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Introduction

Aging is defined as the progressive accumulation of damage 
over time, leading to disturbed function on the cellular, tissue 
and organ level and eventually to disease and death. Aging is a 
complex, multifactorial process where genetic, endogenous and 
environmental factors play a role.1

Skin is the largest organ of the human body and also the 
boundary between an organism and environment. As such, skin 
is subjected not only to the internal aging process but also to 
various external stressors, leading to distinct structural changes 
and affecting not only its youthful appearance, but also its vari-
ous physiological functions. Aged skin shows disturbed skin 
permeability, angiogenesis, lipid and sweat production, immune 
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Aging is the progressive accumulation of damage to an 
organism over time leading to disease and death. Aging 
research has been very intensive in the last years aiming at 
characterizing the pathophysiology of aging and finding 
possibilities to fight age-related diseases. Various theories of 
aging have been proposed. In the last years advanced glycation 
end products (AGEs) have received particular attention in this 
context. AGEs are formed in high amounts in diabetes but also 
in the physiological organism during aging. They have been 
etiologically implicated in numerous diabetes- and age-related 
diseases. Strategies inhibiting AGE accumulation and signaling 
seem to possess a therapeutic potential in these pathologies. 
However, still little is known on the precise role of AGEs during 
skin aging. In this review the existing literature on AGEs and 
skin aging will be reviewed. In addition, existing and potential 
anti-AGE strategies that may be beneficial on skin aging will 
be discussed.
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function and vitamin D synthesis, manifesting among others 
as impaired wound healing, atrophy, vulnerability to external 
stimuli and development of several benign and malignant dis-
eases (reviewed in Zouboulis et al.).2

Endogenously aged skin refers to changes reflecting the 
internal aging process of the organism and is being observed 
mainly in ultraviolet (UV) light-protected skin areas, such as 
the inner side of the arms. Macroscopically it is recognized by 
fine wrinkles, loss of elasticity, reduced epidermal and dermal 
thickness, while microscopically epidermal atrophy, decreased 
mitotic rate of basal keratinocytes, decreased proliferative capac-
ity and cellular senescence, atrophy of the dermal extracellular 
matrix and change of the physiological properties of the connec-
tive tissue are typical characteristics.2-4 Exogenously aged skin 
or photoaged skin is the skin where endogenous aging processes 
are being aggravated by external stressors, mainly UV irradia-
tion,2,5 but also by tobacco,6 chemicals and pollution.2,4 Apart 
from many similarities with endogenously aged skin, extrinsic 
aged skin is also characterized by a thickened epidermis and a 
hyperplasia of elastic tissue (solar elastosis).2,4

Until today, more than 300 theories of aging have been pro-
posed, among them the theory of cellular senescence, decreased 
proliferative capacity and telomere shortening, mitochondrial 
DNA single mutations, the free radical theory and others, 
none of which can fully explain all changes observed in aging.7-

11 According to the inflammatory theory of aging, a common 
characteristic of skin aging factors is their ability to induce or 
maintain proinflammatory changes and trigger a local inflam-
matory response which through subsequent immune responses, 
matrix metalloproteinase (MMP) activation and proinflamma-
tory cytokine production contributes to the structural changes 
observed in aged skin.12

In the recent years, the role of advanced glycation end prod-
ucts (AGEs) has been increasingly discussed in skin aging, and 
the potential of anti-AGE strategies has received high interest 
from pharmaceutical companies for the development of novel 
anti-aging cosmeceutical compounds.
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diabetes, numerous other AGEs have 
been detected. Some of them have 
characteristic autofluorescent prop-
erties, which simplifies their identi-
fication in situ or in vivo.13 To date, 
numerous AGEs have been identi-
fied. Table 1 lists the most com-
monly found ones in the skin.17-28

Carboxymethyl-lysine (CML) 
was first described by Ahmed and 
represents the most prevalent AGE 
in vivo.29,30 It is a non-fluorescent 
protein adduct. Mechanisms of its 
formation include oxidative deg-
radation of Amadori products or 
direct addition of glyoxal to lysine. 
It seems to be the major epitope of 
the commonly used polyclonal anti-
AGE antibodies.30

Pentosidine was first isolated and 
characterized by Sell and Monnier. 
It is composed of an arginine and 

a lysine residue crosslinked to a pentose.31 Pentosidine is a 
fluorescent glycoxidation product and forms protein-protein 
crosslinks.16

Dicarbonyl compounds like 3-deoxyglucosome, methylg-
lyoxal and glyoxal derive from oxidative degradation or auto-
oxidation of Amadori products and other pathways.13,32 These 
dicarbonyl compounds are very reactive molecules leading to 
protein crosslinks.13 Other in vivo characterized AGEs include 
glucosepane, carboxymethyl-hydroxy-lysine, carboxyethyl-lysine 
(CEL), fructose-lysine, methylglyoxal-derived hydroimidazo-
lones and pyrraline, which form non-fluorescent protein adducts, 
while glyoxal-lysine dimer (GOLD) and methylglyoxal-lysine 
dimer (MOLD) form non-fluorescent protein crosslinks.13,17

