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Abstract

Objective. Women with a fetal death at the time of diagnosis have higher maternal plasma concentrations of the anti-
angiogenic factor, soluble vascular endothelial growth factor receptor (sVEGFR)-1, than women with a normal pregnancy.
An important question is whether these changes are the cause or consequence of fetal death. To address this issue, we
conducted a longitudinal study and measured the maternal plasma concentrations of selective angiogenic and anti-
angiogenic factors before the diagnosis of a fetal death. The anti-angiogenic factors studied were sVEGFR-1 and soluble
endoglin (sEng), and the angiogenic factor, placental growth factor (PlGF).

Methods. This retrospective longitudinal nested case–control study included 143 singleton pregnancies in the following
groups: (1) patients with uncomplicated pregnancies who delivered a term infant with an appropriate weight for gestational
age (n¼ 124); and (2) patients who had a fetal death (n¼ 19). Blood samples were collected at each prenatal visit, scheduled
at 4-week intervals from the first trimester until delivery. Plasma concentrations of sVEGFR-1, sEng, and PlGF were
determined by specific and sensitive ELISA. A linear mixed-effects model was used for analysis.

Results. (1) The average profiles of analyte concentrations as a function of gestational age for sVEGFR-1, sEng and PlGF
were different between women destined to have a fetal death and those with a normal pregnancy after adjusting for covariates
(p< 0.05); (2) Plasma sVEGFR-1 concentrations in patients destined to have a fetal death were significantly lower between 7
and 11 weeks of gestation and became significantly higher than those of women with a normal pregnancy between 20 and 37
weeks of gestation (p< 0.05); (3) Similarly, plasma sEng concentrations of women destined to have a fetal death were lower
at 7 weeks of gestation (p¼ 0.04) and became higher than those of controls between 20 and 40 weeks of gestation (p< 0.05);
(4) In contrast, plasma PlGF concentrations were higher among patients destined to develop a fetal death between 7 and 14
weeks of gestation and became significantly lower than those in the control group between 22 and 39 weeks of gestation
(p< 0.05); (5) The ratio of PlGF/(sVEGFR-16 sEng) was significantly higher in women destined to have a fetal death
between 7 and 13 weeks of gestation (94–781%) and significantly lower (44–75%) than those in normal pregnant women
between 20 and 40 weeks of gestation (p< 0.05); (6) Similar results were obtained when patients with a fetal death were
stratified into those who were diagnosed before or after 37 weeks of gestation.

Conclusions. Fetal death is characterised by higher maternal plasma concentrations of PlGF during the first trimester
compared to normal pregnancy. This profile changes into an anti-angiogenic one during the second and third trimesters.

Keywords: Soluble VEGF receptor-1, sFlt-1, soluble endoglin, placental growth factor, mixed- effect model, fetal demise,
stillbirth, pregnancy, anti-angiogenic state
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Introduction

Fetal death is one of the ‘great obstetrical syndromes’

[1–3]. As such, it may be expected to have: (1)

multiple aetiologies; (2) a preclinical stage; and (3)

genetic and environmental predisposing

factors (which, alone or in combination, may

modify the risk of its occurrence) [1]. In addition,

fetal death may be considered, in some cases, to be

adaptive in nature. Indeed, fetal death of one twin

may result in the improvement of preeclampsia [4–

7]. Thus far, most research about the causes of

fetal death has been based on epidemiologic studies

[8–17].

The ‘Tulip’ classification system suggests that

the leading causes of fetal death are: (1) pathology

of the placenta and the placental bed (64.3%);

(2) congenital anomalies (5.8%); (3) infection

(1.7%); (4) others (4.9%); and (5) unknown causes

(23.3%) [18]. It is important to recognise that the

term ‘cause’ is used when referring to an association

between fetal death and a clinical or pathologic

condition, and that the postulates for causation are

not often met. Another limitation of the current

classifications of the factors associated with fetal

death is that subclinical pathologic processes have

not been studied. For example, intra-amniotic

infection/inflammation is rigorously excluded only

in a minority of cases [19–22]. Inadequate fetal

growth is often considered a cause of fetal death

[9,23–25], but many cases of intrauterine growth

restriction result in a live birth. Thus, the causal

link remains open to question. We propose that

progress in understanding the causes of fetal death

has been hampered by the cross-sectional nature of

the studies. Indeed, most reports examine conditions

present at the time of fetal death or after (but not

before). Therefore, longitudinal studies are required

to gain insight into pathogensis.

Pregnancy is a unique state in which both

vasculogenesis and extensive angiogenesis are re-

quired for fetal and placental development [26,27].

The balance between angiogenesis and anti-angio-

genesis is important for successful reproduction [28–

30]. Indeed, increased circulating concentrations of

anti-angiogenic factors -soluble vascular endothelial

growth factor receptor (sVEGFR)-1 and soluble

endoglin (sEng)- and decreased concentrations of

an angiogenic factor -placental growth factor (PlGF)-

have been reported in patients with preeclampsia

[31–65], a small for gestational age (SGA) fetus

[38,46,49,57,66–70], placental abruption [71], ‘mir-

ror syndrome’ [72–74], and twin-to-twin transfusion

syndrome [75].

The overlapping clinical features, as well as

placental pathology among fetal death, preeclampsia

and fetal growth restriction [9,23,76–81], suggest

that pregnancies with a fetal death may have an anti-

angiogenic state as reflected by abnormal profiles of

the maternal plasma concentrations of angiogenic

and anti-angiogenic factors. A cross-sectional study

also demonstrated a higher median delta maternal

plasma sVEGFR-1 concentration among patients

presenting with a fetal death than those with a

normal pregnancy [82]. Moreover, spontaneous

resolution of early-onset preeclampsia accompanied

by an improvement of the anti-angiogenic state after

fetal demise in a twin pregnancy has recently been

reported [83].

