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Review Article
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Introduction

Mesenchymal stem cells (MSCs) are non-hematopoietic, 
multipotent progenitor cells, which exist in the bone  
marrow (BM)(Ben-Ami et al. 2011). They are responsible 
for the homing of hematopoietic stem cells (HSCs) and 
their self-renewal in the BM(Maitra et  al. 2004). These 
cells are capable of differentiating in vitro and in vivo  
into more cells of mesenchymal lineage, as well as adi-
pocytes, chondrocytes, osteocytes, tenocytes, fibroblasts, 
cartilage, bone, cardiomyocytes, skeletal myocytes, 
visceral cells, mesoderm, ectodermal cells (e.g. neu-
rons), endodermal cells (e.g. hepatocytes), and stromal 
cells(Krampera et al. 2006a, Gebler et al. 2012, Wang et al. 
2009).

In addition, MSCs have been found to supply cytokine 
and growth factor support for expansion of hematopoietic 
and embryonic stem cells(Aggarwal and Pittenger 2005). 
These cells, which are also well known as multipotent 
stromal or mesenchymal cells, were discovered by Frieden-
stein and his colleagues in 1970. MSCs are capable of divid-
ing up to 50 times in about 10 weeks, in vitro(Lotfinegad 
2014). The presence of non-hematopoietic stem cells in the 
bone marrow was first revealed by the observation of the 
German pathologist Cohnheim, 130 years ago(Chamberlain 
et al. 2007). This class of the multipotent progenitors were 
spindle-shaped, plastic-adherent, and non-phagocytic, 
with fibroblast-like morphology(Mohammadian and 
Shamsasenjan 2013).
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Abstract
Mesenchymal stem cells (MSCs) are non-hematopoietic, 
multipotent progenitor cells which reside in bone marrow (BM), 
support homing of hematopoietic stem cells (HSCs) and self-
renewal in the BM. These cells have the potential to differentiate 
into tissues of mesenchymal origin, such as fibroblasts, 
adipocytes, cardiomyocytes, and stromal cells. MSCs can express 
surface molecules like CD13, CD29, CD44, CD73, CD90, CD166, 
CXCL12 and toll-like receptors (TLRs). Different factors, such as 
TGF-b, IL-10, IDO, PGE-2, sHLA-G5, HO, and Galectin-3, secreted 
by MSCs, induce interaction in cell to cell immunomodulatory 
effects on innate and adaptive cells of the immune system. 
Furthermore, these cells can stimulate and increase the TH2 
and regulatory T-cells through inhibitory effects on the immune 
system. MSCs originate from the BM and other tissues including 
the brain, adipose tissue, peripheral blood, cornea, thymus, 
spleen, fallopian tube, placenta, Wharton’s jelly and umbilical 
cord blood. Many studies have focused on two significant 
features of MSC therapy: (I) MSCs can modulate T-cell-mediated 
immunological responses, and (II) systemically administered 
MSCs home in to sites of ischemia or injury. In this review, 
we describe the known mechanisms of immunomodulation 
and homing of MSCs. As a result, this review emphasizes the 
functional role of MSCs in modulating immune responses, 
their capability in homing to injured tissue, and their clinical 
therapeutic potential.

Keywords: bone marrow, cells, immunomodulatory, immune 
system, mesenchymal stem cells
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MSCs are well-known for the expression of surface  
markers such as:

CD105 (SH2), CD73 (SH3, SH4), stromal antigen-1, 
CD90, CD44, CD166 (VCAM), CD54, CD102 (ICAM-2), and 
CD49 (VLA) (Volarevic et  al. 2011). Conversely, MSCs are 
distinguished from HSCs in that they lack the cell surface 

markers, CD11b, CD11c, CD14, CD19, CD31, CD34, CD45, 
CD79a, and the HLA-DR, lymphocyte function-associated 
antigen1(LFA1), erythrocytes (glycophorin A), platelet and 
endothelial cell markers. The commonly known pheno-
types and markers are listed in Table I (Volarevic et al. 2011,  
Ghannam et al. 2010a, Shi et al. 2011). (Table I).

Table I. Phenotypes, lineage-specific and functional markers of MSCs (Krampera et al. 2006, Pountos et al. 2007, Bühring et al. 2007, Deans and 
Moseley 2000, Devine et al. 2002, Fickert et al. 2004, Jorgensen et al. 2004, Otto and Rao 2004, Pittenger and Martin 2004, Simmons and Torok-Storb 
1991, Barry et al. 2001, Tse et al. 2003, Le Blanc et al. 2003, Xu et al. 2004, Vogel et al. 2003, Majumdar et al. 2003, Bruder et al. 1998, Gronthos et al. 
1994, Potian et al. 2003).

Positive in MSCs Negative in MSCs

Hematopoietic receptors CD1a (T6)
CD14 (Lipopolysaccharide receptor)
CD34
CD45 (Leukocyte common antigen)
CD133 (AC133)

Adhesion molecules CD44 (Hyaluronate receptor)
CD50 (Intercellular adhesion molecule 3)
CD54 (Intercellular adhesion molecule 1)
CD56 (Neural cell adhesion molecule)
CD58 (Lymphocyte function-associated antigen 3)
CD62L (L-selectin)
CD102 (intercellular adhesion molecule 2)
CD106 (Vascular cell adhesion molecule-1)
CD164 (Sialomucin)
CD166 (Activated leukocyte cell adhesion 

molecule)

CD15 (Lewis Ag)
CD31 (Platelet Endothelial Cell Adhesion Molecule-1)
CD33 (Sialoadhesin)
CD62E (E-selectin)
CD62P (P-selectin)
CD144 (Calherin 5)

Integrins CD29 (Very late antigen b) CD49a  
(Very late antigen a1)

CD49b (Very late antigen a2)
CD49c (Very late antigen a3)
CD49e (Very late antigen a5)
CD49f (Very late antigen a6)
CD61 (Vitronectin R bchain, GPIIb/IIIa)
CD104 (b4 integrin)

CD11a (Lymphocyte function-associated antigen-1 a)
CD11b (Macrophage-1 antigen)
CD11c (Complement receptor type 4 a chain)
CD18 (Lymphocyte function-associated antigen-1 b)
CD49d (Very late antigen a4)
CD51 (Vitronectin R a chain)

