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Introduction

Electrostatic spinning or electrospinning is a well-known 
established process that is able to fabricate non-woven and 
ultrafine nanoscale fibers with diameters tens of nanome-
ters to microns which can be evaluated by usual non-woven 
fiber fabrication techniques. Electrospinning technology 
was coined in the 1990s by Reneker and co-workers.

The electrospinning technique possesses the unique fea-
tures of simplicity, affordability, wide range of materials selec-
tion, very high surface-to-volume ratio, tunable porosity, and 
flexibility to adopt over a broad range of sizes and shapes.

Nanofibrous materials are being studied and developed 
because they embrace considerable promise for variety of 
applications and achieve some advantages of nanostruc-
tured materials. Nanofibrous materials can be synthesized of 
biocompatible and biodegradable polymers and produced 
by electrospinning processes. Because of the full potential of 
using biomaterials in different applications, field of nanofi-
bers have attracted considerable interest in biotechnology 
and medicine and there has been fast development in this 
area in recent years.

Methods for fabrication of nanofibers

There are many ways to fabricate nanofibers, such as tem-
plate synthesis (Li and Xia 2004, Reneker and Chun 1996, 
Doshi and Reneker 1995, Liang et al. 2007), drawing (Zhong 
et  al. 2011, Lu et  al. 2005), self-assembly (Williamson and 
Coombes 2004, Naik et al. 2003), electrospinning (Badami 
et al. 2006, Bhattarai et al. 2005, Kweon et al. 2003, Yang et al. 
2005, Zhang et al. 2005, Choi et al. 2004) (random, aligned, 
and core-shell nanofibers), and phase separation (Ma and 
Zhang 1999, Widmer et al. 1998). Because template synthesis 
does not able to produce continuous fibers and in drawing 
process only viscoelastic materials can be used which toler-
ate applied tensions, the three most important methods to 
produce nanofibers are self-assembly, electrospinning, and 
phase separation (Ito et al. 2005).

Phase separation
One of best method for production of nanoporous foams 
which preferentially can be used in many areas is Phase 
separation, but because of the long time needed to complete 
the entire process, this method is not the best (Ashammakhi 
et al. 2007).

The polymer solution quenched below the freezing 
point of solvent is freeze-dried to produce a porous struc-
ture (Schugens et al. 1996). Various nanoporous foams are 
easily obtained through this process by modifying ther-
modynamic and kinetic factors. Using phase separation 
process, fabrication of foam scaffolds occur in five basic 
steps: suspension of polymer, phase separation and gela-
tion, extraction of solvent from the gel by means of water, 
freezing, and then freeze-drying under vacuum (Ma and 
Zhang 1999). Influences of nanoporous morphology is 
determined via gelation. The creation of nanoscale fiber 
complex is caused by low gelation temperature, while as 
a consequence of crystals nucleation and their develop-
ment, high gelation temperature produces the creation of 
platelet-like construction and is managed by increasing 
of cooling rate, which can produce uniform nanofibers 
(Venugopal et al. 2008).
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Abstract
Electrospinning uses an electrical charge to draw very fine 
(typically on the micro or nano scale) fibers from a liquid. 
Electrospinning or electrostatic spinning shares characteristics 
of both electrospraying and conventional solution dry spinning 
of fibers.
The method does not need the use of coagulation chemistry or 
high temperatures to produce solid threads from solution. This 
makes the process particularly suited for the production of fibers 
using large and complex molecules. Because the full potential 
of biomaterials being used in various applications, field of 
nanofibers have involved considerable interest in biotechnology 
and medicine and there has been fast development in this area 
in recent years.

Keywords:  biomaterials, electrospinning, nanofibers, nanofibrous 
materials



Self-assembly
In this method, molecules and atoms sort out and assemble 
themselves in the course of fragile and non-covalent forces, 
for example hydrophobic forces, electrostatic interactions 
and hydrogen bonding, and create a stable construction  
(Hartgerink et al. 2001, Zhang 2003). Self-assembly method 
can be used to make different structures, for example 
unilamellar and multilamellar vesicles, bilayer, nanopar-
ticles, membranes, fibers, films, micelles, tubes and capsule 
(Venugopal et al. 2008).