A longitudinal study reported by our group

demonstrated that patients with an SGA neonate

and those who developed preeclampsia differ in the

maternal plasma concentration of specific angiogenic

and anti-angiogenic factors [84]. This observation

suggests that each obstetrical syndrome may have a

unique angiogenic and anti-angiogenic profile, and

that these differences may reflect the underlying

mechanisms of disease, as well as the timing and

magnitude of the insult responsible for the clinical

phenotype. To test this hypothesis, we conducted a

longitudinal study to determine whether patients

who subsequently had a fetal death have a different

profile in maternal plasma concentrations of

sVEGFR-1, sEng, and PlGF as a function of

gestational age than those with normal pregnancy

outcome.

Material and methods

This retrospective, longitudinal nested case–control

study included 143 women with singleton pregnan-

cies in the following groups: (1) uncomplicated

pregnancies who delivered an appropriate for gesta-

tional age neonate (controls; n¼ 124); and (2)

patients who had a fetal death (n¼ 19).

Plasma samples were obtained at each prenatal

visit, scheduled at 4-week intervals from the first or

early second trimester until delivery. In cases in

which more than one sample from the same patient

in a specific gestational age group was available, the

earliest sample was chosen. Fetal death was defined

as death of the fetus after 20 weeks of gestation

diagnosed by ultrasound examination. Fetuses with

known congenital and/or chromosomal abnormal-

ities, as well as pregnancies complicated by pre-

eclampsia were excluded. SGA was diagnosed as a

birth weight below the 10th percentile for gestational

age [85].

The collection and utilisation of the samples was

approved by both the Human Investigation Com-

mittee of the Sotero del Rio Hospital, Santiago,

Chile (a major affiliate of the Catholic University of

Santiago) and the Institutional Review Board of the

Longitudinal study of angiogenic/anti-angiogenic factors in fetal death 1385



Eunice Kennedy Shriver National Institute of Child

Health and Human Development (NICHD/NIH/

DHHS). Many of these samples were used in

previous studies.

Doppler velocimetry

Pulsed-wave and colour Doppler ultrasound exam-

ination of the uterine and umbilical arteries was

performed in some patients. The pulsatility index (PI)

of the right and left uterine arteries was measured and

the mean PI of the two vessels was calculated. Uterine

artery Doppler velocimetry was defined as abnormal if

the mean PI was above the 95th percentile for

gestational age using the reference range proposed

by Gomez et al. [86]. The Doppler signal of the

umbilical artery was obtained from a free floating loop

of the umbilical cord during the absence of fetal

breathing and body movement. The PI was measured.

Umbilical artery Doppler velocimetry was defined as

abnormal if the PI was above the 95th percentile for

gestational age using the reference range proposed by

Aruduini and Rizzo [87].

Sample collection

Blood samples were collected into tubes containing

EDTA. The samples were centrifuged for 10 min at

48C and stored at7708C. Laboratory personnel

were blinded to the clinical diagnosis.

Human sVEGFR-1, sEng, and PlGF immunoassays

Maternal plasma concentrations of sVEGFR-1, sEng

and PlGF were determined by sensitive and specific

immunoassays (R&D Systems. Minneapolis, MN,

USA). All immunoassays utilised a sandwich enzyme

based technique and had been validated for plasma

determinations of the analytes. The inter- and intra-

assay coefficients of variation (CV) were: sVEGFR-1:

1.4% and 3.9%, sEng: 2.3% and 4.6% respectively;

and PlGF: 6.02% and 4.8%, respectively. The

sensitivity of the assays was: sVEGFR-1: 16.97 pg/

ml, sEng: 0.08 ng/ml and PlGF: 9.52 pg/ml.

Statistical analysis

Cross-sectional analysis of demographic and clinical

characteristic data

The Kolmogrov–Smirnov and the Shapiro–Wilk

tests were used to assess the distribution of the data.

Since the data were not normally distributed, we

used the Kruskal–Wallis test for comparisons among

groups, and the Mann–Whitney U test for compar-

isons between groups for continuous variables.

Chi-square or Fisher’s exact tests were used for

comparisons of categorical variables.

Longitudinal analysis of plasma sVEGFR-1, sEng

and PlGF concentrations

Changes in the plasma concentrations of angiogenic-

related factors over time and between groups were

determined using a linear mixed-effects model [fixed

effectsþ random effects]. The fixed effects were the

diagnosis (a factor with two levels: normal pregnancy

and fetal death), the linear and quadratic effects of

gestational age on the concentration of the analytes,

and several covariates including maternal age, body

mass index (BMI), smoking, nulliparity and duration

of sample storage. The interaction terms of the linear

and quadratic effects of gestational age with the

diagnosis were included in the model. This allowed

testing the difference in analyte concentrations

between the fetal death and control groups at specific

gestational ages. The random effect used in the

mixed-effects model was the intercept of each

individual patient (i.e. the baseline concentration at

7 weeks of gestation). The model was fitted to the

natural log (loge) transformed plasma concentration

after replacement of zero concentration (below the

detection limit) with 99% of the smallest non-zero

concentration observed in the entire dataset for a

given analyte (there were 16 zero values for PIGF in

the control group and they were replaced with

6.33 pg/ml, and there was 1 zero value in the control

group for sVEGFR-1 which was replaced with

384.6 pg/ml).

A natural logarithmic transformation was em-

ployed to stabilise the variance across the entire

gestational age range. Statistical significance of the

fixed effects model was assessed using t-tests, and a

p< 0.05 was considered significant. The R statistical

environment (www.r-project.org) and the specialised

nlme package [Jose Pinheiro, Douglas Bates, Saikat

DebRoy, Deepayan Sarkar and the R Core team

(2008). nlme: Linear and Non-linear Mixed Effects

Models. R package version 3.1–90] were used for all

longitudinal analyses.