AGEs can be exogenously ingested (through food consump-
tion) or be endogenously produced. Endogenous AGE forma-
tion is increased in diabetes; however, AGEs are also formed at 
lower rates by normal metabolic processes of the organism.33 
Environmental factors, such as diet and smoking influence the 
rate of AGE formation.34 Moreover, it seems that the level of 
circulating AGEs levels are genetically determined, as shown in a 
cohort study of healthy monozygotic and heterozygotic twins.35

The content of AGEs in the organism is not only defined by 
the rate of their formation but also by the rate of their removal. 
Many cells have developed intrinsic detoxifying pathways 
against accumulation of AGEs.36 The glutathione-dependent 
glyoxalase system, comprising of glyoxalase (Glo) I and II, has 
a key role in the defense against glycation.37 This system uses 
reduced glutathione (GSH) to catalyze the conversion of gly-
oxal, methylglyoxal and other α-oxoaldehydes to the less toxic 
D-lactate.37 Other enzymatic systems include fructosyl-amine 
oxidases (FAOXs) and fructosamine kinases, relatively new 
classes of enzymes which recognize and break Amadori prod-
ucts.38 However, FAOXs or “amadoriases” have been found to be 
expressed only in bacteria, yeast and fungi but not in mammals. 

The aim of this work is to critically review the existing litera-
ture on AGEs and provide evidence that they play an important 
role in the pathogenesis of skin aging. Furthermore, existing and 
potential strategies against the deleterious effects of AGEs on 
skin aging will be discussed.

Biochemistry of AGEs

Glycation is the non-enzymatic reaction between reducing 
sugars, such as glucose, and proteins, lipids or nucleic acids.13 
Glycation has to be distinguished from glycosylation, which is an 
enzymatic reaction. Since its first description by Maillard in 1912 
and its involvement in food browning during thermal process-
ing by Hodge 50 years later, its presence in living systems and 
involvement in various pathologies of the human body, including 
aging and diabetes, have been an intensive field of research.14,15

Formation of AGEs is a complicated molecular process involv-
ing simple and more complex multistep reactions. During the 
classical Maillard reaction electrophilic carbonyl groups of 
glucose or other reactive sugars react with free amino groups 
of amino acids (especially of basic lysine or arginine residues), 
forming a non-stable Schiff base.16 Further rearrangement leads 
to formation of a more stable ketoamine (Amadori product)  
(Fig. 1).13,16 Schiff bases and Amadori products are reversible reac-
tion products. However, they can react irreversibly with amino 
acid residues of peptides or proteins to form protein adducts or 
protein crosslinks.13,16 Alternatively, they can undergo further 
oxidation, dehydration, polymerization and oxidative breakdown 
reactions to give rise to numerous other AGEs.13,17 Oxygen, reac-
tive oxygen species (ROS) and redox active transition metals 
accelerate AGE formation. When an oxidative step is involved, 
the products are called advanced glycoxidation end products.13,17

AGEs are a very heterogeneous group of molecules. Since the 
discovery of the first glycated protein, glycated hemoglobin in 

Figure 1. Schematic presentation of the Maillard reaction. Reactive carbonyl groups of a reducing sugar 
react with neutrophilic free amino groups of proteins to form a reversible Schiff base. Through rear-
rangement a more stable Amadori product is formed. Dependent on the nature of these early glycation 
end products, protein adducts or protein crosslinks are formed.
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itself further stimulates NFκB, forming a vicious cycle of self-
renewing and perpetuating proinflammatory signals.41 RAGE 
activation can directly induce oxidative stress by activating nico-
tinamide adenine dinucleotide phosphate (NADPH)-oxidase 
(NOX), decreasing activity of superoxide dismutase (SOD), 
catalase and other pathways, and indirectly by reducing cellu-
lar antioxidant defenses, like GSH and ascorbic acid.41,43,44 The 
reduction of GSH leads furthermore to decreased activity of 
Glo I, the major cellular defense system against methylglyoxal, 
therefore supporting further production of AGEs.37 RAGE is 
almost ubiquitary expressed in the organism, typically at low 
levels, and its expression is upregulated under various pathologic 
conditions.41,45 In the skin, RAGE expression was observed in 
both epidermis and dermis, and it was increased in sun-exposed 
compared with UV irradiation-protected areas. Keratinocytes, 
fibroblasts, dendritic cells and to a lesser extent endothelial cells 
and lymphocytes express RAGE.45 Not only in vivo, but also in 
vitro, various skin cells types have been shown to express RAGE 
(Table 2).43,45-51