Based on the self-assembly system, an amphiphilic pep-
tide that allows creation of thermally stable protein was 
designed (Berndt et al. 1995).

Obtained fiber with self-assembly method can be much 
thinner than those produced by electrospinning, but com-
plication of procedure with low productivityare the major 
problem associated with self-assembly method (Ma et  al. 
2005).

Electrospinning
Electrospinning possesses unique properties such as sim-
plicity, affordability, high porosity (good pore size distribu-
tion), and yields continuous fibers. In this method variety 
of biomaterials can be used to produce nanofibers and very 
low amounts of initial solutions are needed.

Fibers produced using electrospinning method have the 
diameter in range of 3 nm to several micrometers, whereas 
fibers obtained using other procedures have the diameter in 
range of 500 nm up to a few microns (Zhang et al. 2005).

Because of these extremely appreciable properties, elec-
trospinning is a most popular technique for the production 
of nanofibers. Nanofibers that fell on the stationary collec-
tor harvests randomly arranged nanofiber (125–600 nm) 
matrices, although aligned nanofiber (750–850 nm) mats 

are synthesized by means of rotatory or disk collector with 
high-pitched edge (Venugopal et al. 2008).

Electrospinning machine and synthesis of nanofibers 
using electrospinning process
The standard electrospinning machine consists of spin-
neret (or needle), high-voltage power supply with a wide 
range of voltage, a glass syringe with a small needle, and 
a metal collector (Figure 1). Electrospinning nanofibers 
can be synthesized using an electrical potential to a poly-
meric solution. Needle attached to and driven by a syringe 
pump which is accustomed to manage the flow rate and 
volume of the polymer is ejected. A polymer solution is 
loaded into the syringe that ejects the polymer solution 
at a constant rate (Merritt et  al. 2012). After loading of 
polymer solution, solution is charged and at the tip of the 
syringe an electrically charged polymer droplet is formed. 
Because of the repulsive force between the similar charges 
in electrically conductive liquid and electric field, poly-
mer solution tends to deform the droplet into a conical-
shaped structure known as Taylor cone, Taylor who has 
made essential studies on the jet formation (Taylor 1969). 
Initially increase of electrical potential causes elongation 
of semicircular outward of solution at the tip of the nee-
dle and forms the Taylor cone. After a threshold charge 
density, cone becomes unstable and emits a jet of liquid 
(Huang et al. 2003). In the presence of an electric field, the 
jet travels a path to the ground and as a consequence of 
elongation, solvent evaporation forms a continuous slim 
liquid fiber (Frenot and Chronakis 2003, Reneker et  al. 
2000), and finally charged electro-spun fibers are col-
lected on the Collector. The electrode plate or Collector 
electrode are located on a place made of acrylic acid. The 
electrode is usually flatted and is used for the collection 

Figure 1. The schematic diagram of electrospinning device for the production of nanofibers.
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of both random and aligned fibers (Huang et al. 2003, Baji 
et al. 2010, Park et al. 2007).

In the field of electrospinning and nanofiber production, 
there are two main obsession and key point; choosing polymer 
and collector. The alignment of the fibers (Figure 2) affected 
by the orientation of the collector and sets the morphology  
and the properties of synthesized nanofibers. There are  
different types of collectors such as plate collector (Tan et al. 
2005), rotatory collector (Teo and Ramakrishna 2006), grid-
type collector (Teo et al. 2011), edge-type collector (Chaurey 
et al. 2010), collector with parallel electrode (Kawahara et al. 
2008), collector with blade auxiliary electrode (Jianrui et al. 
2009), water bath collector (Polaskova et al. 2013), continu-
ous collector and other (Figure 3).

