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Abstract

This study explores the correlation between human carbonic anhydrase (CA, EC 4.2.1.1)
isoforms I and II (hCA I, II) and the inhibitory features of some spirobisnaphthalene derivatives.
A group of spirobisnaphthalenes was synthesized and their hCA I and II inhibitory effects was
investigated. The Ki values were similar for both CA isoenzymes, the compounds showing good
inhibitory activity. Ki values ranged between 1.60 and 460.42 mM for hCA I and between 0.39
and 419.42 mM for hCA II, respectively. The spirobisnaphthalenes derivatives might be useful for
designing CA inhibitors belonging to novel chemotypes compared to the highly investigated
sulfonamides, sulfamates or coumarins.
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Introduction

The spirobisnaphthalenes exhibit a wide range of biological
effects such as antifungal and antibacterial1–4, antimitotic5,
antileishmanial6 and antitumor5,7 activities. The antitumor and
antimitotic effect may result from the phospholipase D8–10, DNA
gyrase11 or thioredoxin-reductase12–14 inhibition. The palmaru-
mycins belong to a relatively new and rare family of bioactive
natural products and have a unique structural feature. They consist
of a 1,8-dihydroxynaphthalene unit and a partially reduced
naphthalene unit, which are connected to each other by a
spiroacetal. The first representative, called bipendensin, was
obtained in very small amounts from wood samples of Afzelia
bipendensis15. However, it is assumed that a fungus living in this
plant16 produced this compound. Meanwhile, a large number of
such spiro compounds were isolated mostly from endophytic
fungi and named diepoxines1, Sch plus number8,17,18, CJ-plus
number11, cladosporins19–21, palmarumycins3,22–24, sphaero-
lones25, decaspirones4,17 and deoxypreussomerin26.

The interesting structures, various biological activities and
potential applications in agriculture, medicine and the food
industry attracted the attention of many research groups with
respect to the synthesis of spirobisnaphthalenes. In the last few
years, many investigations have been carried out and several

natural compounds of this family have been identified, analyzed
and synthesized27.

Carbonic anhydrase (CA, EC 4.2.1.1) is a metalloenzyme and
is fairly ubiquitous, being found in animals, plants and in the
microorganisms. CAs found in animal cells were shown to be
different from CAs of plants or other oranisms28–30. Indeed, the
CAs possess different structures, activities and isoforms, with six
distinct genetic CA families (a-, b-, g-, d-, z- and Z-CAs) being
described nowadays30–32.

The human CAs belongs to a-class. Until now, 16 isozymes
have been determined. These 16 isozymes differ by molecular
specifications, oligomeric arrangement, cellular localization,
kinetic properties and tissues, expression levels, distribution.
Some studies showed important roles of CAs in a diversity of
physiological processes, and demonstrated that activities or
unusual levels of these enzymes have been often associated
with various human diseases33–35.

Human catalytically active a-CA have different subcellular
localization, where CA I, II, III, VII and XIII are in cytosol,
CA IV, IX, XII and XIV are membrane-associated and CA VB
and VA are in mitochondria. CA VI is secreted in milk and
saliva36–39.

CA is a well-characterized pH-regulatory metalloenzyme
widely found in many tissues including red blood cells, gastro-
intestinal tract, kidneys, lungs, etc.40,41 It quickly catalyzes the
hydration of carbon dioxide to form bicarbonate, as well as the
reversible dehydration reaction of bicarbonate which generates
CO2

42,43.
Inhibitors of carbonic anhydrases (CAIs) have been developed

and used for the treatment of various conditions. Some inhibitors
are used clinically as antiglaucoma agents; for the management of
neurological disorders, as diuretics, in the treatment of osteopor-
osis or as antiepileptic agents. Ultimately a sulfonamide CA
inhibitor entered Phase I clinical trials as an antitumor agent44.
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Besides on these applications of CA inhibitors, there are
continued efforts in developing diverse agents for the manage-
ment of cancer, obesity and other diseases in which the activity of
these enzymes is disregulated45–49.

This group has reported some inhibition studies of several
CA isozymes with sulfamides. As sulfamide exhibits important
biological activities, CA inhibitory properties of some sulfa-
mide derivatives will be useful for further biological studies.
It has been shown that this simple compound behaves as a weak
inhibitor against the cytosolic isoforms CA I and II. Sulfonamides
have R-SO2NH2 general chemical structure. According to the
recent studies, sulfonamides have high affinity for CA. Especially
for hCA isoenzymes inhibitor studies increased in recent
years. At present, strong CAIs have been discovered using
modified moieties such as sulfonamide or sulfamate among
others50.

The synthesis of spirobisnaphthalenes derivatives (1–16) was
performed as described previously51. In this study, we have
examined the inhibition effects of spirobisnaphthalenes deriva-
tives (1–16) against the both human cytosolic CA isoforms (hCA I
and II). Also, the inhibition results were compared to acetazola-
mide (AZA) and dorzolamide (DRZ).

