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Abstract

Signal transducer and activator of transcription 3 (STAT3) plays an essential role in cell growth
regulation and survival. An aberrant STAT3 activation and/or expression is implied in various
solid and blood tumors as well as in other pathologies like rheumatoid arthritis and pulmonary
fibrosis, thus making the search for STAT3 inhibitors a growing field of study. With the aim of
identifying new inhibitors of STAT3 dimerization, we screened a database including more than
1 320 000 commercially available compounds using a receptor-based pharmacophore model
comprising the key protein–protein interactions identified in the STAT3 dimer and refining
the search through docking and molecular dynamic simulations studies. STAT3 binding assays
revealed a significant STAT3 inhibitory activity and selectivity versus Grb2 for one of the four
top-scored compounds, thus verifying the reliability of the virtual screening workflow.
Moreover, such compound could already be considered as a lead for the development of new
and more potent STAT3 dimerization inhibitors.
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Introduction

Signal transducer and activator of transcription 3 (STAT3) is a
member of the STAT family, made up of latent cytosolic proteins
which directly mediate signals for the plasma membrane (in
response to cytokines and growth factors) to the nucleus1 playing
a key role in cell growth regulation and survival2. STAT3 contains
seven structurally and functionally conserved domains among
which the Src homology 2 (SH2) domain is essential for its
activation cascade pathway. Indeed, STAT3 monomer phosphor-
ylation at Tyr705 residue, by tyrosine kinases (Janus kinases,
tyrosine protein kinase 2 and c-Src kinases), leads to STAT3–
STAT3 dimerization, through reciprocal pTyr–SH2 domain
interaction. The dimer complex translocates into the nucleus
and, binding to specific DNA consensus sequences, induces target
gene transcription2. Nevertheless, due to the de-regulation of
cytokine receptors, growth factors and Janus kinases activity3,
STAT3 turns out to be constitutively activated in a wide variety of
human solid and blood tumors, involving uncontrolled growth and
survival of cells, enhanced angiogenesis and metastasis4,5.
Noteworthy, apoptosis was induced inhibiting STAT3 only in
cancer cell lines, with slight effect in normal cells6.

Therefore, due to the crucial role of an aberrant STAT3
expression and/or activation in cancer development as well as its

implications in other pathologies, like rheumatoid arthritis,
atherosclerosis, inflammatory bowel disease, psoriasis and pul-
monary fibrosis7, the search for STAT3 inhibitors is a hot topic in
medicinal chemistry. A considerable number of different types of
direct small molecule STAT3 inhibitors, preventing STAT3
dimerization or STAT3–DNA binding and comprising peptides,
peptidomimetics and oligonucleotides, has been discovered6–8.
Nevertheless, the development of highly potent and selective
STAT3 inhibitors is still a challenging task. Computer screening
proved to be effective in the identification of new STAT3 SH2
domain binding inhibitors, blocking STAT3 dimerization, includ-
ing some well-known compounds like STA-219, S3I-20110 and
STX-011911, which have been all identified through in silico
screening purely relied on the docking of compound libraries into
the STAT3 SH2 domain. Other examples of docking-based virtual
screening (VS) studies are reported in literature12–15 and recently
some fragment-based drug design studies, combining docking and
synthesis, have been published16,17. However, different computa-
tional approaches, like QSAR studies and pharmacophore
screening, have been rarely applied18,19. In this study, we report
one of the first VS studies relied on a receptor-based pharmaco-
phore model comprising the key protein–protein interactions
identified in the STAT3 dimer. The model has been used to screen
a database of commercially available compounds, thus selecting
small molecules endowed with the features necessary to bind the
STAT3 SH2 domain. Then, a docking approach and molecular
dynamic (MD) simulations were used to refine the screening and
to identify new potential inhibitors of STAT3 dimerization
(Figure 1).
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Materials and methods

