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The aim of the analysis described in this paper 
was to confirm the internal validity of the 
Diabetes Mellitus Model (DMM), which is an 
epidemiological simulation model for the 
prediction of short- and long-term 
complications of diabetes. For the validation, 
mean values and confidence intervals (CIs) of 
simulated event rates (ERs) were calculated. 
The expected ERs were derived from 
publications. Internal validity of the DMM was 
defined as an agreement (overlap) between 
the model outputs and the published data 
allowing for a range of 25% deviation from the 
original data.

The results of the validation process revealed 
coherence between mean simulated ERs and 
expected ERs for most of the examined events. 

A fit of the range of CIs within the range of 
expected ERs can be observed for macular 
oedema in type 1 and type 2 diabetes, for 
retinopathy in type 1 diabetes, and for 
amputation and diabetic foot syndrome in 
type 2 diabetes. With the exception of end-
stage renal disease, the CIs and ranges of the 
other events overlap significantly, supporting 
the view that the model can be considered as 
internally valid.

These results substantiate the DMM as an 
internally valid diabetes model that predicts 
complication rates consistent with observed 
rates. The DMM is a valuable tool for medical 
decision-making. Further research is required 
to provide external validation of the model.



Internal validation of the DMM

Introduction

In recent years, the use of computer-
simulated disease models has increased1. In 
a simulation model, the main clinical 
characteristics of a specific disease and its 
influencing factors are described, and 
evidence from several sources is gathered to 
provide insight into the nature and 
development of the disease. Modelling 
techniques are useful in chronic diseases 
such as diabetes mellitus that are associated 
with serious and burdensome long-term 
clinical complications. Simulation models 
can widen the scope of clinical trials and 
facilitate simultaneous evaluation of the 
long-term effects of various treatment 
scenarios easily and economically2, in lieu of 
long-term clinical trials. It has been reported 
previously that models provide important 
information for clinical practice and are 
valuable tools in medical decision-making3. 
In the field of health policy, models are 
incorporated into regulatory processes and 
governmental decision-making4. The  
need for diabetes mellitus simulation models 
in the field of economic  
analysis has been clearly identified5.  
To meet this need, a new diabetes  
mellitus simulation model, the Diabetes 
Mellitus Model (DMM), has been developed, 
which is able to predict the short- and long-
term outcomes both of type 1 and type 2 
diabetes separately over a course of 10 
years6.

To serve its purpose, confirmation of the 
validity of this model is essential. Four steps 
are recommended for the validation process.
(1)  The structure of the model should be 

comprehensible to experts.
(2)  The model should reproduce the outcomes 

observed in the studies used to estimate its 
parameters (internal validation).

(3)  The model's predictions should be 
compared with results from studies not 
used in its construction to ensure that it 
meets with the ‘real world’ situation 
(external validation).

(4)  The model should be used to predict 
outcomes for new treatment programmes 
and the predictions compared with the 
outcomes when the programme is 
implemented.

The aim of the analysis described in this paper 
was to confirm the internal validity of the DMM 
(point 2 of the validation process). To this end, 
we examined whether the predictions of the 
model with respect to specific long-term 
clinical trial endpoints are comparable with 
the data from the studies that provided the 
input parameters for the model. Point 1 of the 
validation process is already complete and a 
panel of experts established structural validity 
of the model6,7. Point 3 is currently underway.

Research design and 
methods

The Diabetes Mellitus Model
The DMM is a Markov model, with memory, 
that was developed to predict a broad range of 
short- and long-term outcomes of types 1 and 
2 diabetes over the course of 10 years. Among 
various demographic (e.g. age, duration of 
diabetes, gender), physiological (e.g. 
haemoglobin A1c (A1c), systolic blood 
pressure (SBP), albumin excretion rate) and 
lifestyle (e.g. smoking) input parameters, the 
main determinant of events is the level of A1c, 
which is simulated over time and takes a 
predefined target A1c into account.
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The DMM applies the method of global 
microsimulation. As such, up to 100,000 
hypothetical patients can be generated by the 
model and are assigned demographic and 
disease-specific characteristics based on 
settings predefined by the user. The model 
updates the values of the various input 
parameters of each patient in yearly cycles and 
calculates event rates (ERs; events/100 
patients, cumulative up to 10 years) for 
diabetes outcomes based on these variables 
and the underlying risk equations.