Growth factors and 
Cytokines

CD71 (Transferrin receptor)
CD72 (Lymphocyte receptor)
CD109 (platelet activating factor)
CDw119 (Interferon gR)
CD120 a & b (Tumor Necrosis factor-a 1&2 R)
CD121 a & b (Interleukin-1R a&b chain)
CD123 (Interleukin-3R)
CD124 (Interleukin-4R)
CD126 (Interleukin-6R)
CD127 (Interleukin-7R)
CD140a (Platelet derived growth factor receptor a)
CD140b (Platelet derived growth factor receptor b)
CD172a (Signal regulatory protein a)
FGFR (Fibroblast growth factor receptor)
CD271 (Low affinity nerve growth factor receptor)
EGFR-1 (epithelial growth factor receptor-1)/
HER-1(human epidermal growth factor receptor-1)
BMP R1 (Bone morphogenic protein receptor 1A)
CD271 (Low affinity nerve growth factor receptor)

CD25 (Interleukin-2R)
CD114 (Granulocyte-colony stimulating factor 

receptor)
CD122(Interleukin-2R- b)
HB-EGF
EGFR-4(epithelial growth factor receptor-4)/
HER-4(human epidermal growth factor receptor-4)

Other Markers CD9 (Tetraspanin)
CD13 (Aminopeptidase N)
CD59 (Protectin)
CD73 (Ecto-5’-nucleotidase)(SH3/SH4)
CD90 (Thy-1 glycoprotein)
CD95 (Fas)
CD105 (Endoglin) (TGFb R/SH2)
CD146 (MUC18,Mel-CAM, S-endo)
CD157 (BP-3 or Bone Marrow Stromal cell 

antigen-1)
SH3 (Src homology 3)
D7-FIB
STRO-1
MHC class I, HLA-A,B,C (human leukocyte 

antigen)
SSEA-3,4
CXCL12 (SDF-1)

CD3 (CD3 complex)
CD10 (CALLA)
CD19 (B-lymphocyte Surface Antigen B4)
CD30
CD30L (CD153)
CD40
CD40L (CD154)
CD80 (B7-1)
CD83 (HB15a)
CD86 (B7-2)
CD235a (Glycophorin A)
FasL (CD95L)
TRAIL (tumour necrosis factor-related  

apoptosis-inducing ligand)
TRAIL-R (tumour necrosis factor-related  

apoptosis-inducing ligand receptor)
CXCR4 (CD184)
MHC class II (HLA-DR)
Β2 microglobulin
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It is believed that MSCs are remnants of embryonic stem 
cells which remain in the adult human body, and express 
embryonic stem cell markers including: HOX, SSEA-1, 
Nanong, Oct-4, Rex-1 and GATA-4(Krampera et  al. 2006b, 
Lotfinegad 2014). In addition to the BM, MSCs originate 
from other sources, including the liver, lung, brain, adi-
pose tissue, peripheral blood, cornea, synovium, thymus, 
dental pulp, periosteum, tendon, spleen, fallopian tube, 
placenta, amniotic fluid, Wharton’s jelly and umbilical cord 
blood(Lotfinegad 2014). In vitro and in vivo, MSCs release 
IL-6, IL-7, IL-8, IL-10, IL-11, IL-12, IL-14, IL-15, sHLA-G5, 
PGE2, M-CSF, IDO,TGF-b, hepatocyte growth factor (HGF), 
inducible nitric oxide synthase (iNOS), Galectin-3, and 
hemooxygenase (HO). The potential for self-renewal and 
multipotency are the hallmarks of MSCs (Mohammadian 
and Shamsasenjan 2013, Shi et al. 2011, Moriscot et al. 2005). 
Pevsner-Fischer et al. displayed that cultured MSCs express 
toll-like receptor (TLR) molecules 1 to 9. Activation of MSCs 
by TLR ligands provoked IL-6 secretion and NF-kB nuclear 
translocation(Yagi et al. 2010, Pevsner-Fischer et al. 2007).

It has been identified that TLRs mediate responses of bone 
marrow-derived progenitor cells. A new study has described 
the significance of TLRs in migration and immune regula-
tion of MSCs(Yagi et  al. 2010, Pevsner-Fischer et  al. 2007, 
Nagai et al. 2006, Ryan et al. 2007). It is predicted that MSCs 
constitute about 0.001% of mononucleotide cells in the BM, 
while their proportion declines with age(Mohammadian and 
Shamsasenjan 2013, Kitoh et al. 2004, Mueller and Glowacki 
2001).

This review presents the immunomodulatory mechanism 
of MSCs on immune cells. In addition, homing of MSCs and 
the current uses of these cells in medicine are discussed 
briefly.

Immunomodulatory effects of MSCs  
on immune cells

It has been agreed that the potential of MSCs to modulate 
immune responses is due to both cell-cell interactions and 
paracrine effects(Lotfinegad 2014). MSCs can down-regulate 
the strength of an immune response by influencing both 
natural and adaptive immunity(Ben-Ami et  al. 2011). 
MSCs can inhibit innate immune system cells (DCs, NK, 
monocyte and neutrophil) and adaptive immune system 
cells (B, TH1 and T- CTL). MSCs also induce stimulation 
of the TH2 and regulatory T-cells by the inflammatory 
microenvironment.

