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There is general agreement that many cancers are associated
with aberrant phosphotyrosine signaling, which can be caused
by the inappropriate activities of tyrosine kinases or tyrosine
phosphatases. Furthermore, incorrect activation of signaling
pathways has been often linked to changes in adhesion events
mediated by cell surface receptors. Among these receptors,
receptor protein tyrosine phosphatases (RPTPs) both
antagonize tyrosine kinases as well as engage extracellular
ligands. A recent wealth of data on this intriguing family
indicates that its members can fulfill either tumor suppressing
or oncogenic roles. The interpretation of these results at a
molecular level has been greatly facilitated by the recent
availability of structural information on the extra- and
intracellular regions of RPTPs. These structures provide a
molecular framework to understand how alterations in
extracellular interactions can inactivate RPTPs in cancers or
why the overexpression of certain RPTPs may also participate
in tumor progression.

Introduction

Tumor development and progression is associated with changes in
cell proliferation, adhesion and migration, which are themselves
tightly regulated by manifold signaling pathways. Tyrosine
phosphorylation is a key molecular mechanism for most of these
regulatory pathways. Mutations in protein tyrosine kinases have
often been associated with aberrant cellular functions that lead to
cancers1 because their altered activities create an imbalance in the
phosphorylation states of key signaling molecules. On the other
hand, changes in adhesive properties due to the loss of expression
of cell adhesion molecules (CAMs) (see LeBras, Taubenslag and
Andl, in this issue) are required for cancer cell migration and
invasion. The loss of CAM expression is also associated with
alterations in downstream signaling pathways. Kiefel et al. in this
special focus discuss how altering the expression of L1CAM alters
intracellular signaling. Hence, it is perhaps no surprise that

molecules such as receptor protein tyrosine phosphatases
(RPTPs), which combine CAM-like extracellular regions and
intracellular tyrosine phosphatase domains, have been associated
with human cancers2,3 (Fig. 1).

Twenty-one RPTPs have been identified in humans since the
initial characterization of CD454,5 and those receptors are
involved in critical processes including immune regulation,
nervous system development and vascular development.5-7

Unfortunately, RPTPs are not as well understood as receptor
tyrosine kinases. A general mechanism that would account for the
control of their catalytic activities by extracellular cues is lacking
and most RPTPs remain orphan receptors.6,8 Nevertheless, their
potential roles in cancer were described soon after their discovery
when it was shown that the gene encoding a family member called
PTPRG mapped to a chromosomal region deleted in lung and
kidney cancer cell lines and thus could be a potential tumor
suppressor.9 At first glance it appears logical that the absence or
inactivation of a protein that antagonizes tyrosine kinase activity
would be linked to tumor growth and indeed, many RPTPs are
tumor suppressors.3 Yet, it quickly appeared that overexpression
of RPTPs may play a role in tumor progression as well when
Krueger and colleagues discovered that a PTPRG homolog called
PTPRZ was overexpressed in glioblastoma cells.10 Data accumu-
lated in the past few years now indicates clearly that RPTPs can
fulfill both tumor suppressing and oncogenic roles.3

In this review, we will focus on the three classes of RPTPs for
which structural information is available, which will in turn help
us understand their functions in cell adhesion and cancer
progression (Fig. 1). We will consider the importance of the
some of the somatic mutations identified in type IIa and IIb
RPTPs to illustrate the roles of RPTPs as tumor suppressors,
particularly in the case of type IIb receptors. We will also focus on
the potential oncogenic effect of type V receptors, especially in the
case of PTPRZ. However, we will not discuss comprehensively
the alterations of RPTP function that occur in cancer as these
have already been reviewed elsewhere.2,3

Type IIb RPTPs and Homophilic Interactions

The prototypical member of the type IIb subgroup of RPTP,
PTPRM, was identified in 1991 from a mouse brain library.11

