S
O

O

O OH

22.

S
O

O

23.

O
S

O
O

24.

NH
S

O O

25.
S

O
O

Br

26.
O

S
O

O

Br

27.
NH

S
O O

Br

28.

H2N

H2N

NH2

H2N

H2N

H2N

H2N

H2N

H2N

H2N

H2N

H2N

H2N

H2N

H2N H2N

NH2

NH2

NH2NH2

NH2

NH2NH2

NH2

CH3
NH2

NH2NH2

NH2

NH2NH2

NH2

NH2 NH2

NH2

CH3

H2N

H2N

H2N

H2N

H2N

H2N

H2N

Figure 1. Structural detail of MG-CA inhibitors (sulfonamides) used in calibration set.
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where R2 is the square of the Pearson correlation between the
observed and calculated values of activity (values calculated using
an equation with k predictors); r2 is the square of the Pearson
correlation between the observed and calculated values of activity
(values calculated using an equation with k� 1 predictors, i.e. the
equation that does not contain the analyzed predictor).

After computing the Acalc values of the inhibitory activity for
the prediction set molecules, PRECLAV arranged these molecules
according to the estimated values. It computes average value Am

calc

for the estimated values and standard deviation (�) of the
estimated values. The program considers ‘‘high values’’ as the
values fulfilling the criterion (5) and ‘‘low values’’ as the values
fulfilling the criterion (6). Here, the molecules having ‘‘high’’
computed value of inhibitory activity have been taken as
‘‘recommended for synthesis’’9,12.

Acalc 4Am
calc þ 0:5�, ð5Þ

Acalc 5Am
calc � 0:5�: ð6Þ

The ‘‘quality’’ of each QSPR was computed using usual
statistical formulas that are a measure of agreement of observed/
computed values of activity: standard error of estimation (SE),
Pearson square correlation (r2), Fisher function (F) and cross-
validated Pearson square correlation (r2

cv). The concordance
between the observed/computed values has been calculated
using the quality function Q (9) which possesses values in the
interval {�1, 1}.

Q ¼ r2 � N � k

N
, ð7Þ

where r2 is Pearson square linear correlation between computed/
observed values and N is the number of molecules in the
calibration set (here N¼ 28). By increasing the number of
descriptors k, the quality Q of the equations increases, reaches the
maximum and then decreases. For predictions, the equation of the
highest Q was used. The descriptors present in this equation being
called ‘‘predictors’’.

Figure 2. Structural detail of MG-CA inhibitors (sulfonamides) used in prediction set (not yet synthesized).
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PRECLAV divides the analyzed molecules into virtual frag-
ments using an algorithm reported earlier20,21. The virtual
fragments identified by PRECLAV do not always coincide with
the classical functional groups. The presence of a significant
fragment in the molecule greatly influences the inhibitory activity
of the molecule either in a positive or negative way.

Validation of the developed model

The best way to evaluate the quality of regression model is to
leave one out (LOO) and leave-N-out (LNO) cross-validation. The
cross-validation used to measure a model’s predictive ability and
draw attention to the possibility, a model has been over-fitted. The
LNO method of cross-validation is especially useful if the training
set used to create the model is small or if there is no test set. For
good predictability r2 � r2

cv ðLOOÞ value should not exceed 0.3.
A QSAR model can be considered robust when the average values
of r2

cvðLNOÞ are relatively high and close to r2
cvðLOOÞ

22. Roy et al.
have developed a recent term r2

m metrics23–25 (average r2
m and

delta r2
m) to check the predictive capacities of a QSAR model. The

r2
m metrics are calculated to ascertain the proximity in the values

of the predicted and observed response data and validation of the
model. The possibility of chance correlation was tested using
y-randomization test where only the observed activity was
scrambled 10 times22. The average squared correlation coefficient
(r2

r ) calculated from the model developed using the permuted data
matrices should be much lower than that of the original model r2,
so as to reflect the existence of a true correlation for the
developed models. The additional calculation of the cr2

p
26

parameter (threshold value¼ 0.5) checks for sufficient difference
between the values of r2 and r2

r .
Once internally validated, the data set (calibration set) was

split into reduced calibration set (training set) and validation set
(test set) using hierarchical clustering technique27 and proceeded
to a QSAR study. The quality of the prediction for the external
validation was considered as a measure of the quality of the
computation method. The external predictive potential of the
developed models was judged based on the value of predictive r2

(r2
pred 4 0:5)28. Besides the traditional metrics, the fitness between

the observed and estimated activity values of the test set
compounds was also assessed from average r2

m (test) and delta
r2

m (test) parameters. QSAR models bearing acceptable values for
all the traditional parameters can be finally assessed based on the
r2

m metrics. Those with average r2
m values above the threshold of

0.5 and with a delta r2
m value less than 0.2 are considered to be

predictive and reliable ones.