RAGE is the most studied receptor for advanced glycation 
end products. Another group of cell surface receptors, AGER1, 
AGER2 and AGER3 seem to regulate endocytosis and degrada-
tion of AGEs, thus counteracting the effects of RAGE.52 AGER1 
has been further shown to counteract AGEs-induced oxida-
tive stress via inhibition of RAGE signaling.53,54 Soluble RAGE 
(sRAGE) is a truncated splice variant of RAGE containing the 
ligand-binding domain but not the transmembrane domain and 
has been found in plasma. sRAGE is a soluble extracellular pro-
tein without signaling properties and it is considered as a natural 
decoy receptor of RAGE.55

Role of AGEs During Skin Aging

Cutaneous accumulation of AGEs is a feature of skin aging. As 
mentioned above, AGEs can be directly formed in the organism 

They oxidatively break Amadori products but act mostly on low 
molecular weight compounds.39 On the contrary, fructosamine 
kinases are expressed in various genomes including humans.38 
These intracellular enzymes phosphorylate and destabilize 
Amadori products leading to their spontaneous breakdown.39 
Fructosamine-3-kinase (FN3K), one of the most studied 
enzymes in this system, is almost ubiquitary expressed in human 
tissues including the skin. Thus, it plays an important role in the 
intracellular breakdown of Amadori products.40

Receptors for AGEs

AGEs not only exert their deleterious actions due to their bio-
logical properties per se, but also through their interaction with 
specific receptors. Receptor for AGEs (RAGE) is a multiligand 
member of the immunoglobulin superfamily of cell surface 
receptors, encoded by a gene on chromosome 6 near the major 
histocompatibility complex III. It is a pattern recognition recep-
tor binding in addition to AGEs various other molecules such as 
S-100/calgranulins, high motility group protein B1 (amphoter-
ine), β-amyloid peptides and β-sheet fibrils.33,41 The binding of 
ligands to RAGE stimulates various signaling pathways includ-
ing the mitogen-activated protein kinases (MAPKs) extracellular 
signal-regulated kinases (ERK) 1 and 2, phosphatidyl-inositol 3 
kinase, p21Ras, stress-activated protein kinase/c-Jun-N-terminal 
kinase and the janus kinases.33,41 Stimulation of RAGE results 
in activation of the transcription factor nuclear factor kappa-B 
(NFκB) and subsequent transcription of many proinflamma-
tory genes.41,42 Interestingly, RAGE-induced activation of NFκB 
is characterized by a sustained and self-perpetuating action, 
through induction of positive feedback loops and overwhelm-
ing of the autoregulatory negative feedback loops. RAGE activa-
tion leads to new synthesis of the transcriptionally active subunit 
p65, which overwhelms the newly synthesized inhibitor IκBα. 
Moreover NFκB increases further expression of RAGE, which 

Table 1. Detected AGEs in skin*

AGE Skin compartments involved Targets of glycation Methods of detection

CML 
 
 
 

Epidermis18 
Aged and diabetic dermis19-22 

Photoaging–actinic elastosis20,23 

 

Epidermis 
(SC -CK10, SS, SG)18 

Collagen19-21 
Vimentin22 
Elastin20,23

LC-ESI-TOF-MS, IF, 
IB18 

SIM/GC-MS19,21 
IHC20,22,23 

ELISA,23 confocal microscopy23

Pentosidin Aged and diabetic dermis19,24,25 Collagen19,24,25 Reversed-phase HPLC,19,24 ELISA,25 IB25

GO Aged dermis21 Collagen21 LC/MS21

MGO Aged dermis21 Collagen21 LC/MS21

Glucosepane Aged dermis21,26 Collagen21,26 LC/MS21,26

Fructoselysine Aged dermis21 Collagen21 LC/MS21

CEL Aged dermis21,27 Collagen21,27
LC/MS27

SIM/GC-MS21

GOLD Aged dermis28 Collagen28 LC/MS28

MOLD Aged dermis28 Collagen28 LC/MS28

ELISA, enzyme-linked immunosorbent assay; GO, glyoxal; HPLC, high performance liquid chromatography; IHC, immunohistochemistry; IB, immu-
noblotting; IF, immunofluorescence; LC-ESI-TOF-MS, liquid chromatography–electrospray ionization time-of-flight mass spectrometry; LC/MS, liquid 
chromatography/mass spectrometry; MGO, methylglyoxal; SIM/GC-MS, selected ion monitoring gas chromatography-mass spectrometry; SC, stratum 
corneum; SG, stratum granulosum; SS, stratum spinosum; all other abbreviations are already explained in the text.
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protein for CML modification. The amount of CML in younger 
donors seemed to be weak in comparison to the older ones. 
The latter study had restrictions, as the size of the sample was 
small and heterogeneous, but indicates a potential involvement 
of AGEs in epidermal physiology and a possible involvement of 
more short-lived proteins in glycation chemistry. Moreover, in 
an in vitro reconstructed organ skin model, both epidermis and 
dermis, as well as their functions, were modified by glycation.68

AGEs also seem to highly accumulate in extrinsically aged 
skin. Until now, the deleterious effects of UV irradiation have 
been mainly attributed to proinflammatory changes, apopto-
sis, oxidative damage, mutagenesis and induction of MMPs.2,5 
However, it has been shown that in young individuals, where 
typically no significant accumulation of AGEs in sun-protected 
skin is observed, sun-exposed areas display an increased deposi-
tion of these substances.20,69 Accumulation of AGEs was mainly 
found in sites of solar elastosis in sun-exposed skin, showing that 
UV irradiation may also precipitate the formation of AGEs in 
vivo.20,23 It is tempting to speculate that formation of AGEs in 
sun-exposed skin may be one additional mechanism mediat-
ing the various structural and functional modifications during 
photoaging.

