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The polarization and migration of 
eukaryotic cells are fundamental 

processes for the development and main-
tenance of a tissue. These aspects gain 
especial interest when it comes to stem 
and progenitor cells in the way that their 
manipulation might open new avenues 
in regenerative therapy. In recent years, 
novel biological facets of migrating 
hematopoietic stem cells were revealed 
by several groups, including ours. 
Among these features, the polarization 
of their membranous (proteins and lip-
ids) and cytoplasmic constituents, which 
leads to the formation of a specialized 
sub-cellular structure located at the rear 
pole—the uropod—has gained increas-
ing interest. In a new study we have dem-
onstrated that such phenomena involve 
a coordinated mechanism between Rho 
GTPase signaling and the microtubule 
network. Specifically, our results based 
on the use of synthetic inhibitors and 
RNA interference suggest that the activ-
ity of RhoA and its effector ROCK I is 
indispensable for cell polarization and 
the active reorganization of microtubules 
that are required for migration.

Understanding the cellular and molecu-
lar trafficking mechanisms that regulate 
the migration of hematopoietic stem and 
progenitor cells (HSPCs) throughout the 
development of an organism and later on 
its homeostasis are important not only 
from a biological standpoint, but also 
with regard to therapeutic purposes. For 
instance, bone marrow transplantation 
is one recognized procedure for treating 
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hematological diseases. However, the accu-
rate mechanism underlying the migration 
and engraftment of HSPCs into the bone-
marrow niche is not fully characterized. 
In order to gain novel insights we have 
developed an ex vivo co-culture system 
consisting of human HSPCs from healthy 
donors growing on primary human multi-
potent mesenchymal stromal cells (MSCs) 
as feeder cell layer (for cell isolation and 
culture conditions see literatures).1-3 Such 
cellular system reproduces numerous 
characteristics found within bone mar-
row cavities4 including adhesive interac-
tions5 and the essential chemotactic axis6 
based on the G-protein-coupled receptor 
CXCR4, which is expressed by HSPCs 
and its chemokine ligand CXCL12 (alias 
stromal cell-derived factor-1α; SDF-1α) 
secreted by MSCs.1,7

Under these conditions, HSPCs dis-
play various morphologically identifiable 
types of plasma membrane protrusions.1 
Interestingly, in migrating HSPCs a note-
worthy protrusion called uropod is formed 
at the rear pole (Fig. 1A).1,8 Like in leuko-
cytes (e.g., T cells), the uropod might play 
a role in intercellular adhesion, communi-
cation and motility.9,10 Numerous proteins 
with adhesive properties are found therein 
including P-selectin glycoprotein ligand-1 
(PSGL-1; Fig. 1A).11,12 The presence of the 
stem cell marker CD133 (prominin-1),13-15 
a 5-span transmembrane glycoprotein 
that binds plasma membrane cholesterol 
and associates with a specific membrane 
microdomain (lipid raft),16 was instruc-
tive with regard to its membrane organi-
zation. Indeed, a membrane microdomain 
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effectors of RhoA, Rho-associated coiled-
coil protein kinases (ROCK) are impli-
cated in various cellular functions such 
as actin organization and transforma-
tion. Using Rho kinase inhibitor Y-27632 
and RNA interference (RNAi) directed 
against either RhoA or ROCK I we dem-
onstrated that both proteins are indis-
pensable for the polarization of HSPCs, 
and hence their migration. For instance, 
the use of the synthetic drug resulted in 
the complete loss of the uropod and the 
formation of two to three long and thin 
plasma membrane protrusions (Fig. 1C). 
Narrowed lamellipodia were formed at 
the tip of those protrusions rather than 
close to the cell body, as in untreated cells 
(Fig. 1C).12 Such a drastic morphological 
alteration was followed at the molecular 

the migrating HSPC develops thus a 
highly polarized structure that underlies 
coordinated but opposite actions at both 
cell sides. While retracting the uropod, 
the cell extends its lamellipodium at 
the leading edge. As a result, a net cell 
movement can be achieved by continu-
ous attachment to and de-adhesion from 
the substratum at the front and rear pole, 
respectively (Fig. 1B and green arrow).