There are many biodegradable polymers can be used to 
produce nanofibers such as natural, synthetic, and compos-
ite of the two. Biodegradable polymers were used to develop 
nanofibers with different functions based on the require-
ment. Some can be used to deliver temporary function such 
as agent delivery, cell carrier, and short-time scaffolds (until 
new tissue become mature and independent). In this group, 
polymer will replaced by native tissue. Some polymers have 
been used for long-term purpose such as an implant in 
surgery. At some point in the procedure of electrospinning 
using synthetic polymers, the charge on the polymer solu-
tion makes it promising to govern its trajectory using an 
electric field (Hohman et al. 2001).

The most commonly used and studied synthetic polymers 
are PCL (Luong-Van et al. 2006, Khil et al. 2005, Venugopal 
et al. 2005, Yoshimoto et al. 2003, Zeng et al. 2003, Bölgen 
et al. 2005), PLDLA (Cui et al. 2006, Zong et al. 2002), PLLA 
(Badami et al. 2006, Chew et al. 2005, Yang et al. 2004, Zong 
et  al. 2005), PLGA (Badami et  al. 2006, Chew et  al. 2005, 
Yang et al. 2004, Zong et al. 2005, Li et al. 2002, 2003, Liang 
et al. 2005), and copolymers such as PCL-PEG, PCL-PLLA 

(Nikkola et al. 2005, Xu et al. 2004), PLGA-PEG, PLLA-PEG, 
and etc.

At some point in the procedure of electrospinning of  
synthetic polymers, the charge on the polymer solution 
makes it promising to govern its trajectory using an electric 
field (Jukola et al. 2008).

Studied Polymer with natural essence have been used 
to produce nanofibers, have drawn increasing research 
interests, including elastin(Boland et  al. 2004), collagen 
(Venugopal et al. 2005, Huang et al. 2001, Shields et al. 2004), 
silk protein (Jin et al. 2004, Kim et al. 2003, Min et al. 2004), 
tropoelastin(Li et al. 2005), elastin-mimetic peptide (Huang 
et al. 2000), fibrin(Jukola et al. 2008, Tuzlakoglu et al. 2005), 
fibrinogen(Sindelar et  al. 2006, Wnek et  al. 2003), oxidized 
cellulose (Son et  al. 2004), and hyaluronic acid (Um et  al. 
2004).

Furthermore, bio-corrosion of intense polymers is based 
on the factors such as fluctuations in pH, that is, pH-respon-
sive polymers have also been planned (Piras et al. 2006).

Blends of synthetic polymer and polymer with natural 
essence were also used for merging properties of both.

Studied merging polymer involved gelatin-loaded PCL 
(Ma et al. 2005), collagen-loaded PLLA-PCL (He et al. 2005), 
composites of PEO and silk (Li et  al. 2006), composites of 
PLLA-PCL and collagen (He et al. 2005), composites of PCL 
and starch (Um et al. 2004), composites of hyaluronic acid 
and PCL (Yang et al. 2006),composites of PLGA with PHBV 
(Zhu et al. 2009), and composites of PLGA, elastin and col-
lagen (Stitzel et al. 2000).

The method of electrospinning is influenced by two 
groups of factors, system factors and process factors. System 
factors, for example distribution and polymer molecular 
weight, control the proportion of degradation of nanofi-
bers, while other system factors such as polymer solution 
rate, that is viscosity, outward rigidity, and conductivity, 
govern the nanofiber thickness and decrease the possibil-
ity for globule creation. Process factors, for example orifice 
thickness, flow proportion of polymer, and electric poten-
tial, impact fiber diameter, whereas other process factors, 
for example space between needle and collector, govern 
the range of solvent evaporation within nanofibers and 
fall on the collector, while, gesture of collector governs the 
form of fiber throughout fiber fall (Zong et  al. 2002, Shin 
et al. 2001).

One of the best advantages of polymer with natural 
essence is similarity and is identical to some molecular sub-
stances that exist in the human body.

One disadvantage of polymer with natural essence can 
be their reduced mechanical properties when isolated, thus 
this polymer requires additional processing for handling.