Materials and methods

The human erythrocytes were centrifuged at 10 000� g for 0.5 h.
Then precipitate and the serum were separated. The serum pH
was adjusted with solid Tris (pH 8.7)52–55. As well as sepharose-
4B-tirozyne-sulfanylamide affinity column balanced with Tris–
HCl/Na2SO4 (25 mM/0.1 M, pH 8.7). Then, this sample was
applied to the Sepharose-4B-tirozyne-sulfanylamide affinity
column and equilibrated with Tris–HCl/Na2SO4 (25 mM/22 mM,
pH 8.7). Finally, HCA I and II isozymes were eluted with 1.0 M
NaCl/25 mM sodium phosphate (pH 6.3) and 0.1 M sodium
acetate/0.5 M NaClO4 (pH 5.6), respectively. All of enzyme
studies were performed at 4 �C56–60. The protein content during
the purification steps, Bradford method was used61. Bovine serum
albumin was used as standard62–64.

The purity of both hCA I and II was controlled by SDS
polyacrylamide gel electrophoresis (SDS–PAGE)65. This method
had been described in previous studies66,67. The running and
separating gels contained SDS (0.1%) and 3% and 10% acryl-
amide, respectively68,69. Before loading into the gel, samples were
added 1% SDS and 10% 2-mercaptoethanol and then were waited
in boiling water bath for 5 min70. The gel was painted in coloring
solution after bands were detected. This coloring solution is

Figure 1. The chemical structures of
synthesized spirobisnaphthalenes derivatives
(1–16).
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prepared in (10%) acetic acid and methanol (50%), which contain
Coomassie Brilliant Blue (R-250, 0.1%)71.

During the isoenzyme purification and inhibition process,
esterase activity studies were performed according to the
Verpoorte procedure72. Both CA isoenzymes activities were
determined by following the change in absorbance at 348 nm73.
The Ki values were calculated from experiments using three
different spirobisnaphthalenes derivative (1–16) concentrations
and NPA as the substrate at five different concentrations to create
Lineweaver–Burk curves reported previously74–76.

Results and discussion

CA purification and activity assay

First, hCA I and II isoenzymes were purified by sepharose-4B-
L-thyrosine-sulfanilamide chromatography. Then, the purity of
the enzymes was detected by SDS–PAGE53,54,77 and single band
was observed for each isoenzyme. We studied the inhibition
effects of spirobisnaphthalenes derivatives against hCA I and II.
For this purpose, the esterase activity method was performed78.
In this activity determination method, the phenyl acetate is
hydrolyzed and the resulting product gives the absorbance at
348 nm56,57,79.

In the last decades, many valuable bioactive secondary
metabolites, which show a great variety of biological activities,
have been successfully isolated from the endophytic fungi. The
spirobisnaphthalenes are a growing group of fungal secondary
metabolites, which contain two 1,8-dihydroxynaphthalene-
derived units bridged through a spiroketal linkage. This group
could be mainly classified as spairoxin, preussomerin, palmar-
umycin and urnucratin-type spirobisnaphthalenes, according to
their structural features51,80. The chemical formula of spirobis-
naphthalenes, which are used in this study, are given in Figure 1.

The CA isoenzymes have become an interesting target for the
design of activators or inhibitors with biomedical applications.
With this purpose, we have investigated the inhibitory effects of
many compounds on the CA isoenzymes. In this circumstance,
Lineweaver–Burk graphs were drawn for determination of
inhibition effect of each spirobisnaphthalenes derivate. Then,
the average of IC50 and Ki values were calculated from drawn

graphs (Table 1). A first step, we report the inhibitory effects of
derivatives spirobisnaphthalenes on the esterase activity of hCA I
and II under the in vitro conditions. The results were summarized
in Table 1.

Spirobisnaphthalenes were given to be effect inhibitors of
hCA I, II (Table 1). Spirobisnaphthalenes derivatives (1–16)
were all determined to inhibit hCA I, with Ki values ranging
of 1.60–460.42mM for spirobisnaphthalenes derivatives.
Spirobisnaphthalenes derivatives (1–16) were all found to inhibit
hCA II, with Ki values ranging of 0.39–419.42 mM for
spirobisnaphthalenes derivatives.

These results demonstrated that hCA I and II are inhibited
by spirobisnaphthalenes derivatives in the micromolar range.
The mechanism by which these compounds inhibit the enzyme is
not well understood at this moment and work is in progress to
decipher it.

Conclusion

Carbonic anhydrase inhibitory properties of spirobisnaphthalenes
derivatives (1–16) have been evaluated. These biologically active
compounds generally demonstrated effective inhibition against
both hCA I and II isoenzymes. Spirobisnaphthalenes 1–16
behaved as micromolar inhibitors of hCA I and II and may be
used for generating more potent hCA I and II inhibitors for the
treatment of glaucoma, as diuretics, for the management of
mountain sickness, epilepsy, neurological disorders, gastric and
duodenal ulcers, osteoporosis conditions.
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32. Boztaş M, Çetinkaya Y, Topal M, et al. Synthesis and carbonic
anhydrase isoenzymes I, II, IX, and XII inhibitory effects of
dimethoxy-bromophenol derivatives incorporating cyclopropane
moieties. J Med Chem 2015;58:640–50.
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