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It is envisaged that guidelines for statistical analysis and presenta-
tion of results will improve the quality and value of research. The 
Nordic Arthroplasty Register Association (NARA) has therefore 
developed guidelines for the statistical analysis of arthroplasty 
register data. The guidelines are divided into two parts, this one 
with an introduction and a discussion of the background to the 
guidelines, and the second one with a more technical statistical 
discussion on how specific problems can be handled (Ranstam et 
al. 2011b, see pages x-y in this issue). This first part contains an 
overview of implant survival analysis and statistical methods used 
to evaluate factors with a potential influence on this outcome.

 

In 1996, the guidelines known as the Consolidated Standards 
of Reporting Trials (CONSORT) Statement (Begg et al. 1996) 
were finalized. A few years earlier, two groups of experts on 
clinical trials had started to develop publication guidelines for 
randomized clinical trials, first independently of each other 
and later together. This was a reaction to the many reports 
from randomized clinical trials that had been published with 
insufficient information on items important for assessment of 
their quality. 

Since then, reporting guidelines have also been devel-
oped for a number of other types of studies. Several journals 
(including Acta Orthopaedica) consider compliance with the 

guidelines to be compulsory and request that manuscripts be 
submitted together with completed guidelines checklists (Van-
denbroucke 2009). 

Methodological guidelines have been developed in parallel 
to reporting guidelines. The introduction of the ICH guideline 
“Statistical Principles for Clinical Trials”, adopted by the reg-
ulatory bodies of the European Union, Japan, and the USA in 
1998, was, for example, the first time that clear and consistent 
regulatory guidance on statistical principles had been made 
available internationally. 

The CONSORT reporting guidelines have clearly improved 
the reporting of clinical trials (Plint et al. 2006), and the “Sta-
tistical Principles for Clinical Trials” have had a “huge positive 
impact” on the quality of clinical trials by promoting a unified 
standard of good statistical practice (Brown et al. 2008). 

Assuming that guidelines play an equally important role 
in improvement of the reliability and the value of regis-
try research, the Nordic Arthroplasty Register Association 
(NARA) study group decided at a meeting in Lund, Sweden, 
in September, 2009, to develop statistical recommendations 
for analysis of arthroplasty data.

Standard methods for analysis of survival data 

The term “survival analysis” is used for statistical methods 
developed for data that define time intervals, with one starting 
point and one endpoint. In analyses of data from arthroplasty 
registers, the time intervals analyzed may represent the sur-
vival of implants, where the starting point is the date of the 
primary operation and the endpoint is the date of revision. 

Usually, not all implants will be revised. Some implants are 
well-functioning, or at least unrevised at the end of the study, 
or they may have been implanted in a person who died or was 
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lost to follow-up for some other reason. The survival times of 
such incomplete observations are called “censored”. Censored 
observations should also be included in the analysis, because 
even if the exact time of revision is not known, the implant is 
at least known to be unrevised before being censored. 

It is usually assumed that censoring occurs at random. This 
may not always be the case, however. How departures from 
random censoring can be handled is discussed under the head-
ing “Competing risk”, in Part II, Section 1. 

Two functions are used to describe survival data: the sur-
vival function and the hazard function. The survival function 
(S(t)) is expressed as the probability that the survival time, for 
example of an implant, is greater than or equal to time t, and 
the hazard function (h(t)) can be expressed as the hazard (risk) 
of revision at some time t given that the implant has survived 
to that time without revision. 

Life table and Kaplan-Meier estimates
The estimated survival function is often presented as a table 
or a graph (survival curve). The survival function can be esti-
mated using two different methods: the life table (actuarial) 
approach (Cutler and Ederer 1958) and the Kaplan-Meier 
(product-limit) approach (Kaplan and Meier 1958). 

Both methods are non-parametric, i.e. no assumption regard-
ing the distribution of survival times is required, and for both 
methods the survival function is calculated as the cumulative 
probability that an implant will survive through a set of time 
intervals. 

The main difference between the methods is that while the 
life table is calculated for a set of predefined time intervals, 
the Kaplan-Meier method defines the time intervals to include 
only one event (revision) and is thus independent of a subjec-
tive choice of time intervals. 