Receptor-based pharmacophore model generation

The receptor-based pharmacophore model was built based on the
3D structure of the STAT3b homodimer bound to DNA. The
X-ray structure of the STAT3b co-crystallized with a DNA
fragment (PDB code 1BG1)20 was downloaded from the Protein
Data Bank21 and the STAT3b homodimer was built by applying
the transformation matrix as reported in the PDB file with the
removal of the DNA fragment. For the generation of the
pharmacophore model, the sequence corresponding to residues
M586-F716 of one of the STAT3b monomers, comprising its SH2
domain, was taken into account as the receptor while the
phosphopeptide AAPpYLKT belonging to the other monomer
(residues A702-T708) was considered as the ligand. The receptor-
based pharmacophore model was created with the software
PHASE22 by automatically generating an exhaustive model
comprising all the possible pharmacophoric features identified
by the program for the AAPpYLKT peptide. Then, only the four
features representing the key protein–protein interactions estab-
lished by the residues pTyr705 and Leu706 of the phosphopeptide
were considered in the final pharmacophore model, while the
other ones were removed.

The excluded volume of the receptor was created using the
create_xvolReceptor utility of PHASE. The excluded volume
spheres, representing regions of space that cannot be occupied by
the compounds when aligned to the model during a pharmaco-
phore search, were created taking into account the receptor atoms
at a distance comprised between 2 and 5 Å from the ligand
surface, while leaving all other settings as their defaults.

Database generation and pharmacophore screening

The Vitas-M database, comprising about 1 320 000 commercially
available compounds was used as the screening database. The
phasedb_manage and phasedb_confsites utilities of PHASE22

were used to create a PHASE 3D database in which conform-
ational ensembles and pharmacophore sites were created and
stored for each compound. The conformational sampling method
was set to ‘‘thorough’’, so that a complete set of conformations
was generated for both the core and the peripheral groups of the
compounds, while all other settings where left as their defaults.

The PHASE 3D database was then screened using the
previously created receptor-based pharmacophore model and the
receptor excluded volume, imposing that only the compounds

matching all the four pharmacophoric features of the model were
retrieved.

Docking procedures and pose filtering

In all the docking procedures, the compounds were docked into
the crystal structure of the STAT3b co-crystallized with DNA
(PDB code 1BG1)20. Prior to docking, the DNA fragment was
removed and only the sequence of one STAT3b monomer
corresponding to residues M586-F716, comprising its SH2
domain, was used as receptor for the calculations. The top-
scored poses of the docked ligands were taken into account as a
result of each docking procedure.

GLIDE 5.0

The docking region was defined by a parallelepiped box of 30 Å in
the x direction and 25 Å in the y and z directions that was centered
on the bound phosphopeptide AAPpYLKT. The option allowing
only the docking of ligands containing a defined range of atoms
was disabled, so that all the ligands were docked independently
from their number of atoms. The extra precision (XP) method was
used for the study and all other settings were left as GLIDE23

defaults.

AUTODOCK 4.2.3

AUTODOCK Tools24 was used to define the torsion angles in the
ligands, to add the solvent model and to assign partial atomic
charges to the ligands and the protein. The docking site used for
AUTODOCK25 calculations was defined considering the bound
phosphopeptide AAPpYLKT as the central group of a grid of 80,
70 and 70 points in the x, y and z directions. The energetic maps
were calculated using a grid spacing of 0.375 Å and a distance-
dependent function of the dielectric constant. The ligands were
subjected to 200 docking runs of the AUTODOCK search using
the Lamarckian genetic algorithm (LGA) and employing
10 000 000 energy evaluations; the number of individuals in the
initial population was set to 500 and a maximum of 10 000 000
generations were simulated during each docking run; an rms
tolerance of 1.5 Å was used to carry out the cluster analysis of the
docking solutions and all the other settings were left as their
defaults.