Innate immune system cells

Natural killer cells
Natural killer cells (NK cells) are the main effector cells in 
inherent immunity, and are commonly thought to play a 
basic role in antiviral responses(Yagi et  al. 2010). MSCs 
hinder the proliferation of IL-2-induced NK cells, which is 
mostly mediated by the soluble immunosuppressive fac-
tors, transforming growth factor-ß (TGF-ß), soluble human 
leukocyte antigen-G (sHLA-G), prostaglandin E2 (PGE2) 
and indoleamine2,3- dioxygenase, in addition to cell-cell 

contact(Ben-Ami et al. 2011, Gebler et al. 2012, Lotfinegad 
2014, Yagi et  al. 2010, Spaggiari et  al. 2008, Gonen-Gross 
et  al. 2010, Abdi et  al. 2008). MSCs can exert more influ-
ence on innate immunity during their inhibition of the 
cytotoxicity of NK cells by down-regulating the expression 
of NKp30, NKp44, NKG2D and DNAM-1-activating recep-
tors on these cells, and also by inhibiting proliferation and 
inducing suppression of IFN-g(Ben-Ami et  al. 2011, Spag-
giari et al. 2008, Spaggiari et al. 2006). Several studies have 
demonstrated that MSCs suppress NK cell proliferation and 
IFN-γ production driven by IL-2 or IL-15, but only partially 
inhibit the proliferation of activated NK cells(Aggarwal and 
Pittenger 2005, Shi et al. 2011, Ryan et al. 2007, Sotiropoulou 
et al. 2006, Rasmusson et al. 2003, Maccario et al. 2005). In 
contrast, Krampera et al. described that NK cells cultured for 
4–5 days with IL-2 in the presence of MSCs showed reduced 
cytolytic potential against K562 cells, and this suppressive 
effect might be attributed to the IFN-g produced by NK 
cells(Shi et al. 2011). Recently, Prigione et al. discovered that 
the inhibitory effect of MSCs on the proliferation of invari-
ant NK T (iNKT, Va24  Vß11) and gdT(Vd2) cells in the 
peripheral blood is mediated by secreting prostaglandin E2 
(PGE2), before IDO and TGF-b1. On the other hand, cytokine 
production and cytotoxic activity of the cells were only mod-
erately affected by MSCs. Vd2  cells also function as expert 
antigen-presenting cells for naive CD4 T cell response, and 
MSCs do not restrain antigen processing/presentation of 
activated Vd2  Tcells to CD4 T-cells. (Figure 1)(Shi et  al. 
2011, Prigione et al. 2009).

Dendritic cells
Dendritic Cells (DCs) participate with a key function in the 
beginning of primary immune responses, which depend on 
the maturation and activation steps of DCs. Immature DCs 
function as guards in peripheral tissues, by increased anti-
gen uptake and processing, with low capability to stimulate 
T-cells(Yagi et  al. 2010, Banchereau and Steinman 1998, 
Mellman and Steinman 2001). In the past, MSCs hampered 
the in vitro maturation of monocytes and hematopoietic 
progenitor cells into DCs, in addition to down-regulating the 
cell surface expression of MHC class II, CD11c, CD83 and 
co- stimulatory molecules on mature DCs(Ben-Ami et  al. 
2011, Jiang et al. 2005).

MSCs may also regulate immune reaction during inter-
action with DCs. MSCs could inhibit differentiation of 
monocytes into DCs; however, they could also inhibit the 
maturation of DCs, giving rise to immature DCs that could 
consequently render T-cells anergic. MSCs have also been 
shown to modify the cytokine secretion profile of DCs to 
up-regulate regulatory cytokines, for example IL-10, and 
down-regulate inflammatory cytokines like IFN-γ, IL-12, and 
TNF-a, and induce further anti-inflammatory effect or toler-
ant DC-phenotypes(Abdi et al. 2008, Ryan et al. 2005, Nauta 
et al. 2006). Spaggiari et al. confirmed that MSCs powerfully 
inhibit the maturation and functioning of immunomodula-
tors of mesenchymal stem cell monocyte-derived DCs, by 
interfering selectively on the generation of immature DCs 
by means of inhibitory mediator MSC-derived PGE2, but 
not IL-6. On the other hand, the fundamental mechanism 

561 Biotechnological and biomedical applications of mesenchymal stem cells



the presence of MSCs secrete low levels of IL-12 and TNF-a, 
but elevated levels of IL-1b, IL-10; in addition, they express 
low levels of MHC class II surface antigens. Most recent 
studies propose that antigen processing and presentation 
by MHC class II surface antigens are impaired(Gebler et al. 
2012, Nauta et al. 2006, Zhang et al. 2004). For the first time, 
Di Nicola et  al. showed the repression of cell-mediated 
immune connections by co-culturing DCs, irradiated allo-
genic lymphocytes or phytohemaglutinin (PHA)-stimulated 
T-cells with irradiated MSCs, in a mixed lymphocyte reac-
tion (MLR)(Lotfinegad 2014). They found that MSCs delayed 
the up-regulation of CD1A, CD40, CD80 (B7-1), CD86 
(B7-2) and HLA-DR through DC maturation, even as CD83 
increased. Significantly, DCs isolated from cultures that 
were co-cultured with MSCs showed a decreased potential 
to activate CD4 cells in the presence of MLCs(Aggarwal and 
Pittenger 2005, Maccario et al. 2005, Jiang et al. 2005, Zhang 
et  al. 2004, Le Blanc and Ringden 2007, Beyth et  al. 2005). 
In the presence of MSCs, IL-10-secreting plasmacytoid 
DCs, characterized by the expression of the BDCA4 antigen, 
increased after stimulation by lipopolysaccharide(Aggarwal 
and Pittenger 2005, Le Blanc and Ringden 2007). CD14 
monocytes activate MSCs to secrete soluble factors as well 
as IL-1b that inhibit alloreactive T-cells. (Figure 1) (Le Blanc 
and Ringden 2007, Groh et al. 2005).

Neutrophils
Neutrophils are the first cells that arrive at inflammatory 
tissue, and these cells secrete cytokines. One more MSC-
produced factor, IL-6, has been shown to be engaged in the 
inhibition of monocyte differentiation to DCs, diminishing 
their stimulation capacity on T-cells. Similarly, the produc-
tion of IL-6 by MSCs has also been reported toward stoppage 
of apoptosis of lymphocytes and neutrophils(Ghannam et al. 

in the up-regulation of PGE2 in monocyte–MSC co-cultures 
remains unclear. Ramasamy et al. showed that the cell cycle 
in DCs was arrested in the G0/G1 phase upon contact with 
MSCs. A new study has reported that MSCs isolated from 
human adipose tissue are more potent immunomodulators 
for the differentiation of human DCs than MSCs derived 
from the BM (Shi et al. 2011, Spaggiari et al. 2009, Ramasamy 
et al. 2007, Ivanova-Todorova et al. 2009). One more MSC-
secreted factor, IL-6, has been reported to be involved in the 
inhibition of the differentiation of monocytes to DCs, dimin-
ishing their stimulatory capacity on T-cells(Ghannam et al. 
2010b, Jiang et al. 2005, Djouad et al. 2007).