The probability of an implant surviving until time t (S(t)) is 
calculated as the probability of the implant surviving the first 
postoperative day multiplied by the probability of it surviving 
the second postoperative day given that the implant was not 
revised the first day, multiplied by the probability of it surviv-
ing the third postoperative day given that the implant was not 
revised the first or second day, and so on, until time t. 

Assuming k revisions occurring at k different times during  
follow-up (t1, t2, …., tk ≤ t), the survival until time t may thus 
be written as a product of conditional probabilities:

 

where nj = number at risk at revision time tj and dj = number 
of revisions at time tj. 

If there are no censored observations, the Kaplan-Meier 
estimate of the survival function at time t will be equal to the 
proportion of implants unrevised at that time. 

Confidence intervals may also be calculated for values of 
the survival function and these are often based on the Green-

wood formula for calculation of standard errors. The life table 
method has been discussed (Dobbs 1980) and recommended 
in relation to arthroplasty data (Murray et al. 1993). However, 
the Kaplan-Meier method is usually preferred if the exact 
times of revision are known. 

As an example, the Kaplan-Meier estimated survival func-
tions for implants A, B, and C are given in the Figure. The 
survival probability at 20 years was 88% (95% CI: 87–89) for 
implant A, 81% (78–84) for implant B, and 92% (90–94) for 
implant C (Table 1). 

The confidence limits given are based on survival data not 
at 20 years, but at the time of the last revision before this time. 
It is clear that with heavy censoring, as might be the case 
towards the end of the survival curve, the number at risk may 
have decreased considerably after the time of the last revision 
and the estimated confidence intervals might therefore be too 
narrow. 

Alternative methods have been suggested for obtaining con-
fidence intervals based on the number of implants still at risk 
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Kaplan-Meier survival curves for implants A, B, and C with standard 
(solid line) and modified (dotted line) 95% confidence limits for implant 
A at 20-year follow-up. In the modified CI the number of implants still 
at risk at the time of interest is taken into account in the calculation of 
the lower confidence limit.

Table 1. Kaplan-Meier estimated survival probabilities for implants 
A, B, and C with standard 95% confidence interval (CI) and modi-
fied confidence interval (CImod) with the Peto lower confidence limit. 
With the CImod, the number of implants still at risk at the time of 
interest is taken into account in the calculation of the lower confi-
dence limit

 15-year survival 20-year survival
Implant % CI CImod % CI CImod
 
A 91 91–92 90–92 88 87–89 81–89
B 90 88–90 86–91 81 78–84 47–84
C 94 93–95 90–95 92 90–94 60–94
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at the time of interest (Dorey and Korn 1987). The numbers 
given in Table 1 show that confidence limits modified in this 
way are much wider. Non-overlapping 95% confidence inter-
vals imply a difference that is statistically significant at the 
5% level. A small degree of overlap does not preclude the pos-
sibility of statistical significance, however.

Log-rank test
In this example, the difference in survival is relatively small 
(2.3%, 95% CI: 1.2–3.4), and it is based on only one time 
point (15 years)—which may not be representative of the total 
follow-up. It is also a problem that the investigators’ subjec-
tive choice of width of time interval can affect the estimated 
difference in survival between the implants.

The log-rank test (Mantel and Haenszel 1959), on the other 
hand, is based on the total follow-up, and it tests the null 
hypothesis of there being no difference in the survivor func-
tions of 2 (or more) implants. 

In our example, this test gave a p-value of less than 0.001, 
which indicates that the difference in estimated survival was 
not due to chance. 

The log-rank test is known by several other names, and 
there are many variations of the test. In contrast to the log-
rank test, which puts equal weight on all uncensored obser-
vations, the Gehan test weights each uncensored observation 
by the number of implants still at risk (n) at the time of fail-
ure (Gehan 1965). This test will therefore put more weight 
on what happens early after implantation. Tarone and Ware 
(1977) suggested that weights equal to the square root of n 
would give a more efficient test. 

Cox regression
In observational studies, such as registry studies, there may 
be systematic differences between groups of patients with 
different types of implants, and these systematic differences 
may affect the validity of the results by confounding bias. 
For example, if more high-risk patients receive implant A 
than implant B, a crude comparison of the 2 implants may 
show that implant A, despite being just as good as implant B, 
appears to have shorter survival. 

