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Abstract; Traumatic injury/hemorrhagic shock (T/HS) elicits an acute inflammatory response that may result in death. 
Inflammation describes a coordinated series of molecular, cellular, tissue, organ, and systemic responses that drive the 
pathology of various diseases including T/HS and traumatic brain injury (TBI). Inflammation is a finely tuned, dynamic, 
highly-regulated process that is not inherently detrimental, but rather required for immune surveillance, optimal post-injury 
tissue repair, and regeneration. The inflammatory response is driven by cytokines and chemokines and is partially 
propagated by damaged tissue-derived products (Damage-associated Molecular Patterns; DAMP’s). DAMPs perpetuate 
inflammation through the release of pro-inflammatory cytokines, but may also inhibit anti-inflammatory cytokines. Various 
animal models of T/HS in mice, rats, pigs, dogs, and non-human primates have been utilized in an attempt to move from 
bench to bedside. Novel approaches, including those from the field of systems biology, may yield therapeutic breakthroughs 
in T/HS and TBI in the near future. 
Abbreviations; ARDS: Adult Respiratory Distress Syndrome; CSF: cerebrospinal fluid; DAMP: Damage-associated 

Molecular Pattern molecule; HMGB1: High-mobility Group Box 1; IL: Interleukin; IP-10: interferon-inducible protein 10; ISS: 
Injury Severity Score; LPS: gram-negative bacterial lipopolysaccharide; MIG: monokine induced by gamma interferon; MIP-
1α: Macrophage inflammatory protein-1 alpha; MODS: Multiple Organ Dysfunction Syndrome; NO: Nitric Oxide; PAMP: 
Pathogen-associated Molecular Pattern molecule; RAGE: Receptor for Advanced Glycation Endproducts; RANTES: Regulated 
on Activation Normal T Cell Expressed and Secreted; SIRS: Systemic Inflammatory Response Syndrome; TBI: Traumatic 
Brain Injury; T/HS: Traumatic/Hemorrhagic Shock; TLR: Toll-like receptor; TNF-α: Tumor Necrosis Factor–alpha; TGF-β1: 
transforming growth factor-β1 
Key words: Trauma, Hemorrhagic Shock, T aumatic Brain Injury, Inflammation, Systems Biology r
 

Introduction 
Traumatic injury, often accompanied by hemorrhagic 

shock (T/HS), continues to be the most common cause of 
death for young people and constitutes a significant 
source of morbidity and mortality for all ages [1,2,151]. 
Traumatic brain injury is the leading cause of death in the 
U.S. and Western Europe [147-150] and a budding 
epidemic throughout Asia and the Middle East [52]. 
Traumatic brain injury (TBI) is also a major cause of 
disability, with survivors acquiring long-term cognitive, 
motor, behavioural or speech-language disabilities [147]. 
The various forms of traumatic injury therefore represent 
a pandemic disease that affects every nation in the world 
without regard for economic development, racial or 
religious predominance, or political ideology; this disease 
is acute in onset and often results in chronic, debilitating 
health problems affecting far beyond the individual victims 
[1]. 

 
Further complicating the primary damage in acute 

trauma is the increased susceptibility to sepsis and 
Multiple Organ Dysfunction Syndrome (MODS), a poorly 
understood syndrome of sequential and gradual loss of 
organ function [3].  MODS is the most frequent cause of 
late deaths post-injury, accounting for substantial 
morbidity and mortality [4,5]. MODS is considered to be 
due, in part, to excessive or maladaptive activation of 
inflammatory pathways [6]. Organs such as the liver and 
the gut not only become damaged or dysfunctional from 
trauma-induced inflammation, but in turn further 
perpetuate this inflammatory vicious cycle [7,8,21]. 
Furthermore, patients admitted to the intensive care unit 
following trauma and hemorrhage often become 
susceptible to infection “second hit” further complicating 

attempts at immunomodulation early in the clinical course 
[9] (Fig. 1). 

Trauma acts as a trigger of a complex cascade of post-
traumatic events that can be divided into a hemodynamic, 
metabolic, neuro-endocrine and immune responses 
leading to a multifocal pathophysiologic process [10]. 
However, inflammation is not in itself detrimental. It is in 
most cases a well-coordinated communication network 
operating at an intermediate time scale between neural 
and longer-term endocrine processes [11]. Inflammation is 
necessary for the removal or reduction of challenges to 
the organism and subsequent restoration of homeostasis 
[12]. 