Myeloid DCs are the main potent antigen-presenting 
cells, important in the induction of immunity and tolerance. 
Through maturation, immature DCs acquire the expression 
of co-stimulatory molecules and up-regulate the expression 
of MHC class I and class II molecules collectively, with further 
cell surface markers such as CD11c, CD80, CD83 and CD86. 
In vitro, MSCs inhibit the maturation of monocytes and the 
development of CD34 hematopoietic progenitor cells into 
DCs, as shown by a decline in cell surface expression of 
MHC class II and co-stimulatory molecules, in addition to 
a reduced production of IL-12 and TNFa. This outcome is 
at least partly mediated through the production of IL-6 by 
activated MSCs or PGE-2, which are directly responsible for 
blocking DC maturation. These results propose that MSCs 
might regulate DC maturation to an anti-inflammatory or 
regulatory phenotype responsible for a satisfactory T-cell 
response(Aggarwal and Pittenger 2005, Ghannam et al. 2010a, 
Jiang et al. 2005, Spaggiari et al. 2009, Djouad et al. 2007). The  
effect of MSCs is controlled toward primary phases of DC 
maturation, as verified by alterations in the expression of the 
DC surface markers CD80, CD86, CD83, and the secretion 
of the polarizing cytokine IL-12. DCs which are produced in 

Figure 1. Effects of Mesenchymal stem cells (MSCs) on the innate immune system. MSCs exert an influence on a variety of cells of the immune 
system. Mechanisms governing these interactions include secretion of soluble paracrine factors by MSCs and direct cell–cell contact between MSCs 
and innate immune cells. Abbreviations: IFN gamma (interferon g), IDO (indoleamine 2,3-dioxygenase), IL-2 (interleukin 2), IL-6 (interleukin 6), 
prostaglandin E2 (PGE2), transforming growth factor beta (TGFb) TNF-a (tumor necrosis factor a), soluble human leukocyte antigen-G5 (sHLA-
G5) M-CSF (monocyte- colony stimulating factor), MHC (major histocompatibility complex), KIR (killer inhibitory receptor), NK(natural killer 
cell), PD-1(programmed death 1), PD-L1(programmed death ligand1).
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2010b, Jiang et al. 2005, Djouad et al. 2007, Raffaghello et al. 
2008, Xu et al. 2007). MSCs greatly inhibit the in vitro secre-
tion of hydrogen peroxide in activated neutrophils, therefore 
these stem cells can potentially control the intensity of a 
respiratory burst upon inflammatory stimulation(Ben-Ami 
et al. 2011, Raffaghello et al. 2008). With respect to cells of the 
inherent immune system, MSCs can significantly decrease 
the power of the respiratory burst and apoptosis, which is a 
vital factor of the phagocytic role of neutrophils. This can be 
a serious process whereby MSCs can control the intensity of 
tissue injury following ischemic and ischemia/reperfusion 
damage(Mazaheri et  al. 2012, Hirata et  al. 1993). Hyperac-
tivated T-lymphocyte helper 1 (Th1) produces proinflam-
matory cytokines such as IL-2, IL-6, IL-8, IL-17, TNF-a and 
IFN-g. These cytokines stimulate neutrophils and activate 
monocytes. Activated monocytes stimulate Th1 differentia-
tion by secreting IL-12, and the hyperfunction of neutrophils 
causes a tissue wound. Altogether, the connection between 
APCs, hypersensitivity of T-lymphocytes, and hyperactiv-
ity of neutrophils, might be the major cause for immune 
responses in Behcet’s disease (BD). (Figure 1) (Mazaheri 
et al. 2012, Türsen 2012, Kapsimali et al. 2010, Tursen 2009, 
Hirohata and Kikuchi 2003).

Adaptive immune system cells

B-cells
MSCs are capable of modulating the immune response of 
B-cells. It has been demonstrated that in a co-culture method 
of stimulated B-cells and MSCs, the proliferation of B-cells 
as well as the secretion of antibodies (IgA, IgG, and IgM) 
were inhibited in plasma cells(Lotfinegad 2014, Corcione  
et  al. 2006). In murine studies, MSCs have been stated  
to inhibit the proliferation of B-cells, stimulated through  

anti-CD40L and IL-4, or by pokeweed mitogen and protein A, 
as in Staphylococcus aureus(Nauta and Fibbe 2007, Schwartz 
et al. 2007, Glennie et al. 2005, Zhang et al. 2005, Tögel et al. 
2005, Le Blanc et al. 2004a, Breitbach et al. 2007). Allogeneic 
MSCs have been revealed to restrain the proliferation, activa-
tion and IgG secretion of B-cells, as shown in BXSB mice that 
were utilized as an investigational model for human systemic 
lupus erythematous(Nauta and Fibbe 2007, Augello et  al. 
2005, Deng et al. 2005). Krampera et al. demonstrated that 
MSCs only decreased the proliferation of B cells in the pres-
ence of IFN-g. The suppressive effect of IFN-γ was probably 
attributed to its capacity to stimulate the secretion of IDO by 
MSCs, which in turn suppresses the proliferative response 
of effector cells during the tryptophan pathway(Nauta and 
Fibbe 2007, Krampera et al. 2006a). Due to the fact that B-cell 
activation is mostly T-cell dependent, the influence of MSCs 
on the activity of T-cells might also not directly suppress 
B-cell functions. Additionally, MSCs have been shown to 
apply a direct influence on B-cells through cell to cell con-
tact and during secretion of paracrine molecules(Corcione 
et al. 2006, Augello et al. 2005, Weil et al. 2011, Gerdoni et al. 
2007). MSCs arrest B-cells in the G0/G1 phase of the cell 
cycle, without apoptosis(Mohammadian and Shamsasen-
jan 2013, Campagnoli et al. 2001). MSCs down-regulate the 
expression of the chemokine receptors CXCR4 and CXCR5, in 
addition to CCR7B, as well as lead to chemotaxis of CXCL12, 
the CXCR4 ligand, CXCL13 and CXCR5 ligand, suggesting 
that elevated numbers of MSCs influence the chemotactic 
properties of B- cells(Chamberlain et al. 2007, Volarevic et al. 
2011, Shi et al. 2011, Abdi et al. 2008, Le Blanc and Ringden 
2007, Corcione et al. 2006, Deng et al. 2005). These findings 
cannot support the potential therapeutic utilization of MSCs 
in autoimmune diseases, where the B-cells play a major role 
(Figure 2)(Le Blanc and Ringden 2007). Also, MSCs were 