This subgroup now includes four members in vertebrates
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(PTPRK/RPTPk, PTPRM/RPTPm, PTPRT/RPTPc and
PTPRU/PCP2/RPTPl), but lacks a clear ortholog in
Drosophila. The four family members share a common domain
topology including an N-terminal Meprin-A5-RPTPm (MAM)
domain, an Ig repeat and four FNIII domains in their respective
extracellular regions while the intracellular segment includes two
tyrosine phosphatase domains (Fig. 1). These RPTPs represent a
particularly interesting subgroup because three of the four family
members (PTPRM, PTPRK and PTPRT) “act as their own
ligands” and mediate homophilic interactions between two
apposing cells.12-15 Despite strong homology in their extracellular
regions (typically more than 50% amino acid sequence identity),
the homophilic interactions between type IIb family members are
specific. For example, both PTPRM and PTPRK interact
homophilically to form dimers yet are unable to interact with
one another16 and similar results have been obtained for PTPRM
and PTPRT.15 In contrast with other type IIb RPTPs, PTPRU is
not a homophilic binding protein as it does not mediate cell-cell

aggregation and the identities of its potential extracellular binding
partners are as of yet unknown.17

One of the most interesting aspects of type IIb RPTPs is their
relationship with cadherins and intracellular components of
cadherin adhesion complexes called catenins.18 Cadherins are
Ca2+-dependent homophilic-binding molecules that mediate
adhesive interactions between adjacent cells and are central to
the development and maintenance of stable tissues.18 Critically,
alterations in the assembly of cadherin-catenin adhesion com-
plexes are linked to the disassociation of adherent epithelial cells
and their subsequent migration, a process that can be part of the
normal aspect of tissue development, but is also a hallmark of
cancer growth and metastasis18,19 (the effects of E- and N-cadherin
in cancer progression and epithelial-mesenchymal transitions are
discussed by LeBras, Taubenslag and Andl in this issue). These
transitions can be brought about by enhanced tyrosine phos-
phorylation of β-catenin,20,21 which explains why the association
of type IIb RPTPs with components of cadherin-catenin adhesion
complexes has been of particular interest.22-28 For example,
PTPRM associates with E-cadherin23 and dephosphorylates p120
catenin.26 Yet, the role played by type IIb RPTPs in cadherin-
mediated cell adhesion may not be solely attributed to their
catalytic activity. Indeed, expression of PTPRM in a prostate
cancer cell line could restore cadherin-dependent adhesion of
these cells, but so did a catalytically inactive form of PTPRM,29

highlighting the importance of additional intracellular effectors of
PTPRM signaling.

Consistent with their association with cadherins and catenins,
type IIb RPTPs have been linked to the progression of human
cancers. Downregulation of PTPRM in glioma cells due to
proteolysis correlates with increased cell movement and tumor
invasiveness.30 Similarly, cell surface cleavage of PTPRK favors the
dispersion of colon cancer cells.31,32 These findings strongly
suggest that shedding of these RPTPs is involved in cancer
progression and recent results indicate that this process may not
be limited to type IIb family members.33 On the other hand,
PTPRT associates with E-cadherin and is linked to the stability of
cadherin-catenin adhesion complexes27 so that a decrease of
PTPRT adhesiveness due to mutations in its ectodomain found in
cancer cells15,34 may in turn promote the migration of these cells.
Hence, the picture that emerges is that impairing type IIb-
mediated cell adhesion can favor the dispersion of cells expressing
these receptors and thus promote tumor progression. Because of
the increased interest in the roles of RPTPs in cancer, several
groups have worked to identify mutations in genes encoding
RPTPs in several human cancers. In particular, mutational
analysis of colorectal cancer cells has highlighted PTPRT has a
frequently mutated gene in this cancer35 and mice lacking PTPRT
are more susceptible to cancer development.36

The recent availability of the crystal structure of the PTPRM
ectodomain37 provides us with an opportunity to evaluate the
effects of mutations in the ectodomains of type IIb receptors that
have been identified in cancer patients. Given the sequence
identity between type IIb RPTPs, this structure likely recapitu-
lates the structures of all members of this family. PTPRM adopts
an extended, rod-like conformation and the short linker segments

Figure 1. Architecture of selected human receptor protein tyrosine
phosphatases considered in this review. The intracellular regions are
composed of two tyrosine phosphatase domains called D1 and D2. D1 is
catalytically active whereas D2 is not. MAM, Meprin-A5-RPTPm domain;
Ig, Immunoglobulin-like domain; FNIII, fibronectin type III domain;
CA, Carbonic anhydrase domain; D1, active protein tyrosine phosphatase
domain; D2, inactive protein tyrosine phosphatase domain.