Moreover, smoking, a typical aggravating factor of skin aging, 
accelerates formation of AGEs and increases their deposition in 
various tissues including skin.70,71 Another important environ-
mental factor for aging is diet. The content of AGEs in food is 
highly dependent on the method of preparation, like cooking 
time and temperature. Fried food contains in general far higher 
amounts of AGEs than boiled or steamed food.72 Approximately 
10–30% of ingested AGEs are absorbed in the circulation.73 
Dietary AGEs directly correlate with serum levels of AGEs and 
inflammatory markers in healthy human subjects, respectively.73

It has been widely accepted that AGEs, once formed, can be 
only removed when the modified proteins degrade. However it 
has now become apparent that in the organism various enzymatic 
systems seem to be involved in the degradation or removal of 
AGEs. As mentioned above, Glo I is an enzyme responsible for 
the removal of reactive α-dicarbonyl compounds. Interestingly, 
decreased activity of such defense systems against AGEs has been 
reported during aging.44 These age-related changes may further 
increase the extent of deposited AGEs in a living organism over 
time.

Consequences of AGE deposition in skin. AGEs can be 
formed intracellularly and extracellularly. Their presence in bio-
logical molecules modifies their biomechanical and functional 
properties. Proteins, lipids and nucleic acids can be targets of 
advanced glycation, modifying enzyme-substrate interactions, 
protein-DNA interactions, protein-protein interactions, DNA 
regulation and epigenetic modulation, thus interfering with 
numerous physiological functions of the organism. Moreover, 
AGEs are themselves reactive molecules which through inter-
action with their receptors activate various molecular pathways 
in vivo, thus becoming involved in inflammation, immune 
response, cell proliferation and gene expression (Fig. 2).

1. Extracellular matrix proteins. Extracellular matrix 
(ECM) proteins have been regarded as one of the major target 

or be exogenously ingested. Accumulation of AGEs has been 
detected in various tissues during aging and diabetes, including 
articular collagen, skeletal and smooth vascular muscles or glo-
merular basement membranes.56-58 Accordingly, deposited AGEs 
in these tissues have been implicated in various diabetes- or 
age-associated pathologies such as diabetic angiopathy, age- and 
diabetes-associated macular degeneration and osteoarthritis.56-62

Skin, due to its easy accessibility, offers an excellent opportu-
nity for minimal invasive or even non-invasive investigation of 
glycation, taking advantage of the characteristic autofluorescent 
properties of AGEs. Accumulation of AGEs in the skin has been 
therefore thoroughly studied and is detected not only in diabetes 
as expected but also during chronological aging.20,63,64 Glycation-
associated skin autofluorescence was shown to correlate with 
chronological aging in a large number of healthy subjects.65

It is a general perception today that AGE accumulation is 
dependent on protein turnover rate; therefore long-lived proteins 
are thought to be mainly modified by glycation.66 Collagen types 
I and IV, exhibiting a slow turnover rate of about 10 y, and other 
dermal long-lived proteins like fibronectin mainly suffer from 
glycation during intrinsic chronological aging.19,20 The appear-
ance of glycated collagen is first observed at the age of 20. It 
accumulates with a yearly rate of about 3.7% reaching a 30–50% 
increase at 80 y of age.20,67 CML was recently histochemically 
detected in human epidermis from healthy donors.18 The upper 
epidermal layers were mostly involved (stratum spinosum, granu-
losum and corneum) and the authors identified cytokeratin 10 
(CK10) (expressed by differentiated keratinocytes) as a target 

Table 2. Expression of human RAGE in skin and skin cells*

Skin in situ Methods of detection

Young donors: 
High and middle epidermis 

Papillary dermis 
Old donors: 

Middle and basal epidermis 
Reticular dermis 

Enhanced expression in sun-exposed skin

IHC45,46

Skin cell types in vivo 
Fibroblasts 

Dendric cells 
Keratinocytes 

Endothelial cells 
Mononuclear cells

IHC45,46

Cell types in vitro
Resident skin cells 

Keratinocytes 
Fibroblasts 

Melanocytes

 
qRT-PCR,46 WB47 

WB,43,45 qRT-PCR43,45 
?