Figure 2. Effects of Mesenchymal stem cells (MSCs) on the adaptive immune system. These effects promote an overall anti-inflammatory and 
immunosuppressive state. Abbreviations: IFN gamma (interferon g), IDO (indoleamine 2,3-dioxygenase), IL-2(interleukin 2), IL-4 (interleukin 
4) IL-10 (interleukin 10), IL-6 (interleukin 6), IL-12 (interleukin 12), IL-17 (interleukin17),prostaglandin E2(PGE2), transforming growth factor 
beta (TGFb), hepatocyte growth factor (HGF), induced nitric oxide synthases (iNOS), soluble human leukocyte antigen-G5 (sHLA-G5), ICAM 
1(Intercellular adhesion molecule 1), LFA 1(Lymphocyte function-associated antigen-1), TH 2 (T helper 1), Treg (T regulatory).
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point(Le Blanc and Ringden 2007, Angoulvant et  al. 2004). 
Human MSCs limit the structure of CD4 and CD8 T cells 
by soluble factors(Tse et al. 2003, Potian et al. 2003, Le Blanc 
and Ringden 2007, Corcione et al. 2006, Di Nicola et al. 2002). 
The suppressive factor is not constitutively produced by 
MSCs, since cell culture supernatants do not suppress T-cell 
proliferation(Maitra et al. 2004, Potian et al. 2003, Le Blanc 
and Ringden 2007, Augello et al. 2005, Le Blanc et al. 2004b). 
This result may be characteristic of the inhibition of cell divi-
sion, which is supported through the gathering of cells in the 
G0/G1 phase of the cell cycle. At the molecular level, cyclin 
D2 expression is down-regulated, whereas p27 expression 
is up-regulated; this might clarify why T-cell proliferation, 
before activation, and IFN-g secretion, are affected with 
MSC(Shi et al. 2011, Glennie et al. 2005). Liu et al. clarified 
that the addition of antibodies specific to FasL and TGF-b1 
satisfied suppression by MSCs in concanavalin A-stimulated 
MLC in a dose-dependent style, other than anti-IL-10, had 
no effect(Le Blanc and Ringden 2007, Liu et al. 2004). Mes-
enchymal stem cells may inhibit T-cell proliferation through 
the secretion of indoleamine 2, 3-dioxygenase (IDO). IDO 
is induced via IFN-g, catalyzes the alteration of tryptophan 
to kynurenine, and inhibits T-cell responses through tryp-
tophan diminution(Le Blanc and Ringden 2007, Munn et al. 
1998).

Meisel et  al., using the Western blotting technique, 
revealed that human MSCs do not constitutively express 
IDO, but the expression is provoked by IFN-g. IFN-g also 
aroused IDO enzyme activity in dose-dependent behav-
ior. Important IDO activity was detected in T-cells stimu-
lated with mitomycin C-treated PBMC, in the presence of 
MSCs(Le Blanc and Ringden 2007, Meisel et al. 2004). PGE2, 
which is produced by cyclooxygenase (COX) enzymes, 
induces regulatory T-cells. (15-750). MSCs constitutively 
express COX-1 and COX-2 (Aggarwal and Pittenger 2005, Le 
Blanc and Ringden 2007, Arikawa et al. 2004) together. While 
purified T-cells were co-cultured by MSCs, both COX-2 and 
PGE2 production were boosted(Aggarwal and Pittenger 
2005, Tse et al. 2003, Le Blanc and Ringden 2007). Inhibitors 
of PGE2 synthesis restored the majority of the proliferation 
of phytohemaglutinin-activated (PHA) lymphocytes co-cul-
tured with MSCs. Tse et al. studied alloreactive lymphocytes 
in contrast to mitogen-stimulated cultures. They set up that 
neither MSC production of IL-10, TGFb1, and PGE2, nor 
tryptophan reduction, was responsible for the suppression 
in MLC(Aggarwal and Pittenger 2005, Tse et  al. 2003). Di 
Nicola et al. recommended that HGF worked synergistically 
through TGF-b1, to challenge T-cell detection by simulta-
neous neutralization of HGF and TGF-b1 in the later study 
restoring T-cell proliferation(Yagi et al. 2010, Di Nicola et al. 
2002). One more statement exhibited that quantitative real-
time PCR confirmed important HGF mRNA up-regulated 
by IFN-g and TNFa(Yagi et al. 2010, English et al. 2007). NO 
(nitric oxide) stops the proliferation of T-cells by suppress-
ing the phosphorylation of signal transducer and activator 
of transcription-5 (STAT5), a transcription factor vital for 
T-cell activation and proliferation(Shi et  al. 2011, Bingisser 
et  al. 1998). Ding et  al. reported that matrix metalloprotei-
nases (MMPs), in particular MMP-2 and MMP-9, produced 

observed to increase the CD40 expression and the ectopic 
hyperexpression of the CD40 ligand on the B-cells of BXSB 
mice(Shi et al. 2011, Deng et al. 2005).

T-cells
Mesenchymal stem cells are immunosuppressive by inhib-
iting the response of naive and memory T- cells in MLC, 
which are made by mitogens. Repression is MHC-free and 
mainly manifests if MSCs are added on the earliest day 
of the 6-day culture. The amount of restraint is dosage- 
dependent(Pevsner-Fischer et  al. 2007, Tse et  al. 2003, Le 
Blanc et al. 2003, Potian et al. 2003, Le Blanc and Ringden 
2007). Manifest reserve is detected when more numbers of 
MSCs are present (MSC/lymphocyte ratio  1/10). In dis-
tinction, the adding of MSCs at a low ratio (1/100–1/10 000) 
frequently increases proliferation(Potian et al. 2003, Le Blanc 
and Ringden 2007, Le Blanc et al. 2003, Liu et al. 2004). Tse 
et  al. demonstrated that nearness to MSCs was significant 
in suppressing T-cell responsiveness and recommended 
that direct interaction between lymphocytes and MSCs was 
more significant than soluble mediators in the immunosup-
pressive function of MSCs(Yagi et al. 2010, Tse et al. 2003). 
Krampera et al. stated that inhibition needs the presence of 
MSCs and MSC-T-cell interaction in culture(Yagi et al. 2010, 
Krampera et al. 2003).