SPECIAL FOCUS REVIEW: MOLECULAR MECHANISMS OF CANCER CELL-CELL INTERACTIONS

www.landesbioscience.com Cell Adhesion & Migration 357



between the individual modules of the extracellular region
presumably contributes to the rigidity of this structure.37 The
MAM-Ig segment forms a single structural unit in which the
MAM and Ig domains interact extensively.38 Importantly,
the homophilic contacts between PTPRM molecules expressed
on apposing cells involve the four N-terminal domains of
PTPRM37 (MAM, Ig, FN1 and FN2) and analysis of the contact
residues accounted for the absence of heterophilic contacts
between type IIb family members.

Visualization of the homophilic PTPRM interface allowed
mapping of the cancer mutations found in type IIb family
members that have been identified in multiple human cancers39-49

and can be accessed via the COSMIC database.50 Missense
mutations locate at the homophilic interface between two
opposing type IIb molecules,15,34,37 suggesting that disruption in
these contacts may be linked to tumor growth, in line with the
notion that loss of adhesiveness can favor the progression of
cancers (Fig. 2). A second set of mutations is localized at interfaces
between modules of PTPRM. The potential effect of these
mutations could be to reduce the rigidity of the entire extracellular
region, which would in turn impair homophilic interactions in
much the same way that removal of the Ca2+ ions that rigidify the
interfaces of successive cadherin modules inhibits homophilic
interactions between cadherins.51 Finally, a third set of mutated
amino acid residues were found in buried portions of the PTPRM
ectodomain and may impair its folding or processing, thus
reducing or even preventing receptor presentation at the cell
surface52 (Fig. 2).

Importantly, the common effect of the changes found in
cancers would be to inhibit the formation of homophilic contacts.
This notion was confirmed by assessing the ability of non-
adherent Spodoptera frugiperda Sf9 cells to form clusters when
transfected with wild-type or mutated PTPRT.15,34 In these
experiments, the aggregation of PTPRT-transfected Sf9 cells was
impaired when cancer missense mutations were introduced in the
PTPRT ectodomain, thus providing a clear relationship between
amino acid changes at these positions and reduced cellular
adhesion. However, little can be inferred from a fourth group of
mutations include amino acid residues at the protein surface that
are located away from the homophilic interface (Fig. 2). It is
tempting to speculate that these may affect the association of a
given type IIb RPTP with itself on the same cell surface53 or with
another cell surface receptor such as cadherins,24 or may render
the receptor ectodomain more susceptible to proteolysis, but
evidence of this is lacking.

Type IIa RPTPs

Leukocyte common antigen related or LAR was first identified in
1988 from a human placental genomic DNA library54 and is the
founding member of the type IIa subgroup of RPTPs, represented
by Dlar in Drosophila55 and by PTPRF/LAR, PTPRD/RPTPd
and PTPRS/RPTPs in vertebrates7 (Fig. 1). Historically, this
family of receptors is particularly important because it was studies

Figure 2. Overview of somatic mutations in type IIb RPTPs shown in
the PTPRM homophilic dimer. The structure of the PTPRM homodimer
was obtained from PDB ID 2V5Y determined by Aricescu et al.37 and is
shown as a ribbon diagram. The MAM and Ig region are colored slate
and the FNIII modules are colored cyan. The residues that are mutated
in cancers are shown as spheres colored based on the predicted
effects of the location of the mutations (yellow, buried; green,
interdomain interface; red, homophilic interface; white, solvent exposed).
The expected effect of the mutations in yellow, green or red would be to
impair homophilic interactions whereas the expected effects of mutating
residues shown as white spheres are unknown.
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on the development of the Drosophila nervous system that
demonstrated that Dlar plays an important role in the guidance of
motor axons,56,57 which paved the way for investigating the
specific physiological functions of RPTPs during neural develop-
ment.7 Since then, vertebrate type IIa members have been linked
to neurogenesis (PTPRS58), axon guidance (PTPRS59) and
synaptogenesis (LAR, PTPRD and PTPRS60-63).