Immune cells and other cell types 
Mononuclear phagocytes48 

Dendritic cells49 
T-lymphocytes50 

Vascular dermal endothelial cells

 
WB,48 IF48 

FC49 
qRT-PCR50 

qRT-PCR,51 WB51

FC, flow cytometry; IHC, immunohistochemistry; IF, immunofluores-
cence; qRT-PCR, quantitative real-time PCR; all other abbreviations are 
already explained in the text.
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The change of its charge and the formation of AGEs on side 
chains of collagen affect its contact sites with cells and other 
matrix proteins and inhibit its ability to react with them.75 The 
precise aggregation of monomers into the triple helix may be 
affected as well as the association of collagen IV with laminin 
in the basal membrane.16 Modified collagen resists degradation 
by MMPs, thus inhibiting its removal and replacement by newly 
synthesized and functional one.62 Accordingly, tissue permeabil-
ity and turnover is impaired.16,76

Other extracellular matrix proteins suffering from advanced 
glycation are elastin and fibronectin, contributing further to der-
mal dysfunction.19,20,23 Of note, CML-modified elastin has been 

structures for glycation. The most abundant collagen type in 
the skin is type I, whereas collagen IV is being found in the 
basal membrane. Collagen is one of the strongest proteins. 
In the skin, it is not only used as a supportive framework for 
mechanical support for cells and tissues, but represents an 
active component being able to interact with cells and affect 
various cellular functions such as migration, differentiation 
and proliferation.

Collagen glycation impairs its function in various ways. 
Intermolecular crosslinks of adjacent collagen fibers change its 
biomechanical properties leading to stiffness and decreased flex-
ibility, thus increasing its susceptibility to mechanical stimuli.74 

Figure 2. Effects of AGEs on skin. AGEs are formed intracellularly and extracellularly. They can react with proteins, lipids and nucleic acids in almost 
all skin cells as well as on intracellular or extracellular proteins. Through alteration of the physicochemical properties of dermal proteins, decreased 
cell proliferation, increased apoptosis and senescence, induction of oxidative stress and proinflammatory mediators as well as other pathways, AGEs 
contribute to the overall picture of skin aging. Triangles represent AGEs. Abbreviations: jak/stat, januskinase/signal transducers and activators of tran-
scription; MCP-1, monocyte chemotactic protein-1; all other abbreviations are already explained in the text.



©
20

12
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te
.

264 Dermato-Endocrinology Volume 4 Issue 3

3. Receptors for AGEs: RAGE. AGEs do not only act by alter-
ing the physicochemical properties of glycated proteins. As 
mentioned above, AGEs may bind to their cell surface receptor, 
RAGE, initiating a cascade of signals influencing cell cycle and 
proliferation, gene expression, inflammation and extracellular 
matrix synthesis (reviewed in Bierhaus et al.).41 Interestingly, 
RAGE is broadly expressed in human skin and in epidermal 
keratinocytes, dermal fibroblasts and endothelial cells in vitro. 
It is highly found in sites of solar elastosis, and its expression is 
induced by advanced glycation end products and proinflamma-
tory cytokines like TNFα.45 In skin cells RAGE has been shown 
to decrease cell proliferation, induce apoptosis and increase 
MMPs production.47 Many of these effects involve NFκB 
signaling.47

4. Effects of AGEs on resident skin cells. AGEs have been 
shown to affect various functions of skin cells in vitro (Table 3). 
They decrease proliferation and enhance apoptosis of human 
dermal fibroblasts, an effect which is at least partly RAGE-
dependent and correlates with the activation of NFκB and 
caspases.87 In keratinocytes, AGEs decrease cell viability and 
migration and induce the expression of proinflammatory 
mediators.84 Moreover, AGEs are able to induce premature 
senescence in human dermal fibroblasts and in normal human 
keratinocytes in vitro.86,89,90 Collagen and ECM protein synthe-
sis have been also found to be decreased, while the expression of 

found almost exclusively in sites of actinic elastosis and not in 
sun-protected skin, underlining its potential role in photoaging. 
Indeed, UV irradiation stimulates glycation of elastin in the pres-
ence of sugars. Moreover, CML-modified elastin assembled in 
large and irregular structures, has decreased elasticity and is resis-
tant to proteolytic degradation.77

It has been shown that in vitro glycated skin samples have 
impaired biomechanical properties.78 In vivo, decreased skin 
elasticity characterizes diabetic subjects in comparison to healthy 
controls.79

2. Intracellular proteins. Intermediate filaments such as vimen-
tin in fibroblasts and CK10 in keratinocytes have been found 
to be modified by AGEs.18,22 Cytoskeletal proteins are impor-
tant in providing stability of the cytoskeleton and are crucially 
involved in numerous cellular functions such as migration and 
cellular division. Various other intracellular proteins including 
enzymes and growth factors may be targets of non-enzymatic 
modification by sugars. Glycated basic fibroblast growth fac-
tor (bFGF) displays impaired mitogenic activity in endothelial 
cells.80 Glycation of enzymes of the ubiquitin-proteasome system 
and of the lysosomal proteolytic system has been shown to inhibit 
their action.81 Antioxidant and other protective enzymes such as 
Cu-Zn-SOD can be inactivated.82 Other intracellular compo-
nents, such as DNA and lipids can be glycated with detrimental 
effects on their function.13,83