Applicability of domain and detection of outliers

A QSAR model can be used for screening new compounds if its
domain of application is defined28,29. The need to characterize the
model applicability domain is also reflected in the OECD
guidelines for QSAR model validation30,31. QSAR model should
only be used for making predictions of compounds fall within the
specified domain may be considered reliable. Extent of extrapo-
lation32,33 is one simple approach to define the applicability of the
domain. It is based on the calculation of the hat diagonal
(leverage) hi for each chemical, where the QSAR model is used to
predict its activity:

hi ¼
1

4
xT

i ðXTXÞ�1
xi: ð8Þ

In Equation (8), xi is the descriptor-row vector of the query
molecule and X is the k� n matrix containing the k descriptor
values for each one of the n training molecules. A hat diagonal
(leverage) value 43(k + 1)/n leverage warning limit31 is con-
sidered large.

Outliers are compounds that are poorly fit by the regression
model. Outlying compounds should not be removed unless a good
reason for their removal can be given. The variance of the
observed residuals is not constant. This makes comparisons
among the residuals difficult. One solution is to standardize the
residuals34,35 by dividing by their standard deviations. This gives
a set of standardized residuals. The cross-validated LOO
standardized residuals is a jRStudentj that has the impact on a
single observation.

To visualize the applicability of domain (AD) of a developed
QSAR model, William plot was used. In the William plot,
jRStudentj versus leverage values (hi) are plotted. This plot could
be used for an immediate and simple graphical detection of both
the response outliers and structurally influential compounds in a
model. It must be noted that compounds with high value of
leverage and good fitting in the developed model can stabilize the
model. However, compounds with bad fitting in the developed
model may be outliers. Thus, the combination of leverage and the
jRStudentj could be used for assigning the AD.

Results and discussion

The statistical computations were conducted using the specific
formulas and procedures of PRECLAV9 program algorithm.
Using only the ‘‘significant’’ descriptors PRECLAV computes
10 000 QSPR type (3) multilinear equations. The quality of the
obtained equations is reflected by the value of the Q function and
also by values of some usual statistical functions. The r2

m metrics,
r2

cvðLNOÞ and cr2
p based randomization tests are calculated using

DTC lab software tool36. During the PRECLAV MLR analysis,
we observed that the equation with highest value of the Q function
is four-parametric model and that this model also has the highest
predictive power and are as follows:
Dependent property: b-Carbonic anhydrase inhibitors from the
fungus M. globosa
Molecules number in calibration set: 28
Molecules number in prediction set: 23
Intercept¼ 1.5242
Statistical outliers: 0
C1¼ 7.9968, D1¼ asr (average net charge of C atoms) (U¼ 789)
C2¼ 9.9859, D2¼ xbo (molecular orbital maximum bonding
contribution) (U¼ 1000)
C3¼ 0.0004, D3¼ igu (gravitation index (all atoms) (U¼ 800))
C4¼�25.5167, D4¼ olm (average bond order all bonds)
(U¼ 961)

Whereas the quality of correlation is described by the
statistical indices:
SEE¼ 0.3446, r2¼ 0.8687, F¼ 39.6921, Q¼ 0.7446; r2

cvðLOOÞ ¼
0.79823
Average r2

mðLOOÞ ¼ 0.71962, delta r2
mðLOOÞ ¼ 0.091, average

r2
cvðLNOÞ ¼ 0.79512 (N¼ 1–5), cr2

p ¼ 0.7939
The high usability of the xbo (U¼ 1000) descriptor mostly

influence the MG-CA inhibitory activity because the utility value
of this descriptor is high as compared to the other three
descriptors in the QSAR model. A positive coefficient for xbo
descriptor refers to an increment in the activity profile of the
molecules with an increase in the value of this descriptor as seen
in the case of compounds 6, 16, 17, 18, 21 and 22. Similarly, the
low range values for the xbo descriptor accounts for the reduced
activity profile of compounds13 and 14. The negative coefficient
of olm descriptor signifies their influence conducive to the
antidandruff activity profile of the molecules. The positive
coefficient of these descriptors asr and igu descriptors signifies
their influence on the antidandruff activity.