Two main classes of matrix proteins in the extracellular 
matrix (ECM) of human body are composed of proteogly-
cans and fibrous proteins. In the human body fibrous pro-
teins, depending on tissue type have fiber diameter with 
ranging between 50 and 150 nm (Elsdale and Bard 1972, 
Kadler 2004).

Polymers with natural essence that are used as biomateri-
als or scaffolds for tissue engineering are cellulose, gelatin, 
fibrin, fibrinogen, chitosan, chitin, elastin, hyaluronic acid, 

Figure 2. SEM micrographs of 5% PHBV-P (L,DL-LA) (1:1).  
(A) unoriented (B) oriented.
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Electrospinning techniques are used for tissue engi-
neering and mimicking of the size and morphology of 
natural ECM and design of collagen nanofibrous scaf-
folds. By this way, nanofiber of type I and III collagen were 
produced which can mimic properties of natural collagen 
(Matthews et al. 2002).

Electrospinning can be used for production of nanofi-
brous scaffolds which mimic the natural fibrous structure in 

collagen, and silk. Fabrication of this material into scaffolds 
for tissue engineering may possibly convey new possessions 
to biomaterials. Biomaterials produced with this polymer are 
mechanically stronger, physically lighter and more porous, 
optically more tunable optical emission, chemically more 
reactive or less corrosive, electrically more conductive and 
magnetically more paramagnetic (Huang et  al. 2001, West 
and Halas 2000).

Figure 3. Different types of collectors. (A) Plate collector (B) Working-like parallel-electrodes collector (2014) (C) Collector with parallel electrode 
(Collector with parallel electrode 2014) (D) Continuous collector (2014) (E) Water bath collector (2014) (F) Rotatory collector.
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human body and regeneration of blood vessel,(Venugopal 
et al. 2005) bones, (Fujihara et al. 2005) dermis, (Venugopal 
et  al. 2005, Venugopal and Ramakrishna 2005), and nerve 
(Yang et al. 2004).

Composition of polycaprolactone with collagen nano-
fiber were produced as a goal of flexibility, elasticity and 
consequently promising way for the creation of smooth 
muscle tissues for engineering of blood vessel (Venugopal 
et al. 2005).

Wnek et  al. using fibrinogen produced a nanofiber  
scaffolds for wound dressing or hemostatic products  
(Wnek et al. 2003).

Gelatin promotes cell adhesion, migration and form 
a polyelectrolyte complex because contains Arg-Gly-Asp 
(RGD)-like sequence. Blends of gelatin and chitosan improve 
the biological and cellular activity and this composition was 
tested in restoring various tissues including skin, cartilage, 
and bone (Bhattarai et al. 2005, Huang et al. 2005).

Coaxial electrospinning
Fabrication of core-shell nanofibers can be provided using 
coaxial electrospinning (also known as co-electrospinning) 
technique and is an adjustment or extension to the tradi-
tional electrospinning technique. As compared to tradi-
tional electrospinning, coaxial electrospinning (Figure 4A) 
makes use of complex spinneret (needle) which consists 
of a multiple solution feed system with one or more inner 
channels shelled by an outer tube which is required for  
the injection of one material into another at the tip of  
the spinneret and collected into a core-sheath–structured 
composite fiber (Sun et  al. 2003) to generate composite 
nanofibers with core-shell structures (Figure 4B).

Many factors can have effect on the entrapment of  
components in the inner channels such as viscoelasticity 
of the two solutions, interfacial tension and feeding rate 

of the inner and outer fluids (Sun et al. 2003, Chakraborty  
et al. 2009).

There are variety of novel and functional polymeric 
nanofibers from coaxial electrospinning, such as basic bi-
component nanofiber, surface-coated/-modified nanofiber, 
nanocomposite nanofiber, and hollow nanofibers (Zhang 
et al. 2007).