Results

The demographic and clinical characteristics of the

study population

The demographic and clinical characteristics of the

study groups are displayed in Table I. There was no

significant difference in the frequency of nulliparity,

smoking, the median maternal age and the median

gestational age at enrollment between patients

destined to have a fetal death and those who had a

normal pregnancy.

1386 R. Romero et al.



The median gestational age at delivery and the

median birthweight were lower in patients with a

fetal death than that of those in the control group

(p< 0.001; Table I). Two patients (10.5%) with a

fetal demise had clinical placental abruption, and six

patients (33%) delivered neonates whose birth-

weights were<10th percentile for gestational age.

The median gestational age at diagnosis of fetal death

was 35.9 weeks (range 20–40). Fetal death was

diagnosed before 24 weeks in three patients (15.7%)

and at term gestation (37 weeks or more) in eight

patients (42%).

This study included a total of 973 samples

with 867 samples from the control group and 106

samples from patients with a fetal death. All patients

except one in the control group had seven

blood samples, while patients in the fetal death

group had a median of six blood samples, with a

range of 2–10.

Plasma concentrations of sVEGFR-1, sEng and PlGF

Plasma concentrations of sVEGFR-1, sEng, and

PlGF in normal pregnant women and those of

patients with fetal death for each gestational age

interval are displayed in Table II. The plasma

concentration of PlGF in the first trimester (6–13

weeks) was above the detection limit of the assay

in 83% (72/87) of the control group, and all

samples (n¼ 12) obtained in the first trimester (6–

13 weeks) from women destined to have a fetal death

had PlGF concentrations above the sensitivity of the

assay.

The changes in plasma concentrations of

sVEGFR-1, sEng and PlGF in patients destined to

have a fetal death and those who had a normal

pregnancy across all gestational ages are displayed in

Figures 1, 2 and 3, respectively. The curves in the

figures represent a quadratic fit of the analyte

concentration based on the gestational age (without

adjusting for covariates). By examining these curves,

an overview of the relationship between plasma

concentrations of sVEGFR-1, sEng, PlGF and

gestational age in patients who subsequently had a

fetal death and those with a normal pregnancy

outcome can be surmised. The mean maternal

plasma concentration of sVEGFR-1 in the fetal

death group was lower during the first trimester,

and became higher than that of the control group

during the second and third trimesters (Figure 1).

Similar changes were observed for sEng (Figure 2).

In contrast, the mean maternal plasma PlGF con-

centration in patients destined to have a fetal

death was higher in the first trimester, but lower

than that of the control group until term (Figure 3).

Individual profiles of the maternal plasma concen-

trations of sVEGFR-1, sEng and PlGF in women

destined to have a normal pregnancy (controls) and

those destined to have a fetal death are displayed in

Figure 4.

Longitudinal analysis of plasma sVEGFR-1, sEng

and PlGF concentrations

A linear mixed-effects model was used to assess the

relationship between fetal death and angiogenic/anti-

angiogenic factor plasma concentrations while ad-

justing for gestational age at venipuncture, maternal

age (years), BMI (Kg/m2), smoking, nulliparity and

duration of sample storage (years). Overall, the

average profiles of analyte concentrations as a

function of gestational age for sVEGFR-1, sEng

and PlGF were different between the two groups as

determined by the p-values (p< 0.05) for the ‘Fetal

death6GA’ and ‘Fetal death6GA2’ coefficients in

Table III (see also Figure 1–3). The inclusion of the

interaction terms ‘Fetal death6GA’ and ‘Fetal

death6GA2’ in the mixed effects model allowed

evaluation of the significance and magnitude of the

differences in plasma angiogenic/anti-angiogenic

factor concentrations between groups at the origin

of the GA scale (i.e. GA¼ 0). Since a gestational age

of 0 does not have a meaningful interpretation, the

origin was shifted to 7 weeks. Table III demonstrates

Table I. Demographic and clinical characteristics of the study groups.

Normal pregnancy (n¼ 124) Fetal death (n¼ 19) p

Maternal age (years) 24 (16–47) 24 (16–44) 0.4

Body mass index (BMI) (kg/m2) 23.5 (16–37) 23.7 (19–44) 0.4

Smoking 14 (11.3%) 1 (5.3%) 0.7

Nulliparity 58 (46.8%) 11 (57.9%) 0.4

GA at enrollment (weeks) 12.2 (7.9–14.9) 11.1 (6.3–19.4) 0.3

GA at delivery (weeks) 40.0 (37.3–41.9) 36.0 (20.6–40.3) <0.001

Birthweight (g)* 3390 (2580–4090) 2280 (420–3650) <0.001

Birthweight<10th percentile 0 6 (33.3%) <0.001

Delivery<37 weeks 0 11 (57.9%) <0.001

Data expressed as median (range) and number (percentage). GA, gestational age. *: n of fetal death group¼18.

Longitudinal study of angiogenic/anti-angiogenic factors in fetal death 1387



that the difference in concentrations of each analyte

at 7 weeks was significant (sVEGFR-1: p¼ 0.0002;

sEng: p¼ 0.0464 and PlGF: p< 0.0001; see supple-

mentary Table I).

By preserving the same model structure, the

differences in plasma angiogenic/anti-angiogenic

factor concentrations between the two groups

while adjusting for all covariates were evaluated from

7 to 40 weeks of gestation (Table IV and supple-

mentary Table I). The magnitude of differences

in plasma concentrations of sVEGFR-1, sEng and

PlGF between the two groups was a function of

gestational age. The maternal plasma sVEGFR-1

concentrations were significantly lower (26–48%)

among patients destined to have a fetal death than

those of the control group from 7 to 11 weeks of

gestation (each p< 0.05; Table IV). Subsequently,

maternal plasma sVEGFR-1 concentrations in the

cases increased until term, while those of normal

pregnancy trended down in the second trimester

and rose again in the third trimester (see Figure 1).