The minimum correlation descriptor/activity is computed
for D4 (r2¼ 0.0528). The minimum intercorrelation between
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descriptors D3 and D4 (r2¼ 0.0002) and the maximum intercor-
relation between descriptors is computed for D2/D4 pair
(r2¼ 0.1525). Thus, the co-linearity between the predictors is
not found. jRStudentj is one of the best single diagnostics for
capturing large residuals. Table 1 shows that none of the
compounds has higher jRStudentj than threshold limit
jRStudentj52 except compound 1 and 4 but hat diagonal is
within the limit so it is not considered as outlier. This diagnostic
confirms that there are no outliers in the calibration set.

Using the equation, the maximum activity computed for
calibration set molecules is 4.073; the average activity computed
for calibration set molecules is 3.04 ± 0.886 and the average
activity computed for prediction set molecules is 4.604 ± 0.592.

The values of all the statistical parameters being within the
acceptable limit reflect the internal predictive potential of the
developed model. The satisfactory values of average r2

mðLOOÞ
(40.5) and delta r2

mðLOOÞ (50.2) calculated based on the whole
dataset may efficiently reflect the predictive potential of a model.
The value cr2

p calculated based on the randomization tests was
much higher than the threshold value of 0.5 and thus ensured that
the model was not just the mere outcome of chance. LNO cross-
validation employs smaller calibration sets than the LOO cross-
validation, and it can be repeated several times, because of the
large number of combinations that rise when more than one
compound is left out from the calibration set, once at a time. The
robustness of the model was examined through LNO cross
validation, with N¼ 1–5. It is expected that the average value of
each r2

cvðLNOÞ would be close to r2
cvðLOOÞ with standard deviations

close to zero37. The model obtained in this study has an average
r2

cvðLNOÞ ¼ 0.79823, only 0.0031 units lower than r2
cvðLOOÞ. The

standard deviation for each ‘‘N’’ performed value is small, with
the maximum of 0.18014 for r2

cvðL5OÞ.
In this study, molecules of analyzed database include 25 virtual

fragments but only 5 virtual fragments are considered significant.
The percentages, in weight, of molecular fragments are well
correlated (directly or inversely) with the values of inhibitory
activity. The signifiant molécule fragments are:
CH3, r¼�0.4698 (methyl group)
CHN, r¼�0.4472 (amine group)
CN2, r¼�0.447 (carbon and nitrogen in thidazole system)
S atom, r¼�0.4472 (sulfur atom)
C2H2N3S, r¼�0.4407 (amino thiadizole)

The methyl fragment is present in two compounds (compounds
4 and 14), while the other significant fragments are present in
only two molecules (compounds 14 and 13). The presence of the
methyl groups, amine group, carbon and nitrogen in heterocyclic
compound, sulfur atom and thiadizole system seems to be
unfavorable to activity and also the database shows that the
aforementioned compounds (4, 13 and 14) have a low activity.

The validation set was extracted from the homogenized
calibration set. For the present work, the selection of the
validation set is based on the hierarchical clustering technique27.
The cluster analysis38 is a method of arranging objects into
groups. In the present work, the molecules with ranks 01, 05, 09,

13, 24, 18 and 28 constituted the validation set (test set) and the
remaining molecules form the reduced calibration set (training
set). The validation set of 07 molecules (25% of database)
captures all the features and span the activity range of the entire
data set. We can assume that the reduced calibration set obtained
in this way is a representative sample for the calibration set. In the
presence of the validation set, we obtained the four-parametric
QSAR model for the training set with same predictors. xbo, olm,
asr and igu used in the above QSAR study and obtained result
[SE¼ 0.1226, r2¼ 0.8556, F¼ 23.692, r2

cv¼ 0.7483, r2
pred¼

0.89067, average r2
mðLOOÞ ¼ 0.65428, delta r2

mðLOOÞ ¼ 0.091, aver-
age r2

mðtestÞ ¼ 0.81074, delta r2
mðtestÞ ¼ 0.09269 and cr2

p ¼ 0.80807].