Recently, coaxial electrospinning has achieved greater 
than before popularity in the protein delivery field because 
the fabricated core-shell fibers have great potential in 
maintaining proteins at some point in the electrospinning 
procedure and it provides uniform protein distribution 
throughout the fibers, and proteins have potential to be 
delivered in an organized manner as a result of the shell 
blockade.

Biomedical application

Tissue engineering
One of the main areas of research in biomedical applica-
tion is tissue engineering. Electrospinning is a very efficient 
method for production of nanofiber scaffolds. Many differ-
ent types of scaffolds were produced for tissue engineering 
and organ regeneration, such as skin, cartilage, bone, col-
lagen, dentin and liver (Table I). Nanofibers have been used 
in making these scaffolds using both natural and synthetic 
polymer electrospuns. These scaffolds are used to regener-
ate, replace, and repair the tissue and therefore need to be 
well designed and must have dimensional equality.

As mentioned above, nanofiber scaffolds produced using 
electrospinning, have many good properties which require 
for tissue engineering such as biodegradability, large sur-
face area, ability to maintain structural integrity with tissue,  
high porosity, high-quality mechanical properties, and non-
toxicity to cell (Elsdale and Bard 1972).

Using of nanofibers composite materials, which are 
similar to ECM proteins such as collagen and glycosamino-
glycans, can support and improve cell function and cell–cell 
or cell–ECM attachment. Therefore, nanofiber scaffolds 
produced by these materials would improve the nanofiber 
efficiency.

Studies have shown that thinner fibers with sizes ranging 
between 60 and 200 nm can increase proliferation, osteoblast 
adhesion, alkaline phosphatase activity, and ECM secretion 
on carbon nanofibers (Webster et al. 1999).

Because of unique properties of core-shell nanofibers 
including versatility, potential for encapsulation of biologi-
cal molecules, and nanocomposites as well as potential for 
modifying the surfaces of electrospun fibers, it can be used 
for tissue engineering. Another important factor that can 
improve nanofibers for tissue engineering is modifying the 
electrical and mechanical properties of the nanofibers and 
it is achieved by integration of nanofiber scaffolds with wall 
carbon nanotubes (SWNT).

The purpose and concept of drug delivery methods 
is to deliver a predetermined amount of drug correctly, 
efficiently, tissue or cell specific and for a defined period 
of time. Drug delivery through electrospun nanofiber has 
been mainly functional and useful for tissue engineering. 

Figure 4. Schematic for fabrication of core-shell nanofibers with 
a coaxial spinneret. (A) the coaxial spinneret (B) different type of 
nanofiber which can produced by coaxial electrospinning.
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As propose of in situ viral delivery of genes, it is necessary 
to develop and use of novel and more efficient carriers, for 
the most part polymeric carriers.

As compare to viral vectors, nonviral gene delivery and 
vectors have appropriate properties such as low toxicity  
and potential for using of large DNA with varying sizes (Liao 
and Leong 2011).

Electrospun nanofibers have been used as scaffolds for 
delivery of nucleic acids (e.g., DNA and siRNA) because of 
owning appropriate properties such as high porosity, high 
surface area, interrelated pores beneficial for oxygen/nutrient 

Accordingly, dissolution rate of drug can be increased by 
enlargement surface area of the drug and the correspond-
ing carrier (Table II).

Low solubility and instability make hydrophobic agents dif-
ficult to have continued release of active molecules with appro-
priate concentration within a satisfactory period of time.

Using of electrospun nanofiber scaffolds can be delivered 
both via viral and nonviral nucleic acids.

Degree of success in viral gene delivery can be deter-
mined by the parameters such as gene structure, the type of 
cells and viruses, and type of delivery technique.

Table I. Example of nanofiber application in tissue engineering.