Maternal plasma sVEGFR-1 concentrations in

women destined to have a fetal death were

significantly higher (26–51%) than in those with a

normal pregnancy from 20 to 37 weeks of gestation

(p< 0.05; Table IV).

Table II. Median (interquartile range) plasma concentrations of sVEGFR-1, sEng, and PlGF in each gestational age interval.

Controls Fetal death

1st interval (6–10 weeks) GA 9.3 (8.9–9.4) 8.8 (8.5–9.5)

sVEGFR-1 (pg/ml) 1363 (1006–1746) 1258 (886–2999)

sEng (ng/ml) 7.1 (6.3–7.6) 7.3 (6.6–7.9)

PlGF (pg/ml) 9.8 (6.3–24.4) 18.2 (13.3–21.3)

n 16 8

2nd interval (10.1–14 weeks) GA 12.3 (11.3–13.0) 12.3 (11.2–13.6)

sVEGFR-1 (pg/ml) 1732 (1287–2238) 1810 (1549–2333)

sEng (ng/ml) 7.3 (6.3–8.6) 7.5 (6.6–9.1)

PlGF (pg/ml) 34.3 (24.5–48.9) 38.0 (26.1–45.1)

n 98 10

3rd interval (14.1–18 weeks) GA 16.7 (16.0–17.5) 15.4 (15.0–17.0)

sVEGFR-1 (pg/ml) 1628 (991–2378) 1931 (1514–2772)

sEng (ng/ml) 7.0 (6.0–7.7) 6.4 (6.0–7.8)

PlGF (pg/ml) 99.1 (79.1–121.7) 88.9 (45.8–108.9)

n 99 17

4th interval (18.1–22 weeks) GA 20.7 (19.3–21.4) 20.4 (19.3–21.1)

sVEGFR-1 (pg/ml) 1606 (1192–2357) 1658 (1362–2986)

sEng (ng/ml) 6.0 (5.2–7.0) 7.1 (6.0–8.4)

PlGF (pg/ml) 229.2 (154.5–323.4) 142.6 (99.0–235.8)

n 95 17

5th interval (22.1–26 weeks) GA 24.0 (22.7–25.4) 24.3 (23.9–25.1)

sVEGFR-1 (pg/ml) 1697 (1124–2695) 1802 (1184–2460)

sEng (ng/ml) 6.1 (5.1–7.4) 6.8 (5.8–8.9)

PlGF (pg/ml) 399.9 (275.3–565.0) 318.1 (175.6–442.6)

n 108 12

6th interval (26.1–30 weeks) GA 27.6 (26.8–29.6) 28.4 (27.2–29.0)

sVEGFR-1 (pg/ml) 1672 (1236–2390) 3320 (2592–4873)

sEng (ng/ml) 7.2 (6.1–8.8) 10.0 (7.1–11.4)

PlGF (pg/ml) 565.2 (362.4–853.1) 238.2 (113.6–525.6)

n 108 10

7th interval (30.1–34 weeks) GA 31.1 (30.6–31.7) 32.7 (32.0–33.0)

sVEGFR-1 (pg/ml) 2069 (1473–2712) 6435 (4830–7998)

sEng (ng/ml) 8.6 (6.9–11.9) 16.2 (11.0–20.3)

PlGF (pg/ml) 535.1 (368.3–891.4) 203.7 (60.7–394.8)

n 78 11

8th interval (34.1–38 weeks) GA 35.6 (34.9–36.1) 35.3 (34.4–36.4)

sVEGFR-1 (pg/ml) 3686 (2621–4977) 5580 (3803–7535)

sEng (ng/ml) 11.9 (9.1–17.1) 14.8 (12.8–24.6)

PlGF (pg/ml) 312.9 (185.8–654.5) 443.1 (109.1–1001.5)

n 108 7

9th interval (38.1–42 weeks) GA 39.9 (39.4–40.7) 39.4 (39.3–39.4)

sVEGFR-1 (pg/ml) 7571 (5855–10965) 9166 (2958–12936)

sEng (ng/ml) 13.1 (9.8–19.3) 18.1 (15.0–23.4)

PlGF (pg/ml) 128.2 (86.8–194.7) 184.1 (15.6–438.8)

n 112 5

1388 R. Romero et al.



Similarly, plasma sEng concentrations of women

destined to have a fetal death were lower (21%)

at 7 weeks of gestation (p¼ 0.04) and became signi-

ficantly higher (18–62%) between 20 and 40 weeks

of gestation than those of women destined to have a

normal pregnancy (p< 0.05; Table IV). In contrast

to the anti-angiogenic analytes, the maternal plasma

PlGF concentrations were higher (46–262%) among

patients destined to have a fetal death than in women

who had a normal pregnancy outcome between 7

and 14 weeks of gestation (p< 0.05; Table IV). After

the first trimester, plasma concentrations of PlGF in

patients with fetal death increased at a slower rate

than those with a normal pregnancy until the early

third trimester (see Figure 3). Between 22 and 39

weeks of gestation, the maternal plasma PlGF con-

centrations became significantly lower (26–46%)

among patients destined to have a fetal death than

in those in the control group (p< 0.05; Table IV).

Note that the assessment of the magnitude and

significance of the between group differences shown

in Table IV and supplementary Table I included an

adjustment for all covariates explored in this study.

Collectively, patients destined to have a fetal death

compared to those who had a normal pregnancy

were characterised by higher plasma concentration

of PlGF in the first trimester, and lower plasma

concentrations of sVEGFR-1 and sEng. This pro-

file changed to favour higher concentrations of

Figure 1. Maternal plasma concentrations (actual data on a loge

scale) of soluble vascular endothelial growth factor receptor-1

(sVEGFR-1) in women with a normal pregnancy (�) and patients

destined to have a fetal death (.). Each curve represents a

quadratic model fit of the concentrations as a function of

gestational age in normal pregnant women (dashed line) and

those with a fetal death (solid line) without adjusting for covariates.