Twenty events and mortality are simulated in 
the model, including hypoglycaemia, 
ophthalmic disorders, neuropathy, renal 
disease, and cardiovascular and 
cerebrovascular complications. The simulation 
of events is based on risk equations (see 
Appendix A) that calculate probabilities of 
diabetes outcomes for each patient. These 
probabilities are updated each year, taking 
changes in a simulated patient’s health state 
over time into account.

The basis of the underlying calculations is 
published data, mainly from the UK 
Prospective Diabetes Study (UKPDS)8,9, the 
Diabetes Control and Complications Trial 
(DCCT)10 and the Wisconsin Epidemiologic 
Study of Diabetic Retinopathy (WESDR)11. The 
DMM aggregates the data from these studies 
and extrapolates the results regarding 
diabetes-related complications for up to 10 
years.

The DMM’s structure and formula are 
described elsewhere6,7,12. A scientific panel of 
experts in the field of diabetes established the 
structural validity and ensured that the main 
relevant input parameters and outcomes were 
included in the model. Internal consistency, 

described as the correct implementation of 
the model formula and risk equations into the 
program13, has been ensured by continuous 
checking for program errors and by 
recalculating the model formula with another 
software program. Validation of the DMM 
simulation process, through validation of the 
random number generators that are used to 
generate patients and their health states, has 
been confirmed and is published 
elsewhere14,15.

Internal validation of the DMM
The objective of the internal validation process 
of the DMM was to examine whether the 
outcomes produced by the model (simulated 
ERs) are consistent with the outcomes from 
the main publications (expected ERs) on which 
the model was based. Expected ERs were 
derived from these publications, and 
simulated ERs were obtained from the DMM 
simulation. The validation process then 
compared the mean and confidence interval 
(CI) of the simulated ER with the expected 
mean ER and range calculated for each event.

Comparison between model-simulated ERs 
and expected ERs determined from reference 
publications was conducted for the most 
important events simulated in the DMM for 
the type of diabetes for which study data were 
available. For type 1 diabetes, the events 
validated were non-proliferative and 
proliferative retinopathy, macular oedema 
(MO), end-stage renal disease (ESRD), diabetic 
foot syndrome (DFS) and amputation. For type 
2 diabetes, MO, blindness, DFS, amputation, 
ESRD, myocardial infarction (MI), angina 
pectoris, heart failure and stroke were 
validated.

Definition of population characteristics at 
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baseline
In the DMM, the simulation population at 
baseline (start of simulation) is defined by a 
profile of input parameters encompassing 
specific demographic and physiological 
characteristics. For the internal validation 
process a profile was defined, which 
represents as closely as possible the 
characteristics of the populations observed in 
the reference publications on which the DMM 
was based. This allows for a comparison of the 
outputs from the model with the results of the 
reference publications. Occasionally, however, 
the reference publications did not contain all 
the information needed to define the baseline 
population characteristics. The WESDR was 
one such case, and in this instance the WESDR 
paper by Moss et al16 provided the additional 
information needed. For some characteristics 
it was necessary to make a number of 
assumptions and calculations, which are 
described below and summarised in Table 1.

Definition of target A1c
For the definition of profiles used in the DMM, 
it is necessary to define a target A1c value that 
patients in the model aim for. This target 
influences the course of A1c over simulation 
time. For definition of the profiles used for the 
internal validation, since target A1c values 
were not available from the reference 
publications, certain assumptions were 
necessary. For type 1 diabetes, the baseline 
values given in the published studies were 
used as the target A1c values; the assumption 
would, therefore, be that the A1c remains 
essentially unchanged for all 10 years of the 
simulation. For type 2 diabetes, the target A1c 
for patients from WESDR (who show a 2% 
increase of A1c over 10 years of simulation 
time) was defined as baseline A1c – 1%. For the 
profiles based on the UKPDS, the target A1c 

was estimated using the median A1c values 
over 10 years, as listed in the reference 
publication (UKPDS 33)8.