Also, in well-designed randomized controlled trials there 
may be imbalances between study groups due to chance. Sev-
eral strategies, or combinations of strategies, exist that can 
be used to adapt to this situation (Havelin et al. 2004). These 
include selection of a more homogenous material and adjust-
ments by the Cox proportional hazards regression model (Cox 
1972). 

The Cox model is semi-parametric and assumes no particu-
lar distribution for the survival times. It is, however, based on 
the assumption that the hazard of implant A at any given time 
is proportional to the hazard of implant B. This is known as 
the proportional hazards (PH) assumption. 

Survival curves that cross, as for implant A and B in the 
Figure, imply that the PH assumption is violated. The con-

sequences of such departures from the assumption, methods 
to diagnose them, and how such departures can be handled 
are discussed in detail under the heading “The proportional 
hazards assumption” in Part II, Section 2. 

The previously discussed log-rank test is also based on an 
assumption of PH. 

In the Cox model, the hazard function is defined as h (t) = 
h0 (t) e ß*X, where the baseline hazard function h0 (t) (common 
to all implants included) is multiplied by a factor representing 
the revision risk associated with some factor X (e.g. implant 
type). 

The exponential function ensures positive values for the 
hazard function. The corresponding survival function is writ-
ten as 

S (t) = S0 (t)e ß*X

(S0 (t) being the baseline survival function). 
If X is defined as an indicator variable, equal to 0 when 

implant A has been used and 1 when implant B is used, the 
hazard ratio—often interpreted as the relative risk (RR) for 
implant B versus implant A with respect to revision—can be 
written:

In the example, the estimated hazard ratio (or RR) is 1.08 
(95% CI: 0.98–1.19) when implant B is compared to implant 
A, and 0.72 (0.62–0.83) when comparing implant C with A 
(p < 0.001). This suggests that implant B has a hazard rate that 
is 8% higher than that of implant A, while the hazard rate of 
implant C is 72% of that of implant A (Table 2). The 95% con-
fidence intervals describe the uncertainty in these estimates.

In the same way, one could also say that the estimated 
hazard of implant A is 1.4 (i.e. 1/0.72) times higher than that 
of implant C. 

Risk estimates such as these, estimated without any inclu-
sion of covariates in the statistical model, are often called 
crude or unadjusted. Thus, the risk estimates discussed above 
do not include adjustment for systematic imbalance in predic-
tive factors between the implant groups. 

To account for such factors and to increase the validity of 
the result, the Cox model can be expanded to include also 
covariates representing known or suspected confounders: 

 h (t) = h0 (t) e ß1*X1 + ß2*X2 +,...,+ ßp*Xp

For example, if information on patient age, sex, and primary 
diagnosis is included in the model, the hazard ratio for the 
implant type will be estimated conditionally on these factors, 
i.e. the risk estimate will be protected from the effects of imbal-
ance in these factors, adjusted for confounding by association 
with the factors included in the model. Successful adjustment, 

hB (t)
hA(t)

=
ho (t)e 1

ho (t)e 0
= e
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however, requires that all confounding factors be identified 
and measured—and often relies on assumptions of log-linear 
effects. It is conceivable that confounding effects may remain 
after adjustment. This is known as residual confounding.

In the example, the new adjusted estimate comparing 
implant C with implant A was 0.78 (95% CI: 0.69–0.92; p = 
0.002), meaning that the relative difference was somewhat 
reduced by the adjustment (Table 2). 

The difference in crude and adjusted estimates was due to 
the fact that a larger proportion of older patients with better 
prognosis had received implant C than implant A. Table 2 also 
shows that the crude and adjusted relative risk estimates for 
comparison of implant B against implant A were similar. 

The Cox regression model thus is a tool to explore the effect 
of one or more factors on survival and to adjust for confound-
ing factors. Identification of confounders may be a problem 
when covariates are highly correlated.