Tissue Nanofiber scaffolds Brief function Cell or tissue Reference(s)

Bone Starch/PCL Enhance cell attachment, 
organization and alkaline 
phosphatase (AP) activity

Human osteoblast cell 
line and rat bone 
marrow stromal cells

Tuzlakoglu et al. (2005)

PCL Enhance ECM formation Neonatal rat bone 
marrow-derived 
MSCs

Yoshimoto et al. (2003)

PCL/hyaluronan Enhance ECM formation, better 
cell attachment

Neonatal rat bone 
marrow-derived 
MSCs

Yang et al. (2006)

Bioactive silk fibroin/bone 
morphogenetic protein-2 (BMP-2),

Higher calcium deposition, 
enhance transcription levels  
of bone-specific markers

Human bone marrow-
derived MSCs

Li et al. (2006)

Bioactive silk fibroin/hydroxyapatite 
(nHAp)

Improve bone formation Human bone marrow-
derived MSCs

Li et al. (2006)

PCL/CaCO3 Good cell attachment and 
proliferation of human 
osteoblasts

Human osteoblasts Fujihara et al. (2005)

Cartilage PLGA Provide mechanical properties 
appropriate for cartilage tissue

Mouse fibroblast cells 
and bone marrow-
derived MSCs

Li et al. (2002)

Collagen type II Adherence, propagation, and 
infiltration of the chondrocytes, 
the creation of pseudopodia

Human articular 
chondrocytes cell line

Shields et al. (2004)

PCL Support chondrocyte proliferation, 
increase expression of cartilage 
specific ECM genes

Fetal bovine 
chondrocytes (FBCs), 
rat bone marrow 
stromal cells (rBMSC)

Li et al. (2003, 2005)

Muscle Poly(e-caprolactone-co-glycolide)-
diol bonded to a diisocyanate, 
polyesterurethane linked with 
poly((R)-3-hydroxybutyric acid)-
diol

Satisfactory mechanical properties 
and the absence of toxic 
residuals

Rat myoblast cell 
line (L6), murine 
myoblast cell line 
(C2C12) and primary 
human satellite cells 
(HSCs)

Riboldi et al. (2005)

Ligament/ 
Tendon

Polyurethane (PU) Increase ECM production Human ligament 
fibroblast (HLF)

Lee et al. (2005)

PLGA/knitted scaffold. Increase of cell proliferation and 
cell function

Porcine bone marrow 
stromal cells

Sahoo et al. (2006)

Blood vessels Collagen-blended P(LLA-CL) Enhance of cell viability, 
attachment, spreading and 
preserve human coronary artery 
endothelial cells (EC) markers

Human coronary artery 
endothelial cells (EC)

He et al. (2005)

Collagen-coated PCL fibers Enhance cell attachment, 
migration, and proliferation, 
high quality morphology of 
a-actin filaments

Human coronary artery 
endothelial cells 
(HCAECs)

He et al. (2005)

Gelatin-grafted PCL nanofibers Improve cell proliferation, 
maintain morphology of 
endothelial cells (EC)

Endothelial cells (ECs) Ma et al. (2005)

Poly(L-lactide-co-e-caprolactone) 
[P(LLA-CL)]

Increase in cell density, migration 
and proliferation

SMCs and ECs Mo et al. (2004)

PLLA-CL Enhance attachment and 
proliferation

Human coronary artery 
SMCs and ECs

Xu et al. (2004)

Poly(ester urethane)urea (PEUU) Higher cellular density in 
perfusion cultures, No significant 
change in static cultures

Rat aortic SMCs Son et al. (2004)

Composition of collagen type I, 
elastin and poly(D,L-lactide-co-
glycolide)

Improve physical properties ECs and SMCs Stitzel et al. (2006)

Drug, Nucleic acid and growth factor delivery.
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biological processes by regulating migration, proliferation, 
and differentiation of cells, transferring signals between  
cells and their ECM and by this means enhance tissue regen-
eration (Chen et  al. 2010). Therefore, the incorporation of 
GFs with ECM-mimicking scaffolds possibly will be advan-
tageous for tissue regeneration and other proposes (Tabata 
2000).

Scientists achieve the controlled release of GFs but the 
instability of GFs hampers the thriving improvement of  
GF-loaded tissue-engineered scaffolds.