The short vertical lines on the solid curve denote statistical

significance between the two groups at the corresponding

gestational age according to a linear mixed-effects model

adjusting for covariates.

Figure 2. Maternal plasma concentrations (actual data on a loge

scale) of soluble endoglin (sEng) in women with a normal

pregnancy (�) and patients destined to have a fetal death (.).

Each curve represents a quadratic model fit of the concentrations

as a function of gestational age in normal pregnant women (dashed

line) and those with a fetal death (solid line) without adjusting for

covariates. The short vertical lines on the solid curve denote

statistical significance between the two groups at the

corresponding gestational age according to a linear mixed-effects

model adjusting for covariates.

Figure 3. Maternal plasma concentrations (actual data on a loge

scale) of placental growth factor (PlGF) in women with a normal

pregnancy (�) and patients destined to have a fetal death (.). Each

curve represents a quadratic model fit of the concentrations as a

function of gestational age in normal pregnant women (dashed

line) and those with a fetal death (solid line) without adjusting for

covariates. The short vertical lines on the solid curve denote

statistical significance between the two groups at the

corresponding gestational age according to a linear mixed-effects

model adjusting for covariates.
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sVEGFR-1 and sEng, but lower PlGF in the second

and third trimesters.

Longitudinal analysis of the ratio between angiogenic

factor (PlGF) and anti-angiogenic factor (sVEGFR-1

and/or sEng) concentrations

A similar longitudinal analysis was conducted on the

ratios of analytes [PlGF/sVEGFR-1, PlGF/sEng, and

PlGF/(sVEGFR-16 sEng)] instead of individual

concentrations (see Table V and supplementary

Table II). The ratio of PlGF/sVEGFR-16 sEng was

significantly higher in women destined to have a fetal

death between 7 and 13 weeks of gestation (94–781%)

and significantly lower (44–75%) between 20 and 40

weeks of gestation than those in normal pregnant

women (each p< 0.05; Table V and Figure 5). The

ratio of PlGF/(sVEGFR-16 sEng), PlGF/sEng or

PlGF/sVEGFR-1 differed significantly (p< 0.05) be-

tween patients with fetal death and those with

normal pregnancy in 28 out of 34 (82%) gestational

weeks evaluated (Table V and supplementary

Table II). However, among the three ratios evaluated,

the ratio PlGF/(sVEGFR-16 sEng) provided the best

discrimination between women destined to have a fetal

death and those destined to have a normal pregnancy

outcome (as determined by the number of weeks from

7 to 40 when the differences were statistically

significant and also based on the magnitude of the

differences expressed in percentages, Table V and

supplementary Table II). When the patients with

placental abruption and those who had an SGA fetus

were excluded, the ratios of PlGF/(sVEGFR-

16 sEng) were significantly higher in women destined

to have a fetal death between 7 and 12 weeks of

gestation (103–585%) and significantly lower (47–

61%) between 21 and 34 weeks of gestation than those

in normal pregnant women (each p< 0.05).

Longitudinal analysis of the ratio of PlGF/(sVEGFR-

16 sEng) in fetal death in preterm and term gestations

We subdivided patients with fetal death into those

who were diagnosed before or after 37 weeks and

compared the results with those of normal pregnancy

(Table VI and supplementary Table III). The ratio of

PlGF/(sVEGFR-16 sEng) in patients with preterm

fetal death was significantly higher between 7 and 11

Figure 4. Individual profiles of maternal plasma concentrations (actual data on a loge scale) of sVEGFR-1, sEng and PlGF as a function of

gestational age in women destined to have a normal pregnancy (controls) and those destined to have a fetal death.
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weeks of gestation (111–328%) and significantly

lower (49–94%) between 20 and 37 weeks of

gestation than those in normal pregnant women

(each p< 0.05; Table VI and Figure 6). In patients

with term fetal death, the ratio of PlGF/(sVEGFR-

16 sEng) was significantly higher between 7 and 14

weeks of gestation (119–1146%) and significantly

lower (48–54%) between 25 and 34 weeks of

gestation than those in normal pregnant women

(each p< 0.05; Table VI and Figure 7). The ratio of

PlGF/(sVEGFR-16 sEng) in patients with fetal

death in preterm and term gestation was significantly

different from that of normal pregnant women in

74% (23/31) and in 53% (18/34) of the number of

weeks evaluated (supplementary Table III).

Umbilical and uterine artery Doppler velocimetry

in patients with a fetal death

Seventeen patients (89%) in the fetal death group had

results of Doppler interrogation on umbilical and

uterine arteries. The median gestational age at Doppler

examination was 24 weeks (range 15.7–32.4) and the

median duration from the examination to the diagnosis

of fetal death was 57 days (range 15–151 days). The

median umbilical artery PI was 1.5 (range 0.9–2.2).

There were two patients who had Doppler examination

at<20 weeks and there was no standard curve for

umbilical artery PI published to interpret the results.

One-fifth (3/15) of patients destined to develop fetal

death had an abnormal umbilical artery PI. Similarly,

the median mean uterine artery (average from the left

and the right) PI was 0.9 (range 0.54–2.01). Four

patients (23.5%) had an abnormal mean uterine artery

PI. Three of them also had an abnormal umbilical

artery PI.

Histological examination of the placenta

Ten (53%) placentas of patients with a fetal death were

available for histological examination. Forty percent

(4/10) had lesions consistent with maternal under

perfusion (villous infarction, increased syncytial knots,

intervillous fibrin, mural hypertrophy of the decidual

arterioles and acute atherosis of the basal plate

arterioles) according to the criteria proposed by Red-

line et al. [88]. Other lesions were chronic villitis

(n¼ 3), avascular villi (n¼ 1), and villous stromal-

vascular karyorrhexis (n¼ 1).