 
However, hemorrhage and trauma, perhaps combined 

with failed attempts at therapy [13,14], can induce a 
dysregulated acute inflammatory response that affects 
several organ systems and sets in motion a vicious cycle 
of inflammation�damage�inflammation [12,15-18] 
driven by cytokines, chemokines, and products of 
damaged, dysfunctional, or stressed tissue (Fig. 2; see 
below). 

 
Thus, though the inflammatory response is pivotal in 

clearing invading organisms and offending agents and 
promoting tissue repair, these same responses carried out 
under a set of extreme conditions can also compromise 
healthy tissue and further exacerbate inflammation 
[12,19]. 

 
A central question then is: how do we harness the 

beneficial effects of inflammation and allow proper lines of 
communication while simultaneously not allowing 
inflammation to exceed a threshold that becomes self-
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sustaining? This review article will focus on the common 
inflammatory/immune responses to T/HS and TBI, and will 
aim to give an overview of both the current state of 
relevant translational/clinical research and several novel 
approaches being undertaken as trauma research moves 
from the bench to the bedside. 

 

 
Figure 1 The ‘one-hit’ and ‘two-hit’ paradigm of traumatic 

injury. ‘One hit’ represents the initial, massive tissue injury and 
shock and SIRS along with remote organ injury. The ‘second hit’ 
refers to the less intense SIRS that normally resolves but leaves 
the patient vulnerable to a secondary inflammatory hit that can 
reactivate the SIRS and precipitate late MODS. 

 
Trauma and the immune response from a clinical 
perspective  

The pathophysiology of T/HS and TBI is now 
understood to consist of different phases that form a 
continuum [7,107]. Death from post-traumatic injury 
occurs in three phases. In the first phase, patients die 
immediately because of devastating trauma.  In the 
second phase, which occurs during early resuscitation, 
death may be related to hypoxia or hypovolemia.  In the 
third phase, days or weeks following injury, death may be 
due to general physical consequences of injury of which 
the dominant manifestations are adult respiratory distress 
syndrome (ARDS) and MODS [20]. In 1995, two models 
were proposed for the exaggerated immune inflammatory 
response [22], known colloquially as ‘one hit’ and ‘second 
hit’ phenomena. The ‘one hit’ model, which accounts for 
the initial, massive tissue injury and shock that gives rise 
to an intense systemic inflammatory response syndrome 
(SIRS) with remote organ injury [22]. The ‘second hit’ 
model indicates the initial, less intense SIRS that normally 
resolves but leaves the patient vulnerable to a secondary 
inflammatory hit that can reactivate the SIRS and 
precipitate late MODS [23] (Fig. 1) 

 
In the case of TBI, primary brain injury consists 

primarily of unavoidable brain damage that occurs at the 
immediate moment of impact, resulting in the disruption 
of brain parenchyma and cerebral blood vessels. This 
injury is further classified into focal versus diffuse injury. A 
secondary brain injury develops in the minutes to months 
following the original insult, progressively contributing to 
worsened neurological impairment [153]. Death of 
resident cells of the central nervous system has 
traditionally been thought to take place in two phases: an 
early necrotic and an ongoing, long-term apoptotic phase 
[154,155]. 

 
Thirteen years after these two models regarding the 

pathophysiology of T/HS and TBI were proposed, the 

question arises of how the clinical community has 
benefited from these two theoretical models, with regard 
to decreasing patient mortality post-traumatic injury; we 
will attempt to address this thorny question in this review. 
We know that the post-traumatic inflammatory process 
occurs at multiple scales and involves the activation of 
signaling pathways that mobilize inflammatory cells, and 
stimulate the secretion of multiple inflammatory 
mediators/biomarkers. The complexity of this response 
has stymied attempts at therapeutic modulation of 
trauma-induced inflammation, resulting in a dearth of 
therapeutic options, though, as we discuss below, novel 
approaches from the systems biology field may help in 
deciphering this complexity [11,89,108]. 