The physiological roles of type IIa RPTPs in neural
development are mediated, at least in part, by interactions with
chondroitin sulfate proteoglycans (CSPGs) and heparan sulfate
proteoglycans (HSPGs). HSPGs bind to PTPRS in chick retina64

and the sole type IIa Drosophila RPTP Dlar binds to heparan
sulfate (HS) chains on syndecan and dally-like protein to drive the
formation of synapses at neuromuscular junctions.65,66 The
interactions between these receptors and proteoglycans depend
on their N-terminal Ig module and in particular on the presence
of a cluster of basic residues in a loop region,64 which is conserved
in Dlar and its vertebrate orthologs.67 On the other hand, this
region interacts functionally with CSPGs, at least in the case of
PTPRS.68,69 Critically, the physiological outcomes of the interac-
tions with these two classes of ligands are distinct since
interactions with HSPGs promote axonal outgrowth whereas
interactions with CSPGs impair outgrowth.68,69 These radically
different outcomes are linked to the different oligomeric state of
PTPRS in the presence of HS or CS chains. The current model
proposes that PTPRS aggregates in the presence of HS chains
expressed on the same cell leading to an uneven distribution of
phosphatase activity at the cell surface because of the presence of
PTPRS clusters. This redistribution would be reversed when
PTPRS interacts with CS chains expressed on a different cell
as PTPRS would revert to its monomeric state.69 The molecular
basis accounting for the distinct oligomeric state of PTPRS in
the presence of its glycosaminoglycan ligands remains unclear,
however.

Evidence for the involvement of type IIa RPTPs in cancer came
in 2004 when somatic mutations were identified in the PTPRF
gene in colorectal tumors.35 Soon after, deletions in the PTPRD
gene were found in human cancer cell lines70 and more recent data
indicate that this gene is inactivated in glioblastoma multiforme,
malignant melanoma and lung carcinoma as well as head and neck
carcinoma.71,72 Similarly, PTPRS is frequently deleted in head and
neck squamous cell carcinoma.73 Whole genome studies aiming to
document the genetic variations existing in human cancers
uncovered several missense mutations in the genes encoding type
IIa family members.39,40,42,44,45,48,49,71,74-77 Although most of these
mutations are located in the phosphatase region where they
presumably lead to a loss of phosphatase activity, some of the
changes localize to the extracellular region and in particular to the
N-terminal Ig region for which structural data were obtained
recently67,69 (Figs. 1 and 3).

The structures of the first two Ig repeats of LAR, PTPRD and
PTPRS revealed unusual features. Although there are little
differences between the topologies of each Ig domain and Ig
modules found in other cell surface receptors,67 the Ig1-Ig2 pair
adopts an antiparallel arrangement giving this region the
appearance of a horseshoe. This conformation is conserved in

the Drosophila family member Dlar67,69 and resembles the
structure of FNIII tandem repeats found in the extracellular
region of the Drosophila hedgehog co-receptor iHog.67 It is
however distinct from horseshoe conformations recently identified
in contactins, Dscams and neurofascin.78-84 These structural
analyses also revealed the nature of the glycosaminoglycan-
binding site and confirmed earlier biochemical experiments that
had mapped it to the first Ig domain.64,68

Interestingly, several of the cancer somatic mutations map to
this region and in particular to residues at the interface between
Ig1 and Ig2 in both PTPRF (G123E in malignant melanoma50

and R206H in ovarian tumor44) and PTPRS (V224M in
colorectal cancer76) and may disrupt the interdomain interface
(Fig. 3, residues are shown as green spheres). Furthermore, a
glutamate residue is found in place of a conserved glycine residue
in the PTPRD-glycosaminoglycan binding site in malignant
melanomas.71 This change (G61E, colored red on Fig. 3)
introduces a negative charge and would be expected to weaken
the interaction between this usually positively-charged region
conserved in all type IIa receptors and the negative charge on the
glycosaminoglycan chains.67 Finally, a proline to serine change at
position 141 in PTPRS50 is found in malignant melanomas. This
proline is buried and conserved in type IIa family members so that
this change may impair the folding of this region altogether
(Fig. 3, residue is depicted as yellow spheres). Inferring the
potential roles of these mutations in tumor progression is more