Filtering of docking results

The filtering of the docking results was carried out by
superimposing the top-scored poses of the docked compounds
to the pharmacophore model through a PHASE pharmacophore
search in which the ‘‘scoreInPlace’’ option was enabled, so that
the matching to the model was computed directly from the
supplied poses, without changing their coordinates. The retrieval
of compounds matching all the four pharmacophoric features of
the model was imposed in this search.

MD simulations

All simulations were carried out using AMBER 1126. The
simulation protocol was set up using the complex of the
phosphopeptide AAPpYLKT bound to the SH2 domain of
STAT3 as a reference. Prior to the MD simulations, the missing
loop portion P689-S701 was automatically constructed within the
structure of the STAT3b monomer (PDB code 1BG1) and then
refined using the loop optimization method of the Modeller
software27. Only the sequence of STAT3 corresponding to
residues M586-F716, comprising the SH2 domain, was taken
into account as the receptor for the MD simulations of both the
reference complex and the ligand–protein complexes of the

Figure 1. Scheme of the VS workflow.
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compounds selected through the docking studies. The complexes
were placed in a parallelepiped water-box (TIP3P explicit solvent
model) and solvated with a 10 Å water cap. Sodium ions were
added as counterions for the neutralization of the system. General
amber force field (GAFF) parameters were assigned to the
ligands, while partial charges were calculated using the AM1-
BCC method. Before running the MD simulations, two steps of
minimization were carried out. In the first step, a position restraint
of 100 kcal/(mol � Å2) was applied to the complex, so that only the
position of the water molecules was minimized. In the second
step, a harmonic potential of 10 kcal/(mol � Å2) was applied only
to the protein a carbons; thus, the whole system was energy
minimized through 10 000 steps of steepest descent followed by
conjugate gradient, until the attainment of a convergence of
0.05 kcal/(mol � Å2). The energy minimized complexes were
employed as the starting structures for the MD simulations,
which were run using particle mesh Ewald electrostatics and
periodic boundary conditions28, a cutoff of 10 Å for the non-
bonded interactions and employing SHAKE algorithm to keep
rigid every bond involving hydrogen. For each complex, a 2 ns
MD simulation, with a time step of 2.0 fs, was carried out. For the
first 300 ps of simulation, constant-volume periodic boundary
conditions were used and the temperature was raised from 0 to
300 K; then, constant-pressure periodic boundary conditions were
employed for the remaining 1.7 ns of MD simulation, during
which the temperature of the system was kept constant at 300 K
using the Langevin thermostat. The analysis of the MD
trajectories to calculate the RMSD of the ligands respect to
their starting position, as well as the percentage of occupancy
of their H-bonds were performed using the Ptraj suite of
AMBER 11.

Alpha-screen based assays

STAT3 inhibitory activity of the commercially available com-
pounds VS1–4 was tested by the AlphaScreen-based assay to
evaluate the potential inhibition of the interaction between STAT3
SH2 domain and pTyr-containing peptides at 30mM concentra-
tion, using MD7729 as reference compound. For the most
interesting compound, VS1, selectivity tests versus STAT1 and
Grb2 (Growth factor receptor-bound protein 2) were performed.
AlphaScreen is a bead-based non-radioactive assay system for
detecting biomolecular interactions in a microtiter plate format30.
Binding of biological partners brings donor and acceptor beads
into close proximity and as result, a fluorescent signal between
520 and 620 nm is produced. The AlphaScreen-based assays were
performed in a final reaction volume of 25 mL of the assay buffer
containing 10 mM HEPES–NaOH (pH 7.4), 50 mM NaCl, 1 mM
EDTA (pH 8.0), 0.1% NP-40 and 10 ng/mL BSA in a 96-well
microtiter plate at 25�C. Phospho-Tyr (pTyr) peptide probes used
in this study were 5-carboxyfluorescein (FITC)-GpYLPQTV for
STAT3, FITC-GpYDKPHVLfor STAT1 and FITC-PSpYVNVQN
for Grb2. First, 75 nM of each SH2-containing protein was
incubated with the test compound for 15 min. Each protein sample
was then incubated for 90 min with 50 nM of its corresponding
FITC-pTyr peptide, and mixed with streptavidin coated donor
beads and anti-FITC acceptor beads simultaneously before
detection at 570 nm using EnVisonXcite (Perkin Elmer,
Waltham, MA).