Definition of baseline systolic blood pressure
For the population characteristics based on the 
UKPDS, the baseline SBP value for hypertensive 
and non-hypertensive patients was estimated 
based on the general baseline SBP in the 
reference publications (UKPDS 33, 38)8,9. In the 
WESDR publications, no specific information 
was available for mean SBP values at baseline, 
therefore SBP values and percentage of 
hypertensive patients at baseline were 
estimated from the stratified data documented 
in the reference publication, with the method 
of weighted means applied.

Calculation of expected event rates
Type 1 diabetes
For type 1 diabetes, 10-year mean expected 
ERs for MO and ESRD could be derived directly 
from the reference publications. For all other 
events, the expected mean ERs were 
calculated based on the annual hazard rate 
(HR) of an event.

From this annual HR, the probability for an 
event after 10 years (P10 year) was calculated 
and then multiplied by 100 to obtain the mean 
10-year incidence rate per 100 patients (see 
Appendix B). These incidence rates were 
defined as the expected ER. The range of 
expected ERs was defined as ±25% about the 
mean value, based on advice from the panel of 
experts.

Type 2 diabetes
For MO and DFS in type 2 diabetes, expected 
ERs were based on the WESDR. Therefore, the 
procedure was the same as for WESDR for type 
1 diabetes as described above. For expected 
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Event Type 1 diabetes Type 2 diabetes
 Source Profile Expected  Source Profile Expected
  A1c, %  SBPa % ER (±25%)  A1c, %   SBPa  %   ER 
  (mean ± with    (mean  with  (range)
  sd)  HT   ± sd)  HT

Non- Klein et al 10.6 ± 112/ 14.1 74.95   NDA 

 proliferative   199817 2 178 

 retinopathy  (Tables 1,  

  2 and 6)      

Proliferative  Klein et al, 10.6  112/ 14.1 27.95   NDA 

 retinopathy  199817  ± 2 178 

  (Tables 1,  

  2 and 6)  

Macular  Klein et al, 10.6  111/ 15.5 20.1 Moss et al, Baseline: 121/178 44.56 18.45 

    

 oedema  199817  ± 2 178    199911 10.97 ±  

  (Tables 1,      (Table 1); 1.5; Target: 

  2 and 6)      Klein et al, 9.97 ± 1.5

       199518  

        (Table 4) 

Blind in one  NDA     UKPDS 338; Baseline:  130/140 30 3.08– 

 eye       UKPDS 389; 7.1 ± 1.5;   18.57 

       Moss et al, Target   

       199816  (int/conv): 

       5.5 ± 

       0.5/7.6 

       ± 0.5

End-stage  Moss et al, 10.0  112/ 18.3 14.40 UKPDS 338; Baseline:  130/140 30 0.66– 

 renal disease   199911  ±2.1 173    UKPDS 389;  7.1 ± 1.5;   14.4 

 (dialysis,   (Table 1);       WESDR19  Target   

 transplantation)  Klein et al,       (Table 4)  (int/conv): 

  199919        5.5 ±  

  (Table 4)       0.5/7.6  

        ± 0.5 

Amputation Moss et al 10.8  105/ 18.3 5.19 Moss et al, Baseline: 121/179 73.2 1.18– 

  199911  ± 2.1 150    199911   9.6 ± 1.5;   7.23 

  (Tables       (Tables 1  Target:     

  1 and 2)      and 3);   8.6 ± 1.5 

       UKPDS 338;  

       UKPDS 389

Table 1. Profile characteristics (for haemoglobin A1c and systolic blood pressure (SBP) values and hypertension (HT) 
prevalence), expected event rates (ERs) and sources for events validated
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mean simulated ER and the expected ER was based on the calculated expected ER based on 
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Event Type 1 diabetes Type 2 diabetes
 Source Profile Expected  Source Profile Expected 
  A1c, %  SBPa % ER   A1c, %   SBPa  %   ER 
  (mean ± with (±25%)  (mean  with  (range)
  sd)  HT with   ± sd)  HT