 

 
 
Figure 2 The inflammatory response to tissue injury. Traumatic 
injury signals various cell types to produce cytokines, chemokines, 
and DAMPs. In turn, DAMPs re-activate and further propagate the 
production of inflammatory mediators, setting in motion a positive 
feedback loop of inflammation damage inflammation. 
 

 
Figure 3 The spectrum of cytokines, chemokines, and DAMPs in 
T/HS and TBI. The inflammatory response generated in response 
to T/HS or TBI can be assessed by measuring a panoply of 
cytokines, chemokines, DAMPs, and ultimate markers of end-
organ damage. Some of these biomarkers may also be candidates 
for therapeutic intervention. 
 

Cytokines are a broad class of protein hormones that 
mediate inflammatory and immune responses in a 
complex, context-sensitive manner [12,88] (Fig. 3). Not 
surprisingly, cytokines play a major role in the body’s 
response to T/HS and TBI [107,109]. Major cytokines that 
participate in the response to trauma include tumor 
necrosis factor–alpha (TNF-α), interleukin-1 beta (IL-1β), 
IL-2, IL-6, IL-8 [20,24,25], IL-4 [26] and recently IL-18 
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[27]. On the other hand, the cytokine IL-10 counteracts 
the effects of the pro-inflammatory cytokines IL-1, IL-6 
and TNF-α in various contexts [28], including severe 
hemorrhagic shock [29]. Unlike septic shock, where the 
cascade of cytokines is well defined, the role of cytokines 
in trauma and hemorrhagic shock is not well elucidated, 
the experimental and clinical data are conflicting [7], and 
the response in humans (as opposed to animal models of 
T/HS) is still poorly understood [30]. Circulating levels of 
cytokines have been detected in animal models and in 
patients with severe sepsis, and these levels have some 
correlation with outcome [31].  Production of the free 
radical nitric oxide (NO), which is produced in 
inflammatory settings by the enzyme inducible NO 
synthase (iNOS) [110], was shown to be a central 
mediator of post-T/HS inflammation in mice [111]. In 
human trauma patients, circulating NO reaction products 
reflect the severity of injury during the first two hours 
after the traumatic insult, suggesting that increased NO 
production might play a role in the very early post injury 
period [48]. 

 

 
Figure 4 A vision for the future of drug design for T/HS and 

TBI. The future of rational drug design for T/HS and TBI may 
involve the use of in silico (computer simulated) that would be 
based on a mechanistic understanding of the inflammatory 
response as well as pharmacokinetic and pharmacodynamic 
principles and used to determine the optimal properties, dosage, 
timing, and inclusion/exclusion criteria for a given drug 
candidate’s clinical trial. Key aspects of these simulations would 
be tested iteratively in cell culture experiments and pre-clinical 
animal models, streamlining the process (and reducing the time 
and cost) of clinical trial design and implementation. 

 
Chemokines represent a class of cytokine-like immune 

modulators that are gaining attention as potential 
therapeutic targets for various inflammatory diseases 
[112,113] (Fig. 3). Chemokines are produced by a variety 
of immune cells (innate and adaptive immunity) such as 
macrophages, lymphocytes, neutrophils and dendritic cells 
that mediate various functions of these cells, including 
recruitment of other cells [90]. Chemokines have been the 
focus of intense study in relation to T/HS.  The complex 
interaction between cytokines and chemokines may 
underlie the crucial role of these inflammatory modulators 
in the inflammatory process following T/HS and TBI [109] 
and in other disease setting such as tumors, infection, and 
autoimmune disease [49]. Indeed, chemokines initiate 
recruitment of peripheral leukocytes after TBI, and 
evidence now exists for their intra-cerebral production 
[153,156,157]. 

 

Among chemokines, Macrophage inflammatory protein-1 
alpha (MIP-1α) appears to orchestrate both acute and 
chronic inflammatory host responses at the site of injury 
or infection, mainly by recruiting inflammatory cells 
[49,50].  Additionally, MIP-1α mediates an extensive 
repertoire of pro-inflammatory activities, including 
stimulating the secretion of TNF-α, IL-1, and IL-6 by 
peritoneal macrophages [91]. Studies in mice have shown 
that short-term manipulation of MIP-1α following T/HS 
might be advantageous for diminishing the inflammatory 
response and improving vital organ dysfunction. As in 
most cases of therapeutic immunomodulation, inhibition of 
MIP-1α is a two-edged sword, in this case an increased 
risk of late infection [49]. 