Figure 3. Somatic mutations identified in the Ig1-Ig2 tandem repeats of
type IIa RPTPs. Mutations in LAR, PTPRD and PTPRS are shown on
the structure of human LAR bound to the glycosaminoglycan mimic
sucrose octasulfate (PDB ID 2YD869). The sucrose octasulfate is shown in
ball-and-stick representation. The residues that are mutated in cancers
are shown as spheres colored based on the predicted effects of
the location of the mutations (yellow, buried; green, interdomain
interface; red, ligand interface; white, solvent exposed). The expected
effect of the mutations in yellow would be to disrupt the folding of the Ig
domain while mutation of the residues colored green is expected to
disrupt the interface between Ig1 and Ig2. Introducing a glycine to
glutamate change at position 61 (shown in red in the structure) is
expected to impair interactions with the ligand. The potential effects of
mutating residues colored white are unknown.
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challenging, however, because the effect these changes have on
protein function have not been assessed. In particular, binding of
HS chains to the Ig1-Ig2 region of Dlar appears to be solely
mediated by Ig1 and is seemingly unaffected by mutations that are
expected to impair the formation of the Ig1-Ig2 interface,67

although this particular set of experiments did not examine the
roles of the mutations within the context of the full-length protein
nor if the physiological properties were altered after mutations.
Assessment of the biochemical properties of changes in the Ig
region of type IIa RPTPs is warranted and may provide yet another
clear link between control of cell adhesion by phosphatases and
regulation of intracellular signal transduction pathways.

The potential mechanisms by which the absence of type IIa
RPTPs would promote tumor progression have been studied in
more detail. Inactivation of PTPRD results in activation of the
oncoprotein signal transducer and activator of transcription 3
(STAT3) and in turn expression of STAT3-target genes that
promote tumorigenesis.72 The implication of STAT3 in this
pathway is particularly interesting because it had already been
identified as a substrate of the type IIb receptor PTPRT by Zhang
and colleagues36 and because inactivation of PTPRT leads to
enhanced expression of STAT3 target genes as is now the case for
PTPRD. Activation of STAT3 is not the only change associated
with type IIa inactivation. Indeed, deletion of PTPRS in head and
neck squamous cell carcinomas results in activation of the PI3K/
epidermal growth factor receptor pathway presumably because
PTPRS is required to antagonize the epidermal growth factor
receptor kinase activity.73,85 Although speculative, an additional
mechanism for type IIa-dependent tumor progression may be
associated with cadherin-catenin adhesion complexes as both LAR
and PTPRS associate with cadherins and dephosphorylate β-
catenin.86-90 Moreover, inducing expression of LAR in migrating
epithelial cells, in which tyrosine phosphorylation of β-catenin is
enhanced, inhibits their migration.88 The structural basis for the
association of type IIa receptors with cadherins and β-catenin is
not known, but it will be very interesting to determine if some of
the somatic mutations identified in LAR or PTPRS map to these
potential binding interfaces.

Overexpression of Type V RPTPs

The receptors PTPRG and PTPRZ can be considered somewhat
like oddities among RPTPs. Instead of the combination of
multiple Ig and FNIII modules that are found in the ectodomains
of most RPTPs, PTPRG and PTPRZ include an N-terminal
inactive carbonic anhydrase (CA), a single FNIII repeat and a long
spacer region that is presumably heavily glycosylated. PTPRG and
PTPRZ were initially cloned in the early 1990s10,91-93 and were
quickly linked to human tumors as PTPRG was mapped to a
chromosomal region frequently deleted in kidney and lung
cancers9 whereas a glioblastoma cell line (U373MG) was found to
express high levels of PTPRZ.10 Both receptors are expressed
mostly in the nervous system during embryogenesis and
adulthood, but their respective localization differs as PTPRG is
expressed mostly on neurons and PTPRZ on glial cells.94,95