Comments

Principal findings of the study

(1) This is the first longitudinal study, that we are

aware of, reporting a change in biological markers

before fetal death. The analytes measured included
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angiogenic and anti-angiogenic factors implicated in

the genesis of pregnancy complications; (2) Patients

destined to have a fetal death had a higher maternal

plasma concentrations of PlGF and lower plasma

concentrations of sVEGFR-1 and sEng in the first

trimester than women destined to have a normal

pregnancy; (3) In contrast, during the second and

third trimesters, patients destined to have a fetal death

had higher plasma concentrations of sVEGFR-1 and

sEng, but lower plasma PlGF concentrations than

women destined to have a normal pregnancy; and (4)

The ratio of PlGF/(sVEGFR-16 sEng) in patients

destined to have a fetal death is higher in the first

trimester, and lower in the second and third trimesters

than that in normal pregnant women. The association

between fetal death and the profile of the ratio of

PlGF/(sEng6 sVEGFR-1) is present in both preterm

and term fetal deaths.

Fetal death has a unique anti-angiogenic profile

We have previously proposed that fetal death is

one of the ‘great obstetrical syndromes’ [1]. The

observations herein demonstrate that mothers des-

tined to have a fetal death have a different angiogenic

and anti-angiogenic profile than the profiles pre-

viously described in other obstetrical syndromes in

the context of longitudinal studies (e.g. preeclampsia

and SGA) [84]. The most obvious difference among

fetal death, preeclampsia and SGA is that a subset of

patients destined to have a fetal death had higher

concentrations of PlGF in the first trimester of

pregnancy and lower concentrations of sVEGFR-1

compared to those who had a normal pregnancy.

The opposite is the case for preeclampsia, in which

Table IV. The statistical differences (p) and percentage changes [(fetal death7 control)/control6 100] in the maternal plasma

concentrations of angiogenic and anti-angiogenic factors between patients with a fetal death and normal pregnant women according to

gestational age.

sVEGFR-1 sEng PlGF

GA (weeks) p % change GA (weeks) p % change GA (weeks) p % change

7–11 <0.05 7 (26–48) 7 0.04 721 7–14 <0.05 þ (46–262)

12–19 40.05 – 8–19 40.05 – 15–21 40.05 –

20–37 <0.05 þ (26–51) 20–40 <0.05 þ (18–62) 22–39 <0.05 7 (26–46)

38–40 40.05 – 40 0.06 –

The full version of this table is displayed in Supplementary Table I.

Table V. The statistical differences (p) and percentage changes [(fetal death7 control)/control6100] in the ratio of maternal plasma

concentrations of angiogenic and anti-angiogenic factors between patients with a fetal death and normal pregnant women according to

gestational age.

PlGF/(sVEGFR-16 sEng) PlGF/sEng PlGF/sVEGFR-1

GA (weeks) p % change GA (weeks) p % change GA (weeks) p % change

7–13 <0.05 þ (94–781) 7–14 <0.05 þ (47–362) 7–14 <0.05 þ (56–593)

14–19 40.05 – 15–20 40.05 – 15–19 40.05 –

20–40 <0.05 7 (44–75) 21–40 <0.05 7 (35–64) 20–39 <0.05 7 (34–64)

40 0.06 –

The full version of this table is displayed in Supplementary Table II.

Figure 5. The ratio (loge scale) of maternal plasma concentrations

of PlGF/(sEng6 sVEGFR-1) in women with a normal pregnancy

(�) and patients destined to have a fetal death (.). Each curve

represents a quadratic model fit of the concentrations as a function

of gestational age in normal pregnant women (dashed line) and

those with a fetal death (solid line) without adjusting for covariates.

The short vertical lines on the solid curve denote statistical

significance between the two groups at the corresponding

gestational age according to a linear mixed-effects model

adjusting for covariates.
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PlGF concentrations are lower in the first trimester

while there is no difference in the maternal plasma

concentration of sVEGFR-1 [37,84,89]. In SGA, the

maternal plasma concentrations of sEng are higher in

the first trimester, while PlGF concentrations are

lower than in normal pregnancy [84]. Of interest is

that in a subset of patients destined to develop

preterm labour with intact membranes, changes in

PlGF, sVEGFR-1 and sEng in maternal plasma were

not detected in the first trimester in a longitudinal

study reported by our group [90]. Collectively, these

observations suggest that the behaviour of maternal

concentrations of angiogenic and anti-angiogenic

factors among different complications of pregnancy

differ according to the specific phenotype. Thus, it is

not simply a matter of whether there is an angiogenic

or anti-angiogenic profile, but also when such a

profile exists and what specific growth factors are

involved.

Changes in maternal plasma sVEGFR-1

Patients destined to have a fetal death, compared to

those destined to have a normal pregnancy, had

lower maternal plasma sVEGFR-1 concentrations in

the first trimester (between 7 and 11 weeks), which

then became higher between 20 and 37 weeks of

gestation. This observation is consistent with a

previous cross-sectional study which demonstrated

that high maternal serum concentrations of

sVEGFR-1 between 10 and 14 weeks were asso-

ciated with a reduced risk of stillbirth [57]. Previous

Figure 7. The ratio (loge scale) of maternal plasma concentrations

of PlGF/(sEng6 sVEGFR-1) in women with a normal pregnancy

(�) and patients destined to have a fetal death after 37 weeks of

gestation (.). Each curve represents a quadratic model fit of the

concentrations as a function of gestational age in normal pregnant

women (dashed line) and those with a fetal death (solid line)

without adjusting for covariates. The short vertical lines on the

solid curve denote statistical significance between the two groups

at the corresponding gestational age according to a linear mixed-

effects model adjusting for covariates.