 
Monocyte chemoattractant protein (MCP-1), 

Macrophage Inflammatory Protein-1 beta (MIP-1β), 
Regulated on Activation Normal T Cell Expressed and 
Secreted (RANTES), Eotaxin, Interferon-inducible Protein 
10 (IP-10), Monokine Induced by Gamma Interferon 
(MIG), and IL-8 are chemokines that may offer novel 
therapeutic or diagnostic targets for T/HS. 

 
Pathogen-associated molecular patterns (PAMPs), 

damage-associated molecular patterns (DAMP’s, also 
known as alarmins), and their receptors (e.g. Toll-like 
receptors [TLR]-2 and -4; Receptor for Advanced 
Glycation End products [RAGE]) represent a parallel and 
perhaps integrative [114]  system that is turned on during 
infection as well as tissue injury, including T/HS [92] and 
perhaps also TBI [115] (Fig. 3). PAMPs encompass a 
diverse set of microbial molecules that share various 
recognizable biochemical features that alert the organism 
to intruding pathogens [92,93]. Such exogenous PAMPs 
are recognized by cells of the innate and acquired immune 
system, primarily through TLRs, which activate several 
signaling pathways among which NF-κB is the most 
distinctive [92]. For example, gram-negative bacterial 
lipopolysaccharide (LPS) is the prototypical PAMP [116]. 

 
In an analogous fashion, DAMPs are produced by 

injured tissue and stimulate or propagate inflammation 
through the production of cytokines; in this way, DAMPs 
play an important role in the pro-inflammatory cascade of 
innate immunity [92 95] (Figs. 2 and 3). Molecules in this 
class of inflammatory mediators include High-mobility 
Group Box 1 (HMGB1), S100A and B, Uric acid, IL-1β, heat 
shock proteins, and a growing list of additional molecules 
(Fig. 3). HMGB1 is produced in diverse settings such as 
infection, trauma, ischemia, T/HS, and TBI, which may 
contribute to the pathogenesis of severe sepsis along with 
other early, classical pro-inflammatory cytokines such as 
TNF-α and IL-1β [94]. In animal studies, HMGB1 was 
shown to be a key mediator of inflammation in models of 
sterile injury, including hemorrhagic shock [99,100]. 
Serum HMGB1 concentrations were significantly increased 
16-32 h after exposure to lipopolysaccharide, and systemic 
administration of HMGB1 was lethal [105]. Antibodies to 
HMGB1 were shown to be protective even in the setting of 
established septic shock in mice [117]. 

 
Animal models of T/HS and TBI 

Traumatic hemorrhage can be a consequence of direct 
injury to blood vessels, with massive bleeding, or as a 
result of diffuse bleeding  secondary to coagulopathy in 
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vessels too small and too numerous for surgical 
management [51]. In the last few decades, the 
pathophysiology of the systemic response to T/HS has 
been studied extensively in an attempt to elucidate the 
hemodynamic mechanisms and immunological alterations 
associated with T/HS. However, translating these 
experimental findings into clinically applicable therapy has 
proven difficult, and investigators in this field are 
challenged by two sometimes mutually incompatible goals. 
Researchers desire to minimize the animal-to-animal 
variability and at the same time seek to simulate clinical 
conditions. Ideally, the experimental setup mimics the 
clinical situation associated with hemorrhagic shock in the 
trauma patient, while providing the controlled conditions 
that maximize reproducibility and standardization. There 
are three common variants of preclinical animal models, 
which all have their advantages and disadvantages. These 
experimental preparations are the uncontrolled 
hemorrhage model and the controlled hemorrhage model 
that is divided into two: the fixed pressure regimens, and 
the fixed volume models. 
 