Table 3. Effects of AGEs/RAGE on skin morphology and physiology during aging*

Keratinocytes

Proliferation ↓84 
Apoptosis  ↑47 

ROS ↑ 85 
MMP ↑9  , TIPM ↓84 

Senescence ↑ 86 
NFκB, proinflammatory mediators ↑ 81 

α2β1-integrin ↓84

Cell renewal ↓ 
Epidermal homeostasis ↓ 

Fibroblasts

Proliferation ↓87 
Apoptosis ↑ 87 

ECM synthesis ↓88 
MMP  ↑88 

Senescence ↑ 89,90 
NFκB  ↑87 

ROS  ↑43,85,90 
Contractile properties ↓22 

NOX ↑ 43

Cell renewal ↓ 
Dermal homeostasis ↓ 

Skin contractile function ↓

Melanocytes ? ?

Immune cells
Proliferation  ↑50 

Haptotaxis, chemotaxis ↑ 48 
NFκB, TNFα, IL-1, IL-6  ↑42,49

Induction and propagation of inflammation

Extracellular matrix pro-
teins (collagen, fibronec-

tin, elastin)

Crosslinking16,19,20,23,76 
Resistance to MMP degradation62,76 

Impaired assembly of macromolecules to normal 3D structures16,76-78 
Defect cross-talking to cells75,76

Elasticity ↓ 
Stiffness ↑   

Resistance to repair mechanisms 
Tissue permeability ↓

Vascular endothelial cells

VCAM, ICAM, E-selectin ↑ 91 
Permeability  ↑91 

TNFα, IL-6  ↑91 
MCP-1  ↑91

Induction of proinflammatory mediators and 
recruitment of immune cells

ICAM, intercellular adhesion molecule; MCP-1, monocyte chemotactic protein-1; TIPM, tissue inhibitor of MMP; VCAM, vascular cell adhesion molecule; 
all other abbreviations are already explained in the text.
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Anti-AGE Strategies:  
Current Knowledge and Future Perspectives

Since the emergence of AGEs as an important pathogenetic fac-
tor in diabetes and aging the development of strategies against 
AGEs has been in the center of scientific interest. Substances 
able to prevent or inhibit formation of AGEs, as well as agents 
able to break already formed AGEs or those antagonizing their 
signaling have been identified. Some of them are already being 
tested in clinical trials.105,106

1. Substances preventing or inhibiting AGE formation. 
Aminoguanidine was one of the first substances identified limit-
ing the formation of AGEs.107 Aminoguanidine is a nucleophilic 
hydrazine and its anti-AGE properties result from trapping of 
early glycation products such as carbonyl intermediate com-
pounds. It has no effects on more advanced stages of glycation. 
Despite its potential effects in attenuating various diabetes- and 
age-related complications in animal models, its use in clinical 
practice is limited due to adverse effects in clinical trials with 
diabetic patients.108 In an in vitro skin aging model it could 
attenuate collagen glycation, however its effects against AGE-
induced collagen modification in vivo have been contradic-
tory.109-111 Studies on topical application of aminoguanidine in 
the skin are lacking.

Pyridoxamine, a naturally occurring vitamin B
6
 isoform, 

seems to be another tool in the fight against AGEs. Pyridoxamine 
traps reactive carbonyl intermediates, scavenges ROS and in 
addition inhibits post-Amadori stages of AGE formation.112 It 
has shown promising results in a phase II clinical trial against 
diabetic nephropathy.113 Oral intake of pyridoxamine resulted 
in potent inhibition of skin collagen CML formation in diabetic 
rats.111 However, its potential against skin aging remains to be 
shown.

2. “AGE breakers.” Chemical substances and enzymes able to 
recognize and break the Maillard reaction crosslinks have been 
identified. Such chemical AGE breakers are dimethyl-3-phen-
ayl-thiazolium chloride (ALT-711), N-phenacylthiazolium and 
N-phenacyl-4,5-dimethylthiazolium.113 They have been devel-
oped to chemically break the prototypical Maillard reaction 
crosslink via a thiazolium structure.113 Promising results against 
cardiovascular complications in diabetes and aging have been 
reported, although their actual ability to cleave existing protein 
crosslinks in tissues has been questioned.114-117 In the rat ALT-
711 showed some promising results on skin hydration.113