Various techniques were applied for GF incorporation 
into nanofibrous scaffolds, such as coaxial electrospin-
ning, (Liao and Leong 2011) specific or nonspecific surface  

transferal and unfastened bonding between fibers favorable 
for cell migration and infiltration (Yang et al. 2011) and cell 
adhesion/proliferation (Zou et al. 2012).

Improper encapsulation and transfection efficiency is one 
of the unsatisfactory results among the diverse techniques 
of blending DNA with an electrospun nanofiber scaffolds. 
In order to overcome this low encapsulation and transfec-
tion efficiency were tested incorporation of DNA-loaded  
particles into core-shell nanofibers, (Saraf et  al. 2010, Liao 
et  al. 2009) nanofibers, (Nie and Wang 2007) and surface 
modification (Kim and Yoo 2010). Another group of mol-
ecules that can be delivered using of nanofiber scaffold 
delivery system are growth factors or GFs which can regulate 

Table II. Example of nanofiber application in delivery.

Tissue/cell Properties Reference(s)

Nucleic acid siRNA/PCL Human embryonic kidney 
293 cells

Repression efficiency of 
61–81%, high cellular uptake 
and successful transfection 
but slow release rate

Cao et al. (2010)

siRNA/TKO(a 
transfection reagent)/
poly(caprolactone-co-ethyl 
ethylene phosphate)

Mouse fibroblast NIH 3T3 
cells

Fast siRNA release rate, 
significant gene silencing

Rujitanaroj et al. (2011)

Matrix metalloproteinase 
(MMP)-assisted siRNA/
nanofibrous matrix

Diabetic ulcers Increase the wound recovery 
rates of diabetic ulcers

Kim and Yoo (2013)

chitosan/siRNA/PLGA H1299 cells High gene silencing activity Chen et al. (2012)
DNA-incorporated 

nanofibrous matrix
Diabetic ulcers Controlled release of DNA in 

response to MMPs
Kim and Yoo (2010)

Plasmid DNA/PLGA or PLA-
PEG composite scaffolds

Preosteoblastic cell line, 
MC3T3-E1

Sustained release over a 20-day 
study period

Luu et al. (2003)

Adenovirus encoding the 
gene for green fluorescent 
protein/PCL

HEK 293 cells Low immune response such 
as reduced the activation of 
macrophage cells by the viral 
vector was

Liao et al. (2009)

plasmid DNA (pDNA)/
poly(ethylenimine)-
hyaluronic acid (PEI-HA)/
PCL/PEG

fibroblast-like cells High transfection rate, induce 
expression of enhanced 
green fluorescent protein 
(EGFP)

Saraf et al. (2010)

PLGA/Hydroxylapatite 
(HAp) composite scaffolds 
incorporated with DNA

human marrow stem cells 
(hMSCs)

Higher cell viablility, higher 
cell attachment and 
desirable transfection 
efficiency of DNA

Nie and Wang (2007)

Growth 
factors

Nerve GF (NGF) surface-
conjugated CS/PVA 
scaffolds

SKNMC (human 
neuroblastoma) and U373 
(human glioblastoma-
astrocytoma) cell lines

Improve adhesion and 
proliferation

Mottaghitalab et al. (2011)

heparin-containing 
polyelectrolyte complex 
nanoparticles (PCNs)/
fibroblast GF (FGF-2)

ovine bone marrow-derived 
mesenchymal stem cells

Exhibited mitogenic activity Zomer Volpato et al. (2012)

angiogenic or 
lymphangiogenic growth 
factors

Skeletal myoblasts isolated 
from the quadriceps of 
mice

Increase vascular or lymphatic 
network infiltration

Liao and Leong (2011)

Table III. Example of nanofiber application in wound dressings.