Regulatory T cells
Although MSCs powerfully hamper T-cell proliferation, they 
can protect the role of CD4 CD25 CD127–, forkhead box 
P3 (FoxP3) regulatory T cells (Treg)(Le Blanc and Ringden 
2007). MSCs raised the amount of CD4 CD25high, CD4 
CTLA4 and CD4  CD25 CTLA4 cells in IL-2-motivated 
lymphocytes and MLC(Aggarwal and Pittenger 2005, Mac-
cario et al. 2005, Le Blanc and Ringden 2007). In contrast, the 
amount of CD25 and CD38 cells diminished in the pres-
ence of MSCs in mitogen-stimulated lymphocyte cultures 
(Figure 2)(Le Blanc and Ringden 2007, Groh et  al. 2005). 
MSCs also generate bone morphogenic protein-2 (BMP-2), 
which mediates immunosuppression through the produc-
tion of CD8 regulatory T cells(Le Blanc and Ringden 2007, 
Djouad et al. 2003).

T-helper and cytotoxic T-cells
The presence of signals that support the development of the 
Th1, such as CD3, CD28, IL-4, IL-2 and IL-12 stimulation, 
cause naive T-cells mature into IFN-g-secreting cells. If MSCs 
are present in the culture, IFN-g secretion is decreased. Hence, 
MSCs provoke a bias towards Th2 differentiation(Aggarwal 
and Pittenger 2005, Le Blanc and Ringden 2007). Mesen-
chymal stem cells suppress CD8  T-cell-mediated lysis if 
added at the beginning of the MLC (Rasmusson et al. 2003, 
Le Blanc and Ringden 2007). Cytotoxicity was not affected if 
MSCs were added in the cytotoxic stage(Potian et al. 2003, 
Rasmusson et  al. 2003, Maccario et  al. 2005, Le Blanc and 
Ringden 2007, Angoulvant et  al. 2004). Lysis was partly  
abrogated by the addition of IL-2. MSCs might hinder the 
afferent stage of alloreactivity and stop the growth of cyto-
toxic T-cells. When cytotoxic T-cells are activated, MSCs 
are not effective. In vivo studies are essential to clarify this 
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et al. 2005). Homing engages a cascade of incidents begun 
with shear-resistant adhesive interactions between flow-
ing cells and the vascular endothelium at the target tissue 
(Stage I). This procedure is mediated via ‘homing receptors’ 
expressed on circulating cells that involve related endothelial 
co-receptors, causing in cell-tethering and rolling contacts 
on the endothelial surface. This is characteristically pursued 
via chemokine-generated activation of integrin adhesive-
ness (Stage II), hard adhesion (Stage III) and extravasation 
(Stage IV)(Yagi et al. 2010, Sackstein 2005). MSCs expressed 
chemokine receptors for homing of immune cells such as: 
CCR1, CCR2, CCR3, CCR4, CCR7, CCR8, CCR10, CCL2, 
CCL3, CCL4, CCL5, CCL7, CCL20, CCL26, CX3CL1, CXCL1, 
CXCL2, CXCL3, CXCL5, CXCL8, CXCL10, CXCL11 and 
CXCL12, but not CXCR4, suggesting that CXCR4 can simply 
be significant for the trafficking of mature stem cell popu-
lations and receptor tyrosine kinase growth factor recep-
tors such as platelet-derived growth factor (PDGF) and 
insulin-like growth factor1(IGF-1)(Lotfinegad 2014, Yagi 
et al. 2010, McTaggart and Atkinson 2007, Hoogduijn et al. 
2010). Integrins have been identified to play a significant role 
in cell adhesion, migration, and chemotaxis(Ridger et  al. 
2001, Werr et  al. 1998). Integrin a4/b1-VCAM contact has 
been known to regulate T-cell and NK trafficking(Woodside 
et al. 2006). Integrin b1 engages cell to-cell adhesion, which 
can be essential for the anchorage of the engrafted cells. 
As expected, blockade of integrin b1 reduces neutrophil 
migration to the lung through inflammation(Yagi et al. 2010, 
Ridger et  al. 2001). Ruster et  al. explained that MSCs react 
in an organized style through endothelial cells, not only 
through integrin a4/b1-VCAM-1 interaction or integrin b1, 
but also via the endothelial phenotype, P-selectin, MMP-2 
production, and cytokines(Rüster et al. 2006).

Fibronectin attaches extracellular matrix constituents 
like collagen, fibrin and heparan sulfate proteoglycans. It 
plays a significant role in cell adhesion, growth, migration, 
as well as differentiation, and it is significant for the injury 
healing processes. Records of previous studies show that 
contact between integrin a4 and b1-fibronectin plays a 
significant role in transmigration of MSCs into the extracel-
lular matrix(Ruoslahti 1984, Valenick et  al. 2005). Stromal 
cell-derived factor 1 (SDF-1), which is formally identified 
as chemokine (C-X-C motif) ligand 12 (CXCL12), is a min-
ute chemotactic cytokine that activates leukocytes and is 
frequently stimulated through proinflammatory stimuli 
like TNF-a or IL-1(Fedyk et  al. 2001). The receptor for this 
chemokine is CXCR4 and the SDF-1-CXCR4 communication 
is regarded to be private (Ma et al. 1998).