Interference with intrinsic AGE-detoxifying enzymes like 
FAOXs, FN3K and the enzymatic system of Glo is another 
interesting strategy to remove AGEs, as enzymes recognize 
specific substrates and may be associated with fewer side 
effects.37,38,118 There are a lot of data supporting the significance 
of these enzyme systems in aging. As noted above decreased Glo 
I activity and increased accumulation of AGEs with age have 
been shown in many tissues and animals.37 Overexpression of 
Glo I significantly inhibits hyperglycemia-induced intracellu-
lar formation of AGEs in bovine aortic endothelial cells and 
in mouse mesangial cells by reduction of intracellular oxida-
tive stress and apoptosis.119,120 A potential in vivo beneficial 

MMPs is induced.47 Dicarbonyls such as glyoxal and methylg-
lyoxal impair the signaling of epidermal growth factor receptor 
(EGFR), a receptor controlling various cellular functions such 
as proliferation, differentiation, motility and survival, by for-
mation of EGFR crosslinks, blocking of phosphorylation and 
impaired activation of ERKs and phospholipase C.92 Various 
other growth factors or proteins significant for cellular func-
tions, like bFGF, may be glycated inhibiting their functions.80 
In the context of extrinsic aging, AGEs seem to render cells 
more sensitive to external stimuli, as UVA irradiated fibroblasts 
and keratinocytes exhibit decreased viability after exposure to 
AGEs.85,93

5. The role of oxidative stress. Oxidative stress has been widely 
accepted to mediate the deleterious effects of solar radiation in 
the skin during photoaging. Interestingly, in vitro exposure of 
AGEs to UVA irradiation leads to formation of ROS, such as 
superoxide anion, hydrogen peroxide and hydroxyl radicals.93 
AGEs can lead to ROS formation in cells by various ways. 
They can stimulate NOX to induce production of superoxide 
anion or they can compromise cellular antioxidant defense 
systems, e.g. inactivation of Cu-Zn-SOD by cross-linking and 
site-specific fragmentation of this molecule.82 Moreover, AGEs 
are themselves very reactive molecules. As early as during their 
crosslinking reactions they can act as electron donors leading to 
formation of superoxide anions.94 Glycation of proteins creates 
active enzyme-like centers (cation-radical sites of crosslinked 
proteins) able to catalyze one-electron oxidation-reduction reac-
tions leading to ROS generation with or without presence of 
oxygen or transition metals such as iron and copper.94-96

Finally, autofluorescent AGEs, such as pentosidine, can act 
as endogenous photosensitizers leading to increased ROS forma-
tion after UVA irradiation of human skin.97 UV irradiation of 
human keratinocytes and fibroblasts in the presence of AGEs 
led to increased ROS formation and decreased proliferation in 
vitro.85

6. Skin AGEs as biomarkers of aging. As AGEs have been etio-
logically implicated in aging and aging-related pathologies, the 
idea of using them as biomarkers is appealing. AGEs in the skin 
have been initially measured by western blots (WB) with poly-
clonal antibodies or by autofluorescence measurements of skin 
biopsies, thus restricting the wide use of these measurements. An 
AGE-Reader (DiagnOptics B.V., Groningen, The Netherlands) 
has been introduced some years ago as a new, non-invasive 
method to measure in vivo the skin content of AGEs based on 
their characteristic autofluorescence.98-100

Until now it has been shown that skin autofluorescence posi-
tively correlates with various diabetes- and age-related compli-
cations such as micro- and macrovascular complications, renal 
disease, cardiovascular events, overall mortality, age-related 
macular degeneration and chronic renal disease.99,101,102 Skin gly-
cation has been proposed as a prognostic factor for the devel-
opment of diabetic complications.103 Lately it was shown that 
skin autofluorescence increases with chronological aging and 
correlates with skin deposition of AGEs, making this method 
a potential tool in investigating the effect of various anti-aging 
products of the cosmetic industry.104
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decrease the levels of AGEs in rat and mice skin collagen.135,136 
Skin collagen glycation and glycoxidation inversely correlated 
with lifespan whereas caloric restriction led to decreased accu-
mulation of AGEs and increased lifespan.137 Dietary restriction 
may not be a pragmatic option in humans; however a restric-
tion in intake of dietary “glycotoxins” may be more feasible. As 
outlined above these dietary glycotoxins derive from nutrition. 
In humans dietary glycotoxins significantly increase concentra-
tions of systemic inflammatory mediators like TNFα, interleu-
kin (IL)-6 and C-reactive protein and are thus considered as 
diabetogenic, nephrotoxic and proatherogenic.59,138,139 Dietary 
intake of AGEs correlates with serum AGEs and can induce sys-
temic oxidative stress, increase RAGE expression, decrease anti-
oxidant levels and shorten lifespan in mice.54 A diet with a low 
content in AGEs could reduce circulating AGEs and inflamma-
tory biomarkers in patients with diabetes and renal failure thus 
seeming to be an important supportive therapy in diabetes.140,141 
In mice low dietary AGEs had beneficial effects in wound heal-
ing and other diabetes mellitus-associated pathologies.142 There 
are no studies investigating the effects of AGE-poor diets on 
skin aging in humans. However, it has been shown that skin 
collagen glycation positively correlates with blood glucose levels 
in diabetes and that intensive treatment can reduce the levels of 
skin glycation, implicating that a diet low in AGEs may have a 
beneficial effect on skin glycation.143,144