Diabetic foot  Moss et 12.7 ±  112/ 21 22.08 Moss et al, Baseline:  121/178 46.5 24.22 

 syndrome  al, 199911 1.5 178    199911  11.24 ±  

  (Table 1);      (Table 1);  1.5; Target: 

  Moss et al,      Moss et al,  10.24 ±  

  199220      199220   1.5 

  (Table 3)       (Table 4)

Myocardial    NDA   UKPDS 338; Baseline  130/140 30 7.07– 

 infarction        UKPDS   7.1 ±    9.24 

 (non-fatal)       389; UKPDS   1.5; 

       3521; UKPDS  Target 

       3622  (int/conv): 

        5.5 ±  

        0.5/7.6 

        ± 0.5 

Angina pectoris   NDA   UKPDS 338; Baseline: 130/140 30 6.77– 

       UKPDS   7.1 ±    7.76 

       389  1.5; Target  

        (int/conv): 

        5.5 ± 

        0.5/7.6  

        ± 0.5 

Heart failure   NDA   UKPDS  Baseline: 130/140 30 2.91– 

      338;   7.1 ±    5.13 

      UKPDS   1.5; 

      389;   Target  

      UKPDS   (int/conv): 

      3521;   5.5 ±  

      UKPDS   0.5/7.6  

      3622  ± 0.5

Stroke    NDA   UKPDS  Baseline: 130/140 30 4.21– 

(non-fatal)      338;   7.1 ±    7.76 

      UKPDS   1.5; 

      389;   Target  

      UKPDS   (int/conv): 

      3521;   5.5 ± 

      UKPDS  0.5/7.6  

      3622  ± 0.5   

sd, standard deviation; int/conv, intensively/conventionally controlled groups; NDA, no data available

aNormotensive patients/hypertensive patients, in mmHg.

Table 1 (Continued). Profile characteristics (for haemoglobin A1c and systolic blood pressure (SBP) values and 
hypertension (HT) prevalence), expected event rates (ERs) and sources for events validated



ERs based on the UKPDS studies, the incidence 
rates (events/1,000 patient-years) as published 
for intensively and conventionally controlled 
groups were used. In light of the large size of 
the two treatment groups, weighted means of 
events/1,000 patient-years were calculated 
and subsequently used to define the range of 
expected ERs.

Simulation of event rates
For each event, 40 simulation runs were 
carried out, each with a different baseline 
population of 1,000 diabetes patients. This 
resulted in 40 ERs (events/100 patients) after 
10 years from which mean values and 95% CIs 
for the simulated ERs were computed.

Definition of validity
Internal validity of the DMM was evaluated for 
each event by comparing the simulated ERs 
(mean and CI) with the expected ERs (mean 
and range). An event was termed ‘internally 
valid’ if the simulated ER CI fell within or 
overlapped with the expected  
ER range.

Results

The range of expected ERs from the publications 
and the CI of simulated ERs are depicted in Figure 
1 for type 1 and type 2 diabetes. The expected ERs 
refer to the estimated mean derived from the 
publications with a range of ± 25%. The CI of the 
simulated ERs is based on the mean of the 
simulated ERs and should overlap with the range 
of expected ERs. The results for each of the 
endpoints depicted are described in detail below.

Type 1 diabetes
Retinopathy
A total fit of the simulated ER CIs within the 

range of expected ERs was observed for non-
proliferative retinopathy (CI 75.0–76.5 vs. 
expected ER range 56.2–93.7 events/100 
patients), with a mean simulated ER of 75.75 
events/100 patients versus a mean expected 
ER of 74.95 events/100 patients. Proliferative 
retinopathy also showed a total fit  
(CI 24.9–26.9 vs. expected ER range 21.0–34.9 
events/100 patients) as did MO (CI 17.2–22.7 
vs. expected ER range 16.1–26.8 events/100 
patients) (Figure 1A).