Despite their similar architectures, PTPRG and PTPRZ appear to

have distinct roles in neural development as PTPRG inhibited
nerve growth factor-induced neurite outgrowth when expressed
recombinantly in PC12D cells whereas PTPRZ had no effect on
this process.96 However, PTPRZ mediates the outgrowth of
neurites when bound to its ligand contactin-1 (CNTN1)
expressed on neurons97,98 and this complex also plays an
important role in the maturation of oligodendrocytes.83 The role
of PTPRG in vivo is less well described although it has recently
been shown to be involved in spinal cord neurogenesis in
chicken,99 which is somewhat in contrast with the results obtained
in PC12D cells and underscores the potentially complex role that
this receptor may have in neural development.

Although the search for an extracellular binding partner for
PTPRG was not initially successful, several ligands for PTPRZ have
been found, including the neural CAM contactin-1 (CNTN1)
mentioned above and the growth factor pleiotrophin100 (PTN).
The latter proved instrumental in our understanding of how
tyrosine phosphatase activity can be regulated by extracellular cues
and also shed light into the role of PTPRZ in tumor progression.
Initial insights on the effect of PTN on PTPRZ activity came in
2000 when Meng and colleagues demonstrated that PTN binds to
and inactivates PTPRZ expressed on the surface of the glioblastoma
cells U373MG,101 leading to an increase in the tyrosine
phosphorylation of β-catenin. Furthermore, another series of
experiments extended those initial findings by demonstrating that
PTPRZ is catalytically active in its monomeric state, but is
inactivated after it dimerizes following treatment with PTN
resulting in the enhanced phosphorylation of its substrates.102 In
parallel experiments, the role played by PTPRZ in glioblastoma was
examined because it is typically overexpressed in these tumors.103

PTN stimulates migration of glioblastoma cells. When PTPRZ
expression is reduced by siRNA, PTN no longer stimulates the
migration of these cells. This demonstrates that PTPRZ mediates
the stimulatory effect of PTN on glioblastoma cell migration.103

These migratory properties were explained in part by enhanced
tyrosine phosphorylation of β-catenin after PTPRZ is inactivated
by PTN, which then promotes disassembly of cadherin-catenin
adhesion complexes and thus a loss of cell adhesiveness.104

Consistent with this notion, aberrant β-catenin signaling has
recently been linked to the etiology of astrocytomas.21

The previous observations hinged on the fact that PTN was
able to induce dimerization of PTPRZ and that this change of
oligomeric state inactivated the intracellular phosphatase activity.
A model implicating the dimerization/inhibition of RPTPs has
been favored since the crystal structure of a dimeric form of the
D1 domain of PTPRA was determined and showed that a helix-
turn-helix motif (called a wedge) of one protomer was inserted
into the active site of a second protomer and blocked its active
site.105 The influence of RPTP dimerization on phosphatase
activity had already been suggested by experiments demonstrating
that the phosphatase activity of an EGFR-CD45 chimera could be
inhibited upon EGF binding106 so that it was hypothesized that
the formation of dimers implicating the wedge region could be an
attractive model to explain the control of phosphatase activity.
However, the crystal structures of the active phosphatase domain
of PTPRM107 and of the tandem phosphatase domains of LAR108
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and CD45109 did not show any hint of dimerization for these
proteins, casting doubts that wedge-mediated dimerization/
inhibition of RPTPs represented a general mechanism for control
of RPTP activity. Therefore it was a significant result when it was
shown that the tandem phosphatase region of PTPRG dimerizes
in solution and that the phosphatase domains are arranged in an
antiparallel fashion so that the two active sites are occluded in the
dimer crystal structure110 (Fig. 4). The high sequence identity
between PTPRG and PTPRZ as well as the conservation of the
residues at the dimer interface strongly suggests that two PTPRZ
phosphatase regions can assemble in similar fashion, thus
providing structural insights into the mechanism by which PTN
binding inactivates the tyrosine phosphatase activity of PTPRZ
and ultimately promotes tumor progression.