5. Targeting RAGE. Another potential strategy against 
excessive accumulation of AGEs could be the antagonism of 
RAGE.145 Possible approaches include gene knock-down of 
RAGE by siRNA or anti-sense and antagonism of RAGE with 
putative small molecular inhibitors against RAGE-induced sig-
naling.50,145 Promising effects in various systems have been shown 
in vitro and in vivo with neutralizing anti-RAGE antibodies.41 
Since serum concentrations of sRAGE negatively correlate with 
AGE-induced pathologies, neutralization of AGEs by these 
decoy receptors of RAGE may be considered as another anti-
AGE strategy. Potential protective effects of sRAGE have been 
shown in various diabetes and inflammatory models.41,44,45,146 
Interestingly, sRAGE could also attenuate impaired wound 
healing in diabetic mice. Therefore, studies will be needed to 
investigate an analogous effect on skin aging.147

6. Others. Molecular chaperones like carnosine have lately 
shown promise in improving skin appearance in various studies 
at least in part by reducing the amounts of skin AGEs.148-150

Conclusion

There is ample evidence that AGEs play an important role in 
skin aging. There are also numerous studies investigating poten-
tial substances against excessive accumulation of AGEs in tis-
sues. Some of these studies have already shown protective effects 
against diabetic complications. As controlled human studies 
investigating the effects of these anti-AGE strategies against skin 
aging are largely missing, this is a hot field for future research.
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effect of Glo I against AGEs could be also shown in transgenic 
rats.121 Interestingly, it has been recently shown that Glo I is 
transcriptionally controlled by Nrf2, and that pharmacologi-
cal Nrf2 activators increase Glo I mRNA and protein levels as 
well as its activity.122 The pharmacological induction of such 
enzymes could represent a novel future strategy against AGEs. 
Fructosamine phosphokinases are relatively new enzymes and 
currently under investigation, and until now no inductors or 
activators of their expression have been found.40 FAOXs, on the 
other hand, are not expressed in mammals, and their poten-
tial use in humans by enzymatic engineering remains to be 
discovered.39

3. Nutriceuticals. Since oxidation steps are crucially involved 
in formation of many AGEs, substances with antioxidative or 
metal chelating properties, may also have antiglycating activi-
ties.123 Thus, a lot of interest has been directed to nutrients and 
vitamins, so called “nutriceuticals,” as natural tools against 
AGEs.106,124

Accordingly, an increasing list of natural antioxidants and 
chelating agents such as ascorbic acid, α-tocopherol, niacina-
mide, pyridoxal, sodium selenite, selenium yeast, trolox, rivo-
flavin, zink and manganese has been shown to inhibit glycation 
of albumin in vitro.125 Alpha-lipoic acid was able to reverse tail 
tendon collagen glycation in fructose-fed rats, an effect which 
was attributed to its endogenous antioxidant action, its ability 
to recycle ascorbic acid, α-tocopherol and GSH as well as to 
its positive influence on glucose uptake and glycaemia.126 Green 
tea, vitamins C and E and a combination of N-acetylcystein 
with taurine and oxerutin could inhibit skin collagen glyca-
tion in mice.124,127 Another compound, the green tea-derived 
polyphenol and flavonoid epigallocatechin-3-gallate revealed 
also promising in vitro effects by antagonizing AGE-induced 
proinflammatory changes.128 In healthy human subjects, supple-
mentation of vitamin C significantly decreased serum protein 
glycation.129

Many spices and herbs were shown to inhibit glycation of 
albumin in vitro, among them ginger, cinnamon, cloves, -mar-
joram, rosemary and tarragon.130 Their protective effects cor-
related with their phenolic content. Recently, in vivo beneficial 
effects of some of these compounds were shown in zebrafish.131

Other promising compounds include blueberry extract and 
naturally occurring flavonoids, such as luteolin, quercetin and 
rutin, which can inhibit various stages of AGE formation.132,133 
Recently, blueberry extract, an AGE-inhibitor and C-xyloside, 
a glycosaminoglycan synthesis stimulator, were tested for 12 
weeks in female diabetic subjects. This treatment resulted in 
significant improvement of skin firmness, wrinkles and hydra-
tion although it failed to show a significant decrease in the cuta-
neous content of AGEs.132

4. Caloric restriction and dietary measures. As nutrition 
is an important factor in skin aging, dietary caloric restriction 
may be effective in preventing accumulation of AGEs in the 
human body. In mice restriction of caloric intake increases lifes-
pan and delays many age-related dysfunctions by altering stress 
response and influencing the expression of various metabolic 
and biosynthetic genes.134 Dietary restriction could significantly 
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