End-stage renal disease
The largest difference between the simulated 
and expected mean ERs was observed for 
ESRD in type 1 diabetes (8.79 vs. 14.4 
events/100 patients). This was also the only 
event for which there was no overlap between 
the simulated ER CI and the range of expected 
ERs (6.95–10.63 vs. 10.8–18 events/100 
patients) (Figure 1A).

Diabetic foot syndrome
For DFS which (refers to the diagnosis of sores 
and ulcers, based on medical history 
questionnaires20), the simulated range fell 
completely within the expected ER range, 
where the CI was 14.5–22.1 events/100 
patients compared with a range of expected 
ERs of 16.6–27.6 events/100 patients, with 
mean ERs of 18.3 vs. 22.1 events/100 patients, 
respectively (Figure 1A).

Amputation
For amputation, the model CI extended 
beyond the range of expected ERs, with a CI of 
4.5–8.0 vs. an expected ER range of 3.9–6.5 
events/100 patients (Figure 1A).

Type 2 diabetes
Except for MO and DFS, comparison of the 
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the annual HR of an event.
 
Macular oedema
For MO, the simulated ER CI showed a total fit 
within the range of expected ERs (19.1–20.5 vs. 

13.8–23.1 events/100 patients; mean ERs 
being 19.83 vs. 18.45 events/100 patients for 
simulated and expected ERs, respectively) 
(Figure 1B).

76 © 2006 Informa UK Ltd – JME 124

A

B

Figure 1. Comparison of model output (simulated event rates) with expected event rates for major events in patients 
with (A) type 1 diabetes and (B) type 2 diabetes. Bars indicate confidence intervals (CIs) of simulation, lines indicate 
ranges of expected event rates. 

DFS, diabetic foot syndrome; ESDR, end-stage renal disease; ME, macular oedema; PRP, proliferative retinopathy;  

NPRP, non-proliferative retinopathy; MI, myocardial infarction.
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Diabetic foot syndrome
For DFS, the simulated ER range showed a total 
fit within the expected ER range, with a 
simulated ER CI of 19.8–26.1 and an expected 
ER range of 18.2–30.3 events/100 patients. 
Mean values were 22.97 and 24.22 events/100 
patients, respectively (Figure 1B).

End-stage renal disease
In contrast to type 1 diabetes, the simulated ER 
CI and expected ER range overlapped for ESRD 
in type 2 diabetes (0.56–1.8 vs. 0.66–14.4 
events/100 patients, respectively) (Figure 1B). 
Although this overlap covered only a short 
range of events, the differences between the 
lower boundaries of the ranges were quite small, 
whilst the differences between the upper 
boundaries were much larger; consequently, a 
substantial proportion of the simulated CI 
overlapped with the range of expected ERs for 
ESRD (Figure 1B).

Cardiovascular events
The model CI was not a total fit within the 
expected ER range for MI. However, the two 
ranges did overlap to a large degree. The 
simulated ER CI upper boundaries extended 
beyond those of the range of expected ERs, 
whilst the lower boundaries were relatively 
similar (7.2–10.93 and 7.07–9.24 events/100 
patients for simulated ER CI and range of 
expected ERs, respectively) (Figure 1B). For 
angina, the simulated ER CI upper and lower 
boundaries both extended beyond those for 
the range of expected ERs (5.57–8.79 vs. 6.77–
7.76 events/100 patients).

Blindness
For blindness, a similar situation to that with 
ESRD was observed, with a substantial 
proportion of the simulated ER CI overlapping 
with the range of expected ERs (CI 1.2–3.9 vs. 

expected ER range 3.1–18.6 events/100 
patients).

Amputation
A total fit of the simulated ER CI within the 
range of expected ERs was also observed for 
amputation (4.1–5.1 vs. 1.2–7.2 events/100 
patients) (Figure 1B).