Furnes et al. (2001) observed that several diagnoses found 
in younger patients gave reduced implant survival compared 
to primary osteoarthritis of the hip, but that the effect of hip 
disease disappeared with adjustment for age and use of unce-
mented implants with inferior survival. Since uncemented 
implants were mostly used for younger patients, it was diffi-
cult to ascertain which of these factors was the most important 
confounder. Here, it was helpful to study the effect of hip dis-
ease in subgroups defined by age and prosthesis use. Another 
important reason for doing subgroup analysis is to investigate 
whether the impact of a risk factor on implant survival differs 
among subgroups (interaction). The precision of these results 
will, however, depend on the number of patients in each stra-
tum. An alternative could be to include the interaction terms in 
a new multiple model.

It should also be noted that the selection of covariates to be 
included in the statistical model for confounding adjustment 
requires careful considerations regarding cause and effect. 
The decision should not be based on p-values from p-value 
screenings of crude effects or on the results of an automatic 
stepwise regression method. 

While Kaplan-Meier survival curves illustrate crude or 
unadjusted differences in implant survival, results from Cox 
regression analyses can be used to construct prosthesis-spe-
cific survival curves with adjustment for relevant factors such 

as age and sex. These are often based on Cox regression analy-
ses with implant brand as stratification factor and the curves 
calculated for mean values of the other factors included in 
the model. The way to do this is debated, however, and other 
methods have been suggested (Ghali et al. 2001, Cole and 
Hernán 2004).

Other methods of survival analysis

Other methods for analysis of survival exist. The best known 
in the context of arthroplasty register data is probably Pois-
son regression, which is often used to combine results from 
different studies in meta-analyses, but other methods are also 
available: parametric survival models, accelerated failure time 
models, and Aalen’s linear regression. These methods will, 
however, not be discussed here.

Other methodological problems

Arthroplasty register data have several characteristics that may 
have special consequences for the precision and validity of the 
results from statistical analyses. One such issue is bilaterality.

Bilateral observations
One basic assumption in the statistical methods that are most 
often used to analyze arthroplasty register data is that observa-
tions are independent. This assumption is not fulfilled when 
bilateral observations are included in the analysis. Two obser-
vations from the same patient can be assumed to be correlated, 
i.e. that within-subject variance differs from between-subject 
variance.

While this may theoretically have consequences for the pre-
cision and validity of the results, no one has shown this to be 
a practical problem for analyses of arthroplasty register data 
(Robertsson and Ranstam 2003, Lie et al. 2004). How the sta-
tistical analysis should deal with this issue is addressed in Part 
II, Section 3. 

Revision rate ranking
Arthroplasty registers often have a prominent role in evalua-

Table 2. Cox regression estimated crude and adjusted relative risk (RR) of revision comparing implant B and 
C with implant A. Breakdown of patient gender and age according to type of implant

 Simple Cox regression Multiple Cox regression a

  
Implant % males % ≥ 70 years RR 95 % CI p-value RR 95 % CI p-value
 
A 29 61 1   1 
B 28 64 1.08 0.98–1.19 0.1 1.05 0.95–1.16 0.3
C 27 78 0.72 0.62–0.83 < 0.001 0.80 0.69–0.93 0.003
 
a Adjustment for age (≤ 59, 60–69, 70–79, ≥ 80), sex, and diagnosis (OA, other).
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tions of quality of healthcare and in comparisons of counties 
and hospitals. The results from statistical analyses using the 
previously described methods—for example, revision rates 
and adjusted relative revision risks—are then used as bench-
marks, as criteria for ranking, and for compilation of league 
tables. 

However, the observed revision rate may seem clear and 
objectively measured but it is, from a statistical standpoint, 
uncertain because of unavoidable sampling errors and mea-
surement (or registration) errors.

While manifestations of sampling uncertainty can be identi-
fied by the variability in results from multiple samples used 
for the same estimation (for example, the replicates of a labo-
ratory experiment), it may be more difficult to recognize sam-
pling uncertainty in a single sample—which is often the case 
for hospital comparisons.

Revision rates from different hospitals are therefore often 
compared directly (Ranstam et al. 2008), without any con-
sideration for the fact that the estimates being compared are 
uncertain. The consequences of this, and suggestions for 
assessment and presentation of the uncertainties for ranking 
of revision risk estimates are discussed in Part II, Section 4. 
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