In addition, the work on PTN/PTPRZ interactions paved the
way for understanding how ligands of type V RPTPs could
regulate the intracellular phosphatase activity of their cognate
receptors. Indeed, inactivation of the catalytic activity of PTPRZ
could be induced after incubation with an antibody raised against
the extracellular region of PTPRZ102 suggesting that other binding
partners of PTPRZ could inhibit its phosphatase activity.
CNTN1 is probably the best understood of these ligands since
formation of a complex of PTPRZ and CNTN1 is critical for the
proper maturation of oligodendrocytes.83 Interestingly, reduced
expression of CNTN1 correlates with impaired invasiveness of
lung adenocarcinoma cells111 and more recently, increased
expression of CNTN1 has been identified in melanoma,112

indicating that CNTN1 could play a role in the etiology of some
human cancers. Consistent with this notion, CNTN1 is expressed
in astrocytic tumors with increasing malignancies correlating with

increasing CNTN1 expression.113 In particular, it was demon-
strated that PTPRZ-expressing cells adhered less strongly to
CNTN1-expressing cells than control cells and that this decreased
adhesion was due to the presence of PTPRZ. The sum of these
experiments suggested that interactions between CNTN1 and
PTPRZ could have a repulsive effect113 and thus would promote
the migration of the PTPRZ-expressing glioma cells. Keeping in
mind the notion that interactions between PTN and PTPRZ
result in loss of adhesiveness in part because of enhanced tyrosine
phosphorylation of β-catenin and subsequent loss of cadherin-
mediated adhesion, one is tempted to speculate that formation of
CNTN1/PTPRZ complexes may also inactivate PTPRZ, leading
to enhanced phosphorylation of PTPRZ substrates such as β-
catenin and ultimately promote cell migration.

In this context, the recent identification of CNTN1 homologs
as potential binding partners for PTPRG is particularly
interesting. Indeed, four of the six members of the CNTN family
of neural recognition molecules called CNTN3, 4, 5 and 6 were
recently shown to interact with PTPRG82 and a crystal structure
of a PTPRG/CNTN4 complex showed that it is closely related to
the one formed by CNTN1 and PTPRZ.83 It is not yet known
what the precise physiological functions of CNTN/PTPRG
interactions are, but based on their localization in the nervous
system it is speculated that these proteins could be involved in the
development and function of the nervous system.82 Interestingly,
as is the case for PTPRZ, PTPRG is overexpressed in gliomas,114

hinting that PTPRG/CNTN signaling could play a role in tumor
progression in much the same way that PTPRZ/CNTN1 may
especially since β-catenin is an in vitro PTPRG substrate.99

Concluding Remarks

The architecture of RPTPs has long suggested that these receptors
are able to mediate both cell adhesion and cell signaling. Since the
progression of tumors is often characterized by changes in both
adhesion and signaling properties, recent work has been aimed at
characterizing the alterations in RPTP activity that are associated
with human cancers. Even though it is now clear that RPTPs can
both suppress or activate the growth of tumors, our understanding
is still limited by the fact that the in vivo substrates of RPTPs are
not well described and the extracellular cues to which they
respond remain poorly defined. A significant progress in the
RPTP field will undoubtedly come from the availability of crystal
structures of full RPTP ectodomains in the absence and presence
of their ligands, which will explain how RPTP ligands control
receptor dimerization and phosphatase activity. Until then,
renewed efforts to identify RPTP ligands and to obtain structural
information on RPTPs have already helped bridge the gap
between the description of RPTP alterations in cancer and the
role these changes may have at a molecular level. This trend will
continue and will likely set the stage for the development of new
cancer therapies based on RPTP biology.
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Figure 4. Dimerization of the tandem phosphatase regions of PTPRG.
The antiparallel dimer of the tandem phosphatase region of PTPRG (PDB
ID 2NLK110) is shown as a ribbon diagram. The catalytically active D1
domains are colored orange, while the inactive D2 domains are colored
white. Dimerization blocks access to a key cysteine residue in the active
site (depicted as green spheres).
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