Results and discussion

With the aim of identifying novel STAT3 SH2 inhibitors, we
developed a VS protocol focused on a receptor-based pharmaco-
phore model comprising the key interactions established between
the SH2 domains of the two STAT3 monomers within the
STAT3–STAT3 dimer. The pharmacophore model was created

based on the analysis of the crystal structure of the STAT3b
homodimer co-crystallized with a DNA fragment (PDB code
1BG1)20 (see ‘‘Materials and methods’’ section for details).
Figure 2 shows the phosphopeptide AAPpYLKT, corresponding
to residues 702–708 of one of the STAT3b monomer, bound to the
SH2 domain of the other monomer. The central residues pTyr705
and Leu706 seem to be responsible of the major interactions
formed by the peptide; in fact, alanine scanning mutagenesis
studies revealed that these two residues are essential for the
binding to the STAT3 SH2 domain, since tripeptides containing
the pTyr-Leu portion (like Ala-pTyr-Leu or Pro-pTyr-Leu) were
sufficient to significantly inhibit STAT3 DNA-binding activity31.

The phosphotyrosine pTyr705 of the peptide, that is essential
for STAT3 dimerization, forms direct interactions through its
phosphate group with Lys591, Arg609, Ser611, Glu612 and
Ser613, constituting the so called pY pocket (Figure 3A);
moreover, its aromatic ring well adapts into the narrow space
delimited by Val637, Glu638 and Pro639 from one side and
Lys591 from the other one. The peptide Leu706 forms an H-bond
with the backbone oxygen of Ser636 through the amide N–H
group and places its lateral chain into a hydrophobic pocket
constituted by Trp623, Gln635, Val637, Tyr657, Thr714 and
Phe716, also referred to as pY + 1 pocket (Figure 2). Based on
these considerations, we built a structure-based pharmacophore
taking into account the interactions established by pTyr705 and
Leu706 of the phosphopeptide. The model, shown in Figure 3(B),
was generated using the software PHASE22 and comprised (a) a
negative feature representing the phosphate group of pTyr705, (b)
an aromatic feature representing the aromatic ring of pTyr705, (c)
an H-bond donor feature representing the amide N–H moiety of
Leu706 interacting with Ser636 and (d) a hydrophobic feature
representing the lateral chain of Leu706. In addition, the
pharmacophore model was refined by adding excluded volume
spheres mimicking the steric hindrance represented by the SH2
domain surface residues in proximity of the whole AAPpYLKT
peptide (see ‘‘Materials and methods’’ section for details).

The pharmacophore model was used to screen the Vitas-M
database, comprising about 1 320 000 commercially available
compounds, retrieving only compounds matching all the four
pharmacophoric features and respecting the volume constraints

Figure 2. Structure of the phopshopeptide AAPpYLKT (stick), bound to
the STAT3 SH2 domain (shown as protein surface) obtained from the
structure of the STAT3b homodimer co-crystallized with a DNA
fragment. The two pockets interacting with the residues pTyr705 and
Leu706 of the phosphopeptide are highlighted.
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given by the SH2 binding site. By applying this strict filter, only
4819 compounds were further considered and subjected to the
docking studies.

The extra precision method (XP) of GLIDE software23 proved
to be a particularly reliable docking procedure, according to our
previous cross-docking studies carried out on different protein
targets32,33. For this reason, it was used as a first docking step to
select the compounds that were more likely to bind the STAT3
SH2 domain by assuming a disposition matching the features of
the pharmacophore model. The compounds were thus docked into
the SH2 domain of the STAT3b monomer (PDB code 1BG120)
and their top-scored poses were then superimposed to the
pharmacophore model (see ‘‘Materials and methods’’ section
for details) to select only the compounds matching all the four
pharmacophoric features in their predicted binding mode. On
these bases, 558 compounds were retained and subjected to
further docking studies.