Discussion

The purpose of this analysis was to 
demonstrate internal validity for the DMM, 
which was defined as the simulated ER CI 
falling within or overlapping with the 
expected ER range. On the basis of this 
definition for internal validity, it can be 
concluded that all of the long-term clinical 
outcomes evaluated in the DMM are internally 
valid for type 2 diabetes. The same can be said 
for the simulation of long-term clinical 
outcomes in type 1 diabetes, with the 
exception of ESRD.

The lack of internal validity for ESRD simulation 
in type 1 diabetes using the DMM may be due 
in part to the data source used to construct 
this simulation in the model. The simulation of 
ESRD in type 1 diabetes in the DMM is based 
on the WESDR19, where the 10-year incidence 
of ESRD was 14.4%. Expert opinion suggests 
that this rate is extraordinarily high, and recent 
studies have shown an impressive reduction in 
the incidence of diabetic nephropathy 
(probably owing to improved management of 
diabetes and hypertension)23, suggesting that 
the incidence of ESRD in type 1 diabetes may 
be much lower today. This was accounted for 
in the risk equation for ESRD in the DMM, and 
as a consequence simulated ERs in the model 
will always be systematically lower compared 
with WESDR data since the model does not 
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aim to reproduce the outcomes from the 
source publication. As such, the definition of 
internal validity used in this evaluation is not 
applicable to ESRD in type 1 diabetes.

The highest degree of internal validity (i.e. 
total fit of the simulated ER CI within the 
range of expected ERs) was found for MO in 
type 1 and type 2 diabetes, non-proliferative 
and proliferative retinopathy in type 1 
diabetes, and amputation and DFS in type 2 
diabetes. The lower simulated mean ER 
compared with the expected mean ER seen 
for DFS in type 1 diabetes can be explained in 
part by the fact that a high probability (0.07) 
for ‘sores or ulcers’ was reported at baseline in 
the study population from which the 
expected ER was derived. This probability was 
higher for groups with a longer duration of 
diabetes at baseline. Consequently, 
extrapolation of the 4-year incidence to a 
10-year incidence led to higher expected ERs 
compared with simulated ERs. Also, the 
influence of diabetes duration in the model 
for this event was derived from a different 
source that assumes a smaller risk for 
diabetes duration, further  
contributing to the difference between 
expected ERs and simulated ERs for  
these complications.

When interpreting the results of this internal 
validation, it is important to remember that a 
number of factors may influence the overlap 
between the simulated ER CI and the expected 
ER range. The first factor to consider is the 
limited range of the simulated ER CI relative to 
the expected ER range for ESRD in type 2 
diabetes. This can be explained by the two 
different studies used for the simulation of 
events: the UKPDS and the WESDR19. The 

WESDR is an observational study with 
published data for the subgroup of patients 
with type 1 diabetes. It describes high 
cumulative incidences for ESRD of 14% after 10 
years which suggest that the population is 
rather poorly controlled with respect to blood 
sugar levels and blood pressure. In contrast, the 
UKPDS is a randomised controlled study in 
newly diagnosed type 2 diabetes, where part of 
the study population was intensively 
controlled; therefore, the A1c and blood 
pressure values were better controlled and 
thus lower risks for long-term complications 
were observed relative to the WESDR. The net 
result of this is a large difference in expected 
ERs calculated from these studies, with the 
UKPDS accounting for the lower range and the 
WESDR accounting for the upper end of the 
range. Since the risk equation in the DMM for 
ESRD includes more risk factors based on 
UKPDS data than on WESDR data, the model’s 
mean simulated ER and its CI will, therefore, 
only cover the lowest part of the expected  
ER range.

The degree of overlap between simulated 
event CIs and the range of expected ERs is also 
influenced to a large extent by the baseline 
characteristics of the simulated populations 
defined at the start of the simulations. The 
baseline characteristics of the simulated 
population were defined to represent as 
closely as possible the study populations from 
the publications that the model simulations 
are based on. However, in the publications 
from which baseline population characteristic 
profiles were constructed, only limited data 
were available. For example, normal 
distribution had to be assumed for age and 
duration of diabetes, since only the mean (± 
standard deviation) was available from the 
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published studies. Also, many baseline 
parameters were not documented for the 
specific subpopulation under study and had to 
be derived from other publications that were 
not sources for the model. In addition, there 
were instances where data for subgroups 
defined at baseline were missing (e.g. SBP in 
hypertensive vs. non-hypertensive groups). 
Consequently, it was necessary to make a 
number of estimations and assumptions when 
defining the profiles for the internal validation, 
which contribute to uncertainty.