 
The model that best reflects the clinical setting is the 

uncontrolled hemorrhage model. Although the 
standardization and reproducibility of this model is poor, it 
can be combined with organ and tissue injury, and allows 
for assessment of compensatory mechanisms. On the 
other hand, controlled hemorrhage offers a much better 
management of the degree of shock induced. In fixed 
volume model, animals are bled to a fixed amount of 
blood, usually based on the weight of the animal. It is not 
as clinically relevant as the uncontrolled hemorrhage 
model, but one can achieve a reasonably good 
management of the degree of shock induced [32]. In a 
fixed pressure model, also called “Wiggers model”, blood 
pressure is monitored and blood is removed or reinfused 
to achieve a fixed pressure [33]. In these models, the 
degree and duration of hypotension can be controlled by 
using a variable stress (blood loss) to maintain a constant 
level of response (blood level). However, the clinical 
comparability is poor and animals often need to be 
heparinized. Heparin has been shown to confound results 
in experimental models of hemorrhagic shock like release 
of catecholamine’s and alter cytokine levels [34,35]. 
Recent advances in computerized automation, however, 
raise the possibility that very precise hemorrhage can be 
carried out in both rats [118] and mice [119]. 

 
Animal models of TBI include both paradigms of focal 

injury such as closed cortical impact, fluid percussion, or 
stab wound injury [177], as well as models that involve 
diffuse injury that occurs from the tissue distortion, or 
shear, caused by inertial forces present at the moment of 
injury [177,178]. These are most commonly separated 
into four main pathologies: traumatic axonal injury (TAI), 
diffuse hypoxic brain damage, diffuse brain swelling and 
diffuse vascular injury, which seems to be the worst of the 
four [177-179]. In these animal models, IL-1β and TNF-α 
have been implicated as primary pro-inflammatory 
cytokines, while a potentially beneficial, anti-inflammatory 
role has been ascribed to IL-10. Interleukin-1β has been 
characterized extensively in animal models of TBI as a 
promoter of neuroinflammation [158,159]. The neuronal 
damage resulting from IL-1β release appears to be 

indirect, due to synergistic action with other pro-
inflammatory cytokines such as TNF-α [160, 161].  Like IL-
1β, TNF-α has been regarded as a purely pro-
inflammatory cytokine in the short history of TBI research 
[153]. The time course of release of TNF-α has is 
remarkably consistent across experimental paradigms of 
focal TBI in rodents (closed cortical impact, fluid 
percussion, or stab wound injury), with detectable levels 
at 1 h post-injury, maximal concentration at 3-8 h, and a 
decline in release by 24 h within the brain [162,163].  In 
diffuse injury models, serum levels of TNF-α rise within 24 
h with an absence of expression in brain tissue, 
suggesting that diffuse injury induces a different immune 
response [164]. Similar to TNF-α, IL-6 has shown to play a 
role in neuroinflammation that is detected by 1 h post-
injury in animal models, followed by a peak concentration 
between 2 and 8 h [153,165,166]. On the anti-
inflammatory side, experimental studies have 
demonstrated a beneficial effect of IL-10, with exogenous 
administration of this cytokine aiding neurological recovery 
and reducing pro-inflammatory cytokine expression [167]. 

 
Human studies of T/HS 

Translational research aims to apply scientific 
discoveries in basic science into the clinical level hoping to 
provide measures that predict outcome and to decrease 
the mortality rate in humans [120]. In the setting of T/HS 
and TBI, initial efforts to understand the role of cytokines 
focused on post-traumatic blood levels and 
pharmacological therapy aimed at enhancing the 
protective cytokines and inhibiting the damaging cytokines 
are underway and have shown some improved survival 
rates in experimental animals [36]. Conclusions from these 
studies were that, at low concentrations, cytokines are 
important to the host response to trauma whereas in 
higher concentrations they are deleterious [37]. The best 
characterized and, apparently, earliest and most 
fundamental cytokine in the trauma-induced pro-
inflammatory cascade is TNF-α. TNF-α triggers the 
production of other cytokines, which amplify and 
propagate the inflammatory response [96] where raised 
plasma TNF-α have been found in hemorrhagic shock 
patients [97,98]. TNF-α also participates in the generation 
of free radicals such as NO [110,121]. Clinical studies have 
demonstrated that levels of several inflammatory 
mediators, such as IL-6, IL-8 and IL-10, correlate closely 
with severity of injury and complication rates [101-104]. 
From the family of DAMPs, serum HMGB1 was significantly 
increased in patients with sepsis, and the highest 
concentrations were observed in samples from patients 
who died [106].  Recent studies in HS patients suggested 
that HMGB1 may be involved in the pathogenesis of 
human HS outcome [106], though further studies are 
needed to determine HMGB1 role in the inflammatory 
response to trauma. We have demonstrated recently that 
mean post-T/HS HMGB1 levels samples within the first 24 
h were higher in non-survivors vs. survivors, and that 
these levels correlated with various indices of injury 
severity including Marshall Score, creatinine, and 
circulating liver transferases [122]. 