For this second analysis, we used a robust procedure employ-
ing AUTODOCK425 with customized docking parameters (see
‘‘Materials and methods’’ section for details), which was
calibrated by docking the pTyr705-Leu706 dipeptide into the
STAT3 SH2 domain. As shown in Figure 4, the procedure was
able to reproduce the binding disposition adopted by pTyr705 and
Leu706 residues within the phosphopeptide AAPpYLKT with
high accuracy, thus allowing a perfect matching of the four
pharmacophoric features. The 558 ligands selected through the
docking with GLIDE were thus further docked using this
thorough AUTODOCK procedure and then filtered based on the
superimposition to the pharmacophore model as in the previous
docking step. The 65 compounds still matching the four
pharmacophoric features of the model were selected and
subjected to MD simulations in order to verify the stability of
the their docking poses.

Before setting up the simulation protocol, the missing portion
of the loop connected to the STAT3 SH2 domain, corresponding

to residues P689-S701, was reconstructed using Modeller soft-
ware27; then, only the sequence corresponding to residues M586-
F716, comprising the SH2 domain and the reconstructed loop,
was taken into account for the MD simulation study. The
simulation protocol was set up using the complex of the
phosphopeptide AAPpYLKT bound to the SH2 domain of
STAT3 as a test. The complex was subjected to a total of 2 ns
of MD simulation and the total energy of the system during the
simulation was analyzed; after about 400 ps, the system attained
an equilibrium, since during the following 1.6 ns its total energy
was found to be approximately constant (Supplemental S1).
The analysis of the root-mean-square deviation (RMSD) of the

Figure 3. (A) Structure of the phosphopeptide AAPpYLKT (dark grey) bound to the STAT3 SH2 domain; the residues of the SH2 domain interacting
with the pTyr705-Leu706 portion of the peptide and delimiting the pY pocket and the pY+1 pocket are shown (light grey). The main H-bonds detected
in the complex are highlighted as black dashed lines. (B) Receptor-based pharmacophore model used for the VS study; the reference peptide (stick)
together with the negative (N27), aromatic (R30), H-bond donor (D17) and hydrophobic (H24) features are shown; the excluded volume spheres are
shown in light grey.

Figure 4. Structure of the pTyr705-Leu706 dipeptide (black stick) docked
into the STAT3 SH2 domain (shown as protein surface) superimposed to
the bound phosphopeptide AAPpYLKT (dark grey stick).
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receptor heavy atoms during the simulation, with respect to the
starting structure, showed an initial increase due to the equilibra-
tion of the system followed by a stabilization of the RMSD value
around 1.4 Å after about 400 ps. By the analysis of the RMSD of
the disposition of the peptide during the simulation with respect to
the input structure, we found an average RMSD of 2.0 Å.
However, the portion of the peptide corresponding to our
pharmacophore model and constituted by pTyr705 and Leu706
showed an average RMSD of 1.2 Å, highlighting that the positions
of these two residues were well maintained during the whole
simulation as well as their key interactions with the SH2 domain
(Supplemental Figure S1). Precisely, the H-bond analysis revealed
that the phosphate group of pTyr705 formed a total of 6 H-bonds
with Arg609, Ser611, Glu612 and Ser613 that were maintained
for almost the whole simulation. Similarly, the H-bond between
the amide N–H group of Leu706 and the backbone oxygen of
Ser636 was maintained for 97% of the simulation (Supplemental
Table S1).