Nanofiber scaffolds Brief function Reference(s)

Blend of PVA, poly(vinyl acetate) with ciprofloxacin 
hydrochloride

Prolonging drug release Jannesari et al. (2011)

fusidic acid/PLGA Prohibition of bacterial biofilm 
formation

Said et al. (2011)

epidermal GF (EGF)-loaded silk nanofibers Contribution toward the healing 
process, decreasing the time of 
wound closure

Schneider et al. (2009)

Blends of vitamins and anti-inflammatory and 
antioxidant drugs with PVA and cellulose acetate

Im et al. (2010), Ngawhirunpat et al. (2009), 
Suwantong et al. (2007), Taepaiboon et al. (2007)

poly(vinyl alcohol)/poly(acrylic acid)/multi-walled 
carbon nanotube (PVA/PAA/MWCNT)

More than 80% cell viability Yun et al. (2011)
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modifications, (Zomer Volpato et al. 2012) blending, (Zhang 
et al. 2012) emulsion electrospinning (Tian et al. 2012, Yang 
et al. 2011) and these yielded varied levels of success.

Burst release of EGF was obtained from silk nanofi-
bers blended with EGF, due to the hydrophobic nature of  
EGF (Schneider et  al. 2009). Different substances were  
used for conjugation with GFs such as polysaccharides  
(Mottaghitalab et al. 2011) and heparin (Zou et al. 2011).

Wound dressings
Wound dressings give a hand in shielding the wound from 
external microorganisms, absorbing exudates, accelerate 
the wound-healing process, and lastly improving surface 
manifestation (Zhang et al. 2005, Khil et al. 2003).

Up till now, bioactive wound dressing materials, which 
typically necessitated in the initial period of wound healing 
incorporated with antibiotic, have been introduced such as 
foams, sponges, hydrogels, and films (Jannesari et al. 2011).

Electrospun nanofibers have great facility for wound 
dressing (Table III) because of owning special characteris-
tics, for example high surface area, and as a result electro-
spun nanofibers can professionally suck up exudates and 
regulates the wound humidity (Khil et al. 2003). The poros-
ity of nanofibrous can directly impact on wound dress-
ing because high porosity scaffold effectively contributes 
to air permeability and provide required oxygen for cell  
respiration, but small porosity contributes to preserving 
the wound from bacterial infections.

Two main requirements for completely covering  
problematical wounds are improved hemostasis and more 
flexibility in dressing, which are achievable through nano-
fibrous dressings. Furthermore, as an esthetic point of view, 
nanofibers provide the better-quality advantage of scar-free 
regeneration (Tian et al. 2012, Boateng et al. 2008).

Cancer therapy
Administration of anticancer drugs (both orally and intrave-
nously) may have some disadvantages such as low efficacy, 
poor solubility, low instability, side effects on healthy tis-
sues, need for several injection, and high removal rate by the 
reticuloendothelial system (Shao et al. 2011, Xie et al. 2010).

Scientists have been exploring many methods in order to 
improve a minimized unwanted side effects to healthy tis-
sues, maximized efficiency, and extended period of function 
such as restricted and continued postsurgical drug delivery 
(Pradilla et al. 2006).

Blends of anticancer drugs with electrospun nanofiber 
scaffolds can cover up such a disadvantages and it can eas-
ily insert to the solid tumor site (Table IV). This can provide 

high local dosage with incorporation of small amounts of the 
drug but also reduces the need for frequent administrations, 
and therefore provide patient convenience.

Conclusion

Nanofibrous materials can be synthesized of bio-
compatible and biodegradable polymers and pro-
duced using electrospinning processes. Continuous 
production of electrospun nanofibers webs with high 
efficiency and discontinuous production of nanofi-
ber webs from very small amount of liquid (one drop-
let) for very expensive polymers usage. Production of 
composite materials consisting of electrospun layers  
with incorporated powder between nanofibers or inside 
nanofibers. Production of hybrid yarns—classical base 
yarn covered by electrospun nanofibers and is protective.

Nanofibers have applications in medicine, including 
artificial organ components, tissue engineering, implant 
material, drug delivery, wound dressing, and medical textile 
materials.
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