Because of the DMM’s simulation methodology 
(Monte Carlo simulation), the uncertainty 
around the simulated ER reflected in its 
associated CI depends on both the number of 
contributing factors included in the risk 
equation for that event and the probability of 
the occurrence of that event. Thus, the greater 
the number of contributing factors included, 
the higher the variance in the model between 
simulation runs, and the larger the CIs of all the 
model runs. Variance between model 
simulation runs will also increase with 
decreasing probability of an event. Both of 
these factors will contribute to broader CIs. For 
some input parameters (e.g. age), the model 
assumes a distribution from which values are 
selected according to a random number 
generator. This second order uncertainty is also 
reflected in the CIs of the simulated ERs.

Finally, the set-up of the simulation itself has 
an influence on the variation of the simulation 
results. The number of patients and iterations 
also contribute to the variation. For the 
presented validation, 1,000 patients per 
simulation and 40 iterations were used. 
Increase of either number would have 
positively influenced the results, i.e. led to 

smaller CIs.    

Therefore, when interpreting the results of this 
internal validation, all of these issues regarding 
the DMM simulation methodology need to be 
considered because they influence the 
simulated ER CIs and, therefore, their degree of 
fit within the range of expected ERs. These CIs 
are a measure of the confidence of the model 
results and its virtual population and do not 
necessarily reflect the confidence around ERs 
of the model’s underlying study populations.

The question of how best to estimate 
uncertainty in the DMM, or indeed any 
simulation model, is an area where further 
research is required. An extended approach to 
the one presented here, for example, could 
account for the difference in risks by increasing 
the number of simulated patients for events 
that occur only rarely. How this issue can be 
addressed in detail is beyond the scope of this 
paper and requires further investigation.

In conclusion, based on the four essential 
validation steps defined at the start of this 
paper, the first two steps have now been 
fulfilled and the internal validity of the DMM has 
been proven. However, as the DMM reflects 
evidence from clinical trials, certain factors (e.g. 
healthcare setting factors) that influence 
diabetes outcomes are not considered and 
generalisability is still limited. Therefore, the 
next step in the process of continuous 
improvement of the DMM is external validation, 
where simulated ERs are compared with 
expected ERs derived from data that were not 
used for construction of the model. External 
validation determines the applicability of a 
simulation model to the ‘real world’ and 
provides insight into necessary adaptations of 
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the model assumptions and calculations to real-
world conditions. Whilst the validation process 
is still ongoing, the data to date suggest that the 
DMM is a valid model for the prediction of long-
term clinical outcomes both in type 1 and type 
2 diabetes.
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Appendix A

Based on published studies, each parameter–
outcome relationship was mathematically 
described8–11. All input parameters (x) 
influencing one model outcome (event) are 
incorporated in an event- and diabetes-type 
specific risk equation. Each risk equation 
calculates the probability of an event (Pevent) 
per patient and updates it each simulation 
year. Pbasic is calculated as follows:
Pbasic = 1-e ([In (1-CI/100)]/t[years]) 

where CI=cumulative incidence defined as the 
absolute rate of events per 100 patients, 
t=observed time in years, In=natural logarithm 
and e=exponential function.
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Appendix B

The average annual hazard rate (HR) for an 
event was calculated using the following 
formula:
Pevent = Pbasic/A1c *RRX(1) *RRX(2)  *... RRX(n)

where Pevent  is the individual probability of  an 
event (conditional probability), RRX(n)

is relative risk fuction per parameter (risk 
function can be: linear [a11 *x11+b11] or 
exponential [a11 *exp (b11 x11)] where a11,  b11 are 
regression coefficients) and  xn are actual 
values for risk factors (e.g. blood pressure).  
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