The 65 compounds selected through the docking step were
subjected to the same MD simulation protocol described above
and the average RMSD of their disposition during the simulation,
with respect to their initial docking pose, was calculated. All the
ligands showing an average RMSD 4 2.0 Å were rejected34 and

for the 19 remaining compounds the stability of the H-bonds
formed with Ser636 and with the residues defining the pY pocket
were analyzed. The four compounds maintaining an H-bond with
the backbone oxygen of Ser636 and an H-bond with at least two
pY pocket residues among Arg609, Ser611, Glu612 and Ser613
for more than 80% of the whole MD simulation were selected
to be purchased and subjected to STAT3 SH2 binding assays.
Table 1 shows the biological results for the four purchased
compounds, together with the reference compound MD7729.

Compound VS1, which showed the highest inhibitory activity
toward STAT3, was subjected to further assays for the determin-
ation of the IC50 for STAT3 as well as for STAT1 and Grb2, which
present a high percentage of sequence homology with STAT3 (78
and 65%, respectively). As shown in Table 2, compound VS1
showed an IC50 value for STAT3 of 169.2mM; moreover, the
compound proved to be significantly selective versus Grb2,
showing a complete lack of Grb2 inhibitory activity at the
concentration of 200mM (Supplemental Table S2).

As shown in Figure 5, compound VS1 well mimics the portion
of the phosphopeptide constituted by pTyr705 and Leu706. The
carboxylic group of the ligand is placed within the pY pocket and
it predominantly interacts with Ser611, Glu612 and Ser613,
establishing four different H-bonds with these residues. Precisely,
the compound forms an H-bond with the hydroxyl group of
Ser611, one with the backbone N-H of Glu612 and two H-bonds
with Ser613 (one with the backbone and one with the hydroxyl
group). The phenyl ring of the ligand linked to the carboxylic
group takes contact with Thr620, Glu638 and Pro639, while the
central moiety interacts with Val637 and forms an H-bond with
Ser636 that is maintained for more than 95% of the whole MD
simulation. Finally, the 2-chloro-4-methylphenyl portion of the
ligand is well placed into the hydrophobic pocket constituted by
Trp623, Gln635, Val637, Tyr 657, Thr714 and Phe716, forming
Van der Waals interactions with these residues as well as with
the side chains of Lys626 and Gln635.

Conclusions

In this study, we developed a VS study aimed at the identification
of new inhibitors of STAT3 dimerization. For this purpose, we
built a receptor-based pharmacophore model comprising the key
interactions established between the SH2 domains of the two

Table 1. Structure and STAT3 inhibitory activity of the tested
compounds.

Structure
STAT3 inhibition (%)

at [30 mM]

VS1

OH

O

N
H

N
H

SOCl
15.8

VS2

N N

H
N

H
N

OHO

O
Cl

Cl

6.8

VS3
N
H

N
H

O

F O

OH

3.6

VS4

HO

O
N
H

O

N
H

Cl

1.2

MD77
Cl

N
O N

H
N

O

CF3

72.0

Table 2. Structure and IC50 values toward STAT3, STAT1 and Grb2 of
compounds VS1 and MD77.

Structure
STAT3

IC50(mM)
STAT1

IC50(mM)
Grb2

IC50(mM)

VS1

OH

O

N
H

N
H

SOCl
169.2 4200 4200

MD77
Cl

N
O N

H
N

O

CF3

17.7 7.2 4100
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STAT3 monomers within the STAT3 homodimer, which was used
to screen a commercial database of about 1 320 000 compounds.
The filtered ligands were then subjected to a docking analysis,
employing two different docking procedures, as well as to MD
simulation studies, allowing the selection of 4 candidates that
were purchased and subjected to STAT3 SH2 binding assays. One
of the selected compounds showed a significant inhibitory activity
toward STAT3 and selectivity versus Grb2, thus validating the
reliability of the VS approach herein described. Moreover, such
compound could already be considered as a lead for the
development of new and more potent STAT3 dimerization
inhibitors targeting additional receptor subpockets that have not
been taken into account in this study.
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