Interaction between SDF-1 and its ligand CXCR4 co-
operates a significant function in homing, bone marrow 
retention and mobilization, as shown in studies on engraft-
ment of hematopoietic stem/progenitor cells(Chamberlain 
et al. 2007, Peled et al. 1999). MSCs migrated considerably 
in response to SDF-1 and CX3CL, consistent with their cor-
responding expression of chemokine receptors CXCR4 or 
CX3CR1. Unexpectedly, Basic Fibroblast Growth Factor 
(bFGF) might have contrasting effects on MSC migration, 
depending on the concentration(Yagi et  al. 2010). MSCs 
have an important role in co-transplantation by hematopoi-

by MSCs, mediate the suppressive activity of MSCs through 
diminution of CD25 expression on responding T-cells within 
a model of allogeneic islet transplant(Ding et al. 2009). In an 
experimental model of arthritis, MSCs reduced antigen-spe-
cific Th1/Th17 cell expansion and reduced the production 
of cytokines released via Th1/Th17 cells, for example IFN-g 
and IL-17, and caused the Th2 cells to raise production of 
IL-4 and IL-10 in lymph node joints(Aggarwal and Pittenger 
2005, Shi et al. 2011, Krampera et al. 2003, Zappia et al. 2005). 
Conversely, a new study reported that MSCs might provoke 
apoptosis in activated T-cells[CD3 and bromodeoxyuridine 
BrdU], but not in the resting T-cells[CD3 and BrdU-]; this 
leads to clear reduction of delayed-type hypersensitivity 
(DTH) response in vivo with inducing NO production(Lim 
et al. 2010). A recent study demonstrated that the negative 
co-stimulatory molecule B7-H4 was involved in the immuno-
suppressive effect of MSCs on T-cell activation and prolifera-
tion by the generation of cell cycle arrest and the inhibition 
of nuclear translocation of the nuclear factor (NF)-kappa 
B(Sensebe et  al. 2010). MSCs inhibit Th17 differentiation 
from naive T-cells. MSCs can also decrease the expression 
of major histocompatibility complex class E (MHC class E)
(Mazaheri et al. 2012, Ghannam et al. 2010b). Conversely, in 
one study, it was found that CD25 and CTLA-4 (cytotoxic T 
lymphocyte-associated antigen-4) surface expression, and 
Foxp3 mRNA levels, were not dependent on whether CD4 
T-cells were cultured in the presence of MSCs(Krampera 
et  al. 2006b). Furthermore, MSCs have also been reported 
to influence the cytokine secretion profile of the different 
T-cell subsets, since their addition to an in vitro activated 
T-cell culture leads to reduced production of the pro-inflam-
matory cytokines: IFN-g, TNF-a, IL-6, IL-17, and enhanced 
levels of anti-inflammatory cytokines, for example IL-4 and 
IL-10. On the whole, these outcomes could show a probable 
MSC-mediated alteration in Th1/Th2 balance(Zappia et al. 
2005, Kong et al. 2009). MSCs can hamper T-cell prolifera-
tion by engaging the inhibitory molecule programmed death 
1(PD-1) to its ligands PD-L1 and PD-L2, thus producing sol-
uble factors that suppress T-cell proliferation (such as TGF-b 
or IL-10) and during interaction through DCs(Volarevic et al. 
2011, Nauta and Fibbe 2007, Volarevic et  al. 2009). MSCs 
increase Th2 and IL-4 production, regulatory T-cell response 
and decrease activation by foreign antigen, cytotoxic T-cells 
and IFN-g production(Weil et  al. 2011). The generation of 
HLA-G5 by MSCs has more lately been revealed to suppress 
T-cell proliferation, in addition to cytotoxicity of NK cells 
T-cells, and to increase the generation of regulatory T (Treg) 
cells. Cell contact between MSCs and activated T-cells stim-
ulated IL-10 production, which was necessary to induce the 
release of soluble HLA-G5. (Figure 2) (Ghannam et al. 2010a, 
Selmani et al. 2008, Nasef et al. 2009).

Homing of MSCs
Homing is the procedure by which cells migrate to, and 
engraft within, the tissue in which they are able to apply 
local, efficient effects. While the homing of leukocytes to 
places of inflammation is well studied, the methods of pro-
genitor cell homing to places of ischemia or damage are 
weakly recognized(Imhof and Aurrand-Lions 2004, Luster 
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etic stem cells, by producing SDF-1, Flt-3 ligand and stem 
cell factor, together with expressing extra-cellular matrix 
proteins including fibronectin, laminin and vimentin, which 
have a critical function in HSC homing in the bone marrow 
niche(Mohammadian and Shamsasenjan 2013, Horwitz 
et al. 2011, Delalat et al. 2009, Akbari et al. 2007).

Medical applications of MSCs
Stem cells in general and MSCs in particular, by their adapt-
able increase and differentiation potential, are considered 
perfect candidates for utilization in regenerative medical 
procedures(McTaggart and Atkinson 2007). One of the most 
significant properties that make MSCs a special device for 
cell-based therapeutic approaches, is their capability to 
escape from immune refusal; therefore, HLA-matching is not 
of much significance for their implant and HLA-mismatched 
donors can also be selected (Siegel et  al. 2009, Dazzi and 
Marelli Berg 2008). Major roles of MSCs are correlated to their 
diverse therapeutic properties, like their anti-inflammatory 
and immunomodulatory effects, the secretion of mediators 
that initiate or support tissue renovation and tissue substitu-
tion with the potential of multipotent differentiation (Caplan 
and Dennis 2006, Waszak et al. 2012, Du et al. 2013). The major 
significant therapeutic areas comprise ischemic cardiac dis-
ease, graft-versus-host disease (GVHD), chronic obstructive 
pulmonary disease, Crohn’s and Behcet’s disease(Mazaheri 
et al. 2012, Du et al. 2013). MSCs infusion can also be very 
useful in cord blood transplantation where the restricted 
amount of stem cells delays engraftment and favors graft 
rejection. The cell therapy approach has also been utilized as 
prophylaxis in GVHD in HSC transplantation. The therapeu-
tic efficiency was related to reduced antigen-specific Th1/
Th17 cell expansion, increased production of IL-10 and gen-
eration of CD4,CD25,FoxP3 Treg cells via the ability to 
suppress self-reactive T-effector responses(Ghannam et  al. 
2010a, González et al. 2009). Growth of autoimmune diabetes 
results from immune cell dysfunction to maintain peripheral 
and central tolerance. MSCs can be useful in regulating Treg/
auto reactive T-cell balance. The earliest proposed function 
of MSCs was the stimulation of the regeneration of endog-
enous insulin-secreting cells, and next, inhibition of the 
T-cell-mediated immune responses against newly produced 
beta cells(Urban et al. 2008). MSCs have been brought into 
clinical therapy for numerous reasons: to differentiate and 
repair injured tissues, to increase hematopoietic engraft-
ment following transplant through the production of growth 
factors, and for immunosuppressant function in GVHD. 
Since the immunomodulatory methods vary between 
murine and human MSCs, animal forms cannot mimic 
the medical position(Lazarus et  al. 1995, Koç et  al. 2000). 
Recently studies in pathological models have also revealed 
that MSC can home in to damaged kidneys and make simple 
renovations(McTaggart and Atkinson 2007). The proof-of-
principle essential to utilize of MSCs in vivo has been shown 
in a series of trials:(I) MSCs might engraft into mouse tissues 
after infusion and use a site-specific differentiation, which is 
due to their exclusive immunological properties that permit 
engraftment with no rejection; (II) in humans, autologous 
enlarged MSCs in vitro could be infused intravenously with no 