From a mechanistical and/or bio-
chemical perspective, our recent study has 
focused on the implication of Rho GTPase 
signaling pathway in these orchestrated 
processes (Fig. 1B).12 It is known that Rho 
GTPases such RhoA, Rac and Cdc42 are 
key players in cell polarity and migra-
tion by modulating cytoskeletal dynam-
ics.20 As the most important downstream 

enriched in ganglioside GM
1
 is concen-

trated in the uropod,10 and its spatiotem-
poral regulation might engage molecules 
such as flotillins.17 From the cytoplas-
mic side, certain proteins of the ezrin/
radixin/moesin (ERM) family might 
link membrane proteins (e.g., PSGL-1) 
via their juxta-membrane domains to 
the underlying actin cytoskeleton.18 The 
microtubule-organizing centre is found 
at the base of the uropod.12 At the front 
pole, a migrating HSPC exhibits a lamel-
lipodium, which concentrates CXCR4 
at its tips in agreement with a chemo-
tactic role.11 As reported for T cells, a 
distinct membrane microdomain based 
on ganglioside GM

3
 instead of GM

1
 is 

found therein (Fig. 1A).11,19 From both 
morphological and phenotypical angles, 

Figure 1. rhoA/rOCK I pathway and remodeling of microtubule network underlie the polarization and migration of HSPCs. (A) A migrating HSPC 
growing on MSC displays a polarized morphology with the formation of a uropod (u) at the rear pole and a leading edge (Le) at the front. Both types 
of plasma membrane protrusions contain a specific ganglioside-based membrane microdomain—the uropod being enriched in GM1 (red) whereas 
the leading edge in GM3 (green). In addition to prominin-1, a plethora of cell adhesion molecules (inset) including PSGL-1 are concentrated in the 
uropod whereas the chemokine receptor CXCr4 is found at the leading edge consistent with its sensory role towards an SdF-1α gradient.6 erM 
proteins seem to be actively involved in the subcellular localization of some uropod-associated membrane proteins.18 Other molecules such as Cd34 
and Cd45 are evenly distributed. the microtubule-organizing centre is found between the nucleus and the uropod. (B) the activity (↓) of rhoA and its 
downstream effector rOCK I contributes to the formation of the uropod, and hence polarization and migration of HSPCs. the downstream target(s) 
remain to be identified (?), but it might engage a protein involved in microtubule destabilization (dashed green line). (C) Inhibition (┴) of rOCKs using 
Y-27632 or the specific knockdown of rOCK I or its upstream regulator rhoA by means of rnAi results in an elongated morphology where the uropod 
is lost. Both membrane (prominin-1, PSGL-1) and cytoplasmic (ezrin) proteins are redistributed. these cells display an impairment of migration caused 
by microtubule stability (solid green line). (d) In rhoA/rOCKI–deficient HSPCs, the addition (+) of nocodazole restores their proper polarization and 
migration highlighting the implication of unidentified microtubule-destabilizing proteins. Green and red arrows indicate the direction of migration.
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between players at the leading edge and 
the uropod as well as a dynamic balance of 
the actomyosin and microtubule systems 
also need to be considered.24 The lack of 
the front-rear orientation of RhoA/ROCK 
I-deficient HSPCs and altered lamellipo-
dia are consistent with it.12 Microtubule-
destabilizing protein stathmin/OP18 
might participate in these biochemical 
reactions via Rac/Cdc42,25 and the regu-
lation of Rac by ROCK via the filamin 
A-binding RhoGTPase-activating protein 
reveals the complexity of the system.26 
Similarly, members of the ERM protein 
family such as ezrin or moesin might be 
involved as well in the integrity of the uro-
pod, and it might be more than a coinci-
dence that these adaptor proteins, which 
are also potential substrates of ROCK, are 
playing an active role in membrane micro-
domain dynamics.27

Lastly, it is noteworthy that compa-
rable data showing the implication of 
RhoA and microtubule network in the 
migration of T cells were recently reported 
independently28,29 indicating that our cur-
rent observations might extend to cells of 
hematopoietic origin in general. Further 
studies based on a quantitative proteomic 
approach should lead to an exhaustive list 
of ROCK I substrates involved in these 
processes, which might represent potential 
therapeutic targets in the development of 
new strategies to improve the efficiency of 
bone marrow transplantation.
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