 
Various intrinsic factors such as age, gender, race, body 

temperature, resuscitation, and hypotensive period, 
among others, play a role in how the body responds to 
acute traumatic injury. In addition, aspects of the injury 
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itself (assessed clinically as ISS score, Marshall score, 
lactate, and base deficit), as well as treatment with agents 
such as inotropes, are additional important variables that 
impact clinical outcomes. It is daunting to attempt to 
study this multitude of variables in the acute clinical 
setting, and thus they are often examined separately.  For 
example, the effect of aging on the immune response to 
traumatic injury has been studied. The inflammatory 
response becomes radically altered during the process of 
aging [38-41]. Indeed, the two processes (inflammation 
and aging), have prompted some authors to coin the term 
“inflamm-aging” for this complex process [39]. However, 
the characteristics of the aged inflammatory response vary 
occasionally between rodents (the experimental animals 
typically used for studies of inflammation) and humans. 
Interestingly, inflammation in the aged is characterized by 
a confounding array of alterations in cytokine production 
rather than a clear-cut increase or decrease.  Several 
studies in vitro have reported enhanced production of IL-
6, TNF-α and IL-1β in elderly human peripheral blood 
mononuclear cells compared to younger controls after 
inflammatory stimulation [42]. In contrast, and illustrating 
the complex interplay of age and gender, spontaneous 
production of IL-8 by elderly males is lower than that 
produced by elderly females and young controls [43]. 
Furthermore, there is a lower degree of in vitro-stimulated 
production of the chemokines MIP-1α, RANTES and IL-8 
by natural killer cells from elderly donors compared to 
younger ones [44]. Zhang et al [45] showed elevated 
serum levels of cytokines, including IFN-α, IL12p40 and 
TNF-α in aged compared with young mice. Others have 
also shown that LPS-induced cytokine production is 
increased in the serum of aged mice [46,47]. 

 
Studies focused on gender–specific differences in the 

response to traumatic injury in animal models suggest that 
this dimorphic response is, at least in part, based on the 
levels of estrogen, testosterone, or their derivatives [52-
54]. In this respect AET (5-androstene-3B, 7B, 17B-triol) 
administered subcutaneously provided significant survival 
effect in a 40%-volume hemorrhage trauma model in rats. 
This was the first study to report the ability of AET to 
improve survival after traumatic shock [55].  A clinical 
study provided evidence for differences in the early 
cytokine response between females and males after injury, 
with males having persistently elevated IL-6 cytokine 
expression over time as compared to similarly injured 
females [56]. An alternative hypothesis states that X-
linked genetic differences between males and females, 
independent of hormonal status, responsible for these 
gender-based differential outcomes after injury in humans 
[56,57,58]. These studies suggest a new avenue for T/HS 
research and interaction with the field of endocrinology. 

 
Clinical studies in TBI have also linked cytokines to 

outcome. For example, IL-1α levels correlated with poor 
clinical outcome in either adult or pediatric population. 
Patients with elevated cerebrospinal fluid (CSF) levels of 
IL-1α tended to have significantly poorer Glasgow 
Outcome Scores [168,169]. TNF-α in both serum and CSF 
has been documented in clinical settings of patients with 
severe TBI [170].  Paradoxically, both neuroprotective and 
neurotoxic effects of TNF-α have been suggested in 
human TBI, in terms of the inverse relationship of TNF- α 
with the both pro-inflammatory IL-18 and the anti-

inflammatory IL-10 [171,172]. IL-6 is the cytokine found 
in the highest concentration in human CSF [171]. 
Measurements in a TBI population displayed maximal 
levels of IL-6 in the CSF between 3 and 6 days, with a 
steady decline in release thereafter [173]. 