toxicity; (III) transplantation of autologous MSCs in arrange-
ment by HSCs lead to improved HSC engraftment; and(IV) 
allogeneic transplantation of MSCs decreased the frequency 
and intensity of acute and chronic GVHD (Gebler et al. 2012, 
Sato et al. 2010, Tolar et al. 2010). Additionally, MSCs have 
been used for the conduct of different autoimmune diseases 
leading to the stimulation of T-cell tolerance and damaged 
pathogenic T and B cell responses. BM-derived MSCs can 
also suppress the proliferation of PBMCs, independent of 
their supply (autologous or allogeneic), subtype of autoim-
mune disease and form of conduct(MacDonald et al. 2011). 
In the case of tissue renovation, the anti-inflammatory activ-
ity of MSCs resulted in the production of anti-inflammatory 
macrophages, which were important for increasing tissue 
repair(Kim and Hematti 2009). Moreover, MSCs also have 
therapeutic potential in treating pulmonary fibrosis, acute 
renal nephropathy, and in inhibiting the progress of dia-
betes. MSC transplantation promotes the extension and 
growth of B-cells and renal glomeruli as well as decreasing 
collagen expression and inflammation in fibrosis(Lee et al. 
2009, Vija et al. 2009). MSCs express high levels of arylsul-
fatase A and a-l-iduronidase. The absence of these enzymes 
cause breakdown to hydrolyze a different substrate, leading 
to its accumulation and the dysfunction of several organs, 
the most severe being mental retardation. The lack of aryl-
sulfatase A is the cause of metachromatic leukodystrophy, 
and the deficit of a-l-iduronidase is the cause of Hurler’s dis-
ease, disorders that can possibly be prevented via allogeneic 
hematopoietic stem cell transplantation (HSCT), which is 
just potential therapy(Groth and Ringdén 1984, Krivit et al. 
1999). MSCs can be exploited to treat bone disorders (e.g., 
osteogenesis imperfecta). Five patients with osteogenesis 
imperfecta, treated with bone marrow transplantation, had 
donor osteoblast engraftment, novel dense bone shape, an 
augmentation in complete bone mineral content, increase 
in development rate and decreased frequencies of bone 
cracks. This proposes that HSCT leads to engraftment of 
practical MSCs. Gene-marked MSCs, to recognize the cells 
after infusion, were given to six children who had under-
gone HSCT for severe osteogenesis imperfecta(Sillence 
et al. 1978, Horwitz et al. 1999, Horwitz et al. 2001, Horwitz 
et al. 2002). A bone marrow biopsy demonstrated 0.3%–7.4% 
Y-chromosome-positive cells by fluorescent in situ hybrid-
ization (FISH),signifying engraftment of the donor MSCs. 
Lee et  al. stated the case of a patient with acute leukemia, 
who accepted a peripheral blood stem cell graft collectively 
via MSCs since her HLA-haploidentical father was treated 
by regular immunosuppression(Le Blanc and Ringden 2007, 
Lee et al. 2002).

Conclusion

Mesenchymal Stem Cells (MSCs) have a capacity to home 
in and integrate into damaged tissues. MSCs provide immu-
nomodulatory effects by paracrine and/or cell-cell contact 
that inhibit innate immune system cells (DCs, NK cells, 
monocytes and neutrophils) and adaptive immune system 
cells (B, TH1 and T CTL). Also, MSCs stimulate Th2 and 
regulatory T-cells by the inflammatory microenvironment. 
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Therefore, the use of MSCs could lead to various therapeu-
tic possibilities such as supporting tissue regeneration and 
correcting inherited disorders. A rational understanding of 
the mechanisms of action of MSCs allows the translation of 
our basic knowledge of MSC biology into the design of new 
clinical therapies .The potential antiproliferative and immu-
nomodulatory function of MSCs is being intensely studied 
by various groups, with the hope that MSCs may be devel-
oped as a therapeutic strategy for autoimmune disease, 
HSCT, BMT(Bone marrow Transplantation) and as a use-
ful tool for cell-based therapy. Autologous transplantation 
of MSCs has a high ability to produce the desired results 
in clinical therapies, but it could induce tumors, because 
MSCs can undergo spontaneous transformation exhibiting 
a tumorigenic potential with immunosuppression effects. 
Also, allogeneic MSCs might have a potential risk of infec-
tions obtained from donors. The opportunity exists to utilize 
genetic engineering of MSCs to state particular factors for 
homing and therapy. Finally, clinical trials with MSCs will 
afford a rich resource of information that can be studied 
widely in the laboratory and will play an important role in 
clinical therapy. In the present review, the comprehensive 
definition, sources, markers, and receptors of MSCs, as well 
as the immunomodulatory effect of these cells on innate 
and adaptive immune system cells, homing to the damaged 
tissues and therapeutic aspects in a variety diseases, have 
been reviewed. We hope that using MSCs in the treatment of 
autoimmune diseases, BMT, HSCT and cell-based therapy 
will be investigated more in the near future.
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