Figure 6. The ratio (loge scale) of maternal plasma concentrations

of PlGF/(sEng6 sVEGFR-1) in women with a normal pregnancy

(�) and patients destined to have a fetal death before 37 weeks of

gestation (.). Each curve represents a quadratic model fit of the

concentrations as a function of gestational age in normal pregnant

women (dashed line) and those with a fetal death (solid line)

without adjusting for covariates. The short vertical lines on the

solid curve denote statistical significance between the two groups

at the corresponding gestational age according to a linear mixed-

effects model adjusting for covariates.

Table VI. The statistical differences (p) and percentage changes [(fetal death7 control)/control6100] in the ratio of maternal plasma

concentrations of angiogenic and anti-angiogenic factors [PlGF/ (sVEGFR-16 sEng)] between patients with a fetal death and normal

pregnant women stratified by gestational age at which fetal death was diagnosed.

Fetal death at< 37 weeks Fetal death at437 weeks

GA (weeks) p % change GA (weeks) p % change

7–11 <0.05 þ (111–328) 7–14 <0.05 þ (119–1146)

12–19 40.05 – 15–24 40.05 –

20–37 <0.05 7 (49–94) 25–34 <0.05 7 (48–54)

35–40 40.05

The full version of this table is displayed in Supplementary Table III.
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studies indicate that patients destined to develop

early-onset preeclampsia and late-onset preeclampsia

have a significantly higher plasma sVEGFR-1 con-

centration than those destined to have a normal

pregnancy only after 26 (range 24–28) and 30 (range

28–32) weeks of gestation, respectively [37,41,84].

Moreover, the magnitude of the changes is much

higher in patients destined to develop preeclampsia

than those destined to have a fetal death.

The changes in sVEGFR-1 concentrations in

patients who delivered an SGA neonate were less

dramatic than those observed in patients who devel-

oped preeclampsia [84]. Indeed, significantly higher

maternal plasma concentrations of sVEGFR-1 were

reported among patients with an SGA neonate at the

time of diagnosis, in particular, among those with

Doppler abnormalities in the uterine and umbilical

arteries [70]. However, in a previous longitudinal

study reported by our group, there was no significant

difference in the changes of maternal plasma

sVEGFR-1 concentrations between patients who were

destined to deliver an SGA neonate and those with a

normal pregnancy [84]. This suggests that sVEGFR-1

may be more important in determining the phenotype

of preeclampsia and fetal death than that of SGA

without Doppler abnormalities.

Changes in maternal plasma sEng

The pattern of maternal plasma sEng concentrations

among patients destined to have a fetal death

throughout pregnancy is unique. During the first

trimester, the maternal plasma concentration of sEng

is lower than that of women destined to have a

normal pregnancy only at 7 weeks of gestation, and

the change over time (advancing gestational age) is

subtle in comparison to the magnitude of the change

of sVEGFR-1. After the first trimester, the sEng

concentrations increased in women destined to have

a fetal death in comparison to those who went on to

have a normal pregnancy; these became statistically

significant between 20 and 40 weeks of gestation.

Our group reported that sEng was elevated from

the 10th week of gestation among patients who were

destined to deliver an SGA neonate [84]. In contrast,

patients who developed preterm preeclampsia had a

significant elevation of the maternal plasma concen-

trations of this analyte starting at 23 weeks of

gestation, while those who subsequently developed

term preeclampsia had a significant increase in

maternal plasma sEng concentration only after 30

weeks of gestation [84]. Similarly, in the study

conducted by Levine et al. [46], sEng was increased

among patients who developed preterm preeclampsia

or delivered an SGA neonate between 17 and 20

weeks of gestation, and between 25 and 28 weeks

among those destined to develop term preeclampsia.

Changes in maternal plasma PlGF

The changes in the maternal plasma PlGF concen-

trations among patients destined to have a fetal death

demonstrated a different pattern than those pre-

viously reported in patients destined to develop

preeclampsia or deliver an SGA neonate [84]. While

our previous longitudinal study demonstrated that

the plasma PlGF concentrations in patients destined

to develop preeclampsia or deliver an SGA neonate

were significantly lower than those with a normal

pregnancy in the first trimester from 10 to 11 weeks

[84], the plasma PlGF concentration in patients with

a fetal death reported herein was higher than that in

normal pregnant women between 7 and 14 weeks.

Moreover, the gestational age at which maternal

plasma PlGF concentration peaked among patients

destined to have a fetal death was slightly earlier

(approximately 26 weeks) than that of normal

pregnant women (approximately 28–30 weeks), and

that of patients with an SGA neonate or term

preeclampsia (approximately 27 weeks) as reported

in a previous longitudinal study [84]. In contrast,

patients with preterm preeclampsia had an earlier

peak in their maternal plasma PlGF concentrations

(before 25 weeks of gestation) [84] and substantially

lower PIGF concentrations during the third trime-

ster than normal pregnant women [37,84].

Possible mechanisms to explain the changes in angiogenic

and anti-angiogenic factors in fetal death

Recent studies using hysteroscopy [91], hysterect-

omy specimens [91–93], Doppler velocimetry [94–

97] and an advanced oxygen sensing probe [98–100]

suggest that the circulation in the intervillous space is

not established until 10–12 weeks [101]. Before this

time, extravillous trophoblast plugs the tips of the

spiral arteries; therefore, the conceptus is in a state of

hypoxia. Upon dislodgement of the trophoblast plugs

between 10 and 14 weeks, maternal blood enters the

intervillous space and the oxygen tension increases.

These developmental stages are designed to limit

exposure of the trophoblast to oxygen [98,102–104].

The latter can induce the production of reactive

oxygen radicals and oxidative stress and damage the

placenta [105–109]. Untimely and premature open-

ing of the spiral arteries leads to a state of hyperoxia

in the intervillous space, and this can damage the

placenta and lead to a spontaneous abortion [110–

112].