 
Evidence for the intrathecal production of anti-

inflammatory cytokines in TBI patients also exists. For 
example, IL-10 was increased acutely within 24 h of 
injury, correlating with decreases in TNF-α. In addition, 
transforming growth factor- β1 (TGF-β1) was elevated in 
both CSF at day 1 and serum at 3 weeks post-injury 
[153,171,174]. Interestingly, serum levels of IL-10 were 
elevated in both the severely head injured, as well as 
those suffering polytrauma, potentially rendering this 
cytokine a nonspecific marker of TBI as well as pointing to 
common mechanisms of injury response in T/HS and TBI 
[169,175,176]. 

 
Systems biology approaches can shed insight into 
inflammation at the cellular, tissue, organ, and 
organism levels 

The acute inflammatory response is generally 
recognized as a complex system, both in structure and 
behavior. Understanding and potentially manipulating the 
acute inflammatory response requires an extension 
beyond the traditional scientific paradigm of analysis via 
sequential reductionist experimentation. Accomplishing 
this task requires a formal, explicit means of synthesis, 
heretofore an intuitive process carried out in the mind of 
the researcher. The emerging scientific discipline of 
systems biology, encompassing the search for information 
relating to the behavior of many biological components 
interacting in unison and often embodied in “-omics” 
technologies (genomics, proteomics, metabolomics, etc.) 
holds promise with regard to gaining definitive insights 
into biological processes [123-132]. Both genomic 
[81,133-138] and proteomic [115,139-143] approaches 
have begun to yield insights into the mechanisms of the 
response to T/HS. 

 
Computational simulations are often used to integrate 

genomic and proteomic information, and have been used 
extensively by researchers dealing with such complex 
dynamic systems as studied in many fields [59-62] but 
only recently in biology [63-67]. Both inflammation and 
associated processes (e.g. apoptosis and organ 
damage/dysfunction) have been studied at the molecular 
and cellular levels [68-71].  Given the central role of organ 
damage/dysfunction in acute illness [19], modeling at the 
tissue and organ level has also played an essential 
function, especially examining the issue of physiologic 
variability [73,74]. 

 
This type of modeling has been successful in yielding 

basic insights into acute inflammation [75-78] including 
quantitative insights into the biology underlying 
experimental paradigms of acute inflammation in animals 
[79-81]. A more recent concept has been that of 
“Translational Systems Biology” [11,72,82,108], which 
includes computational simulations of clinical trials [83-
86], potential clinical diagnostics in the form of patient-
specific models [144], streamlined usage of experimental 
animals [87], and rational device design [89]. Using these 
approaches, we have shed basic insights into the basic 
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interactions of trauma with hemorrhage in mice [81], and 
have already begun to create patient-specific, predictive 
simulations in human T/HS [145] and TBI [146]. 

 
Conclusions and future prospects  

New knowledge derived from a rich set of studies in 
cells, animals, and humans, combined with computational 
methods that are rapidly coming into use, promises to 
revolutionize the way in which clinical studies and clinical 
practice in T/HS and TBI are being conducted. We are 
rapidly gaining a new understanding of the complex 
interactions between injury and the inflammatory 
response and vice versa, and these new insights will 
hopefully serve as the foundation for improving patient 
care worldwide. We may envision a point at which an 
integrated, rational, and iterative program of simulated 
clinical trials, in vitro screening for new drug compounds, 
pre-clinical studies, and human clinical trials will lead to a 
raft of new therapeutic options for T/HS and TBI (Fig. 4). 
This new frontier increasingly requires training not only in 
clinical medicine, but also in quantitative sciences, 
bioinformatics, and translational science. Moreover, this 
new approach highlights the need for inter- and multi-
disciplinary teams. Finally, emphasis should be placed on 
applying this new methodology to the difficult, complex 
clinical scenarios of combined T/HS and TBI, and 
especially integrating additional factors such as age, 
gender, genetics, and co-morbidities. Despite the many 
challenges that remain, we are optimistic that a bright 
future lies ahead for the care of traumatic injury and 
critical illness. 
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