Table 2. Observed, estimated and residual values of MG-CA inhibitory
activity (A) for the molecules used in the reduced calibration set
(training set).

Compound Obs. Est. Res.

2 3.41 3.273 0.137
3 3.617 3.899 �0.282
4 1.971 2.73 �0.759
6 3.901 3.82 0.081
7 3.735 3.043 0.692
8 3.716 3.154 0.562

10 3.065 3.338 �0.273
11 3.845 4.214 �0.369
12 3.835 3.621 0.214
14 0.87 0.921 �0.051
15 3.426 3.298 0.128
16 3.782 3.508 0.274
17 4 4.09 �0.09
19 1.255 1.499 �0.244
20 3.43 3.446 �0.016
21 3.727 3.786 �0.059
22 3.826 4.011 �0.185
23 2.143 2.106 0.037
25 2.308 2.771 �0.463
26 2.986 2.705 0.281
27 3.226 2.836 0.39

Figure 3. Graphs of observed versus esti-
mated activity in the calibration set and
validation set.
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Table 3. Observed, estimated and residual values MG-CA inhibitory
activity (A) of compound used in the validation set (test set).

Compound Obs. Est. Res.

1 1.808 2.182 �0.374
5 3.558 3.259 0.299
9 3.256 2.924 0.332

13 0.902 1.101 �0.199
18 3.962 2.682 1.28
24 2.391 2.401 �0.01
28 3.178 2.804 0.374
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The predictive quality of the models was assessed based on the
value of r2

pred and r2
mðtestÞ metric and based on these parameters.

The predictive r2 (r2
pred40.5), average r2

mðtestÞ (40.5) and delta
r2

mðtestÞ (50.2) parameter indicates significant ability of the
developed model to predict the MG-CA inhibitory activity of
new compounds. The value cr2

p calculated based on the random-
ization tests was much higher than the threshold value of 0.5 and
thus ensured that the model was not just the mere outcome of
chance.

We can state that the estimated value for the molecules in the
validation set is close to the experimental ones and have ordered
the molecules in a sequence similar enough to the real one
MG-CA inhibitory activity value. In order to confirm our findings
we have compared the estimated values of the activities with the
experimental (observed) ones (Table 1). This has further been
demonstrated in Figure 3 and Tables 2 and 3 for training set and
test set; a linear relationship between observed and estimated
activities in a scatter plot indicates that linearity assumption is
appropriate.

According to criterion (5), this equation identified molecules
in prediction set having high values of MG-CA inhibitory activity
‘‘suggested for synthesis’’. In Table 1, the predicted values of not
yet synthesized compounds 29–51 were identified by the program
as high have been marked in bold letters, while the values
identified as low have been underlined.

Applicability domain

As discussed earlier, we used jRStudentj of observed inhibitory
activity calculated by the obtained models and hat diagonal
(leverage) for assigning AD. Values for leverage have been
calculated for both calibration set and prediction set compounds
shown in Table 1. AD for the developed model of calibration set is
shown in William plot (Figure 4). Influential compounds are
points with leverage value higher than the warning leverage limit.
It can be seen in the William plot; all molecules in calibration set
lie in the application domain of the developed model. None of the
molecules has leverage value higher than warning leverage limit
0.5357. Leverage value of prediction set compounds 29–51 in
Table 1 exhibits that all are within defined warning limit fixed
by the calibration set except molecule 36. Therefore, the
computed activity of the prediction set compounds may be
acceptable by using developed model of calibration set.

Conclusions

In calibration set, the bond order and molecular orbital bonding
have greater influence on activity value. The presence of the
methyl, sulfur atom and amino thiadizole groups is not favorable
to activity. Molecular orbital maximum bonding contribution
plays dominant role for the activity. Many molecules in proposed
prediction set have much higher computed activity than observed
value. Thus, attempts have been made to design and develop new
drugs against MG-CA inhibitory activity on a rational basis so as
to decreases the trial and error factor and predict the biological
activity before synthesis.
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