A recent study of pregnancies undergoing volun-

tary termination between 6 and 12 weeks of gestation

demonstrated an inverse relationship between the

partial pressure of oxygen and the concentrations of

sVEGFR-1 in blood from the placental bed, suggest-

ing that the changes in oxygen tension can modulate
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the expression of specific placental proteins includ-

ing anti-angiogenic factors in early pregnancy [113].

Moreover, high oxygen tension (40%) has been

shown to up-regulate PlGF and down-regulate

sVEGFR-1 protein expression in term villous ex-

plants [114,115]. Thus, it is possible that the

observed lower plasma concentrations of sVEGFR-

1 and higher plasma concentrations of PlGF in

patients destined to have a fetal death in the early

first trimester compared to those with a normal

pregnancy result from abnormal high oxygen tension

in the intervillous space.

Although the profile of angiogenic and anti-

angiogenic factors in the second and third trimesters

of patients destined to have a fetal death is somewhat

similar to that of those destined to develop pre-

eclampsia, the magnitude of the changes is much

higher in those with preeclampsia, especially for

early-onset disease. It is noteworthy that in contrast

to patients destined to have a fetal death, those who

subsequently developed preeclampsia have lower

plasma concentrations of PlGF than normal pregnant

women, while there is no difference in sVEGFR-1 or

sEng concentrations in the first trimester. Future

studies should be performed to determine the

biological activity of maternal blood (functional

assay) and confirm that there is an anti-angiogenic

state in patients with a fetal death.

Strengths and limitations of this study

The strengths of this study are its longitudinal nature

and that several analytes have been measured. This

represents the first longitudinal study of angiogenic

and anti-angiogenic factors in women destined to

have a fetal death. Another strength of this study is

the analytical approach. Many longitudinal studies

have been analysed using a cross-sectional approach.

We have previously discussed the limitations of such

an approach [84].

It is now accepted that testing hypotheses about the

association between the maternal plasma concentra-

tion of anti-angiogenic/angiogenic factors or other

analytes and important covariates [such as pregnancy

outcome (normal pregnancy or fetal death), gesta-

tional age, BMI, etc.] requires a different set of

analytical tools. The classical use of generalised linear

models or repeated measure analysis of variance has

limitations. Generalised linear models could over-

estimate the significance of the covariates, while the

use of repeated measure ANOVA has limitations

when there is missing data. These problems are

overcome by using the linear mixed-effects model

analysis. Other statistical approaches may also be

appropriate. It is important to stress that whatever

analytical approach is employed, it must take into

account the correlated nature of the observations and

missing values. A mixed-effects model addresses this

issue by allowing each individual to have its own

‘random effect’ on the baseline analyte concentration.

Therefore, these models have the capability to fit the

observed data much better than generalised linear

models.

We have incorporated all the available data in the

figures to enable the reader to visualise the main

trends in the raw data on a logarithmic scale in each

study group, while the individual profiles are pre-

sented in Figure 4. The curves in the figures

presented in the manuscript represent a quadratic fit

of the analyte concentration based on the gestational

age alone. The purpose of these overall curves is to

provide the reader with a description of the behaviour

of the group’s average concentration for a particular

analyte at a given gestational age.

Limitations of this study are that the change of

plasma angiogenic/anti-angiogenic factor concentra-

tions in fetal demise was based on the assumption that

the early or late fetal demise group had similar profiles

of angiogenic/anti-angiogenic factor concentrations.

We tried to address this potential problem by

comparing plasma angiogenic/anti-angiogenic con-

centrations between cases of fetal death that occurred

before 24 or 28 weeks of gestation and controls and

could not demonstrate a statistically significant

difference between the two groups. However, we

acknowledge that we have a small sample size (n¼ 3

and 4, respectively), and the small number of repeat

measurements for each patient were obtained before

24 or 28 weeks of gestation. It is possible that we do

not have the statistical power to detect a difference.

However, we have demonstrated that patients des-

tined to have a fetal death (preterm and term) had a

different profile of maternal angiogenic/anti-angio-

genic factors from that of women with normal

pregnancies. Since the mechanisms leading to a fetal

death in the second and third trimester may be

different [8,116], one would expect that the gesta-

tional age at which the fetal death was diagnosed might

influence the maternal profile of angiogenic and anti-

angiogenic factors. A larger study that is specifically

designed to address this question is necessary; yet the

low prevalence of fetal death in the general obstetric

population makes this a challenge. It could also be

argued that the observed higher PlGF concentrations

in women destined to have a fetal death than those in

the control group could result from undetectable

concentrations of PlGF in the controls in the first

trimester. We have replaced these values with 99% of

the smallest non-zero concentration observed in the

entire dataset. This was done to reduce the chance of

type I error for this observation. The development of

more sensitive assays for PlGF should address this

problem, and we will be in a position to employ such

assays in the near future.
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Conclusions

(1) Patients destined to have a fetal death have higher

maternal plasma concentrations of PlGF and lower

plasma concentrations of sVEGFR-1 and sEng in the

first trimester than women destined to have a normal

pregnancy; (2) In contrast, during the second and third

trimesters, patients destined to have a fetal death have

higher plasma concentrations of sVEGFR-1 and sEng,

but lower plasma PlGF concentrations than that of

women destined to have a normal pregnancy; (3)

Changes in maternal plasma concentrations of these

angiogenic/anti-angiogenic factors, especially in the

first trimester, are different from those we have

previously reported in patients destined to develop

preeclampsia or SGA. The mechanisms responsible

for the occurrence of a fetal death may be operational

in the first trimester of pregnancy. This has important

implications because it requires a major emphasis on

the organisation of prenatal care so that we can focus

on the study of biological markers of disease and

interventions in early pregnancy.
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