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Introduction

Type 1 diabetes (T1D) is characterized by the autoimmune-
mediated destruction of the insulin producing β cells residing 
in the pancreatic islets of Langerhans.1-4 The disease process is 
viewed as a chronic inflammatory response of the islets, typically 
progressing over a number of years until the functional mass of 
β cells is insufficient to meet the body’s insulin needs. It is well 
established from studies carried out in spontaneous rodent mod-
els of T1D, such as the nonobese diabetic (NOD) mouse, that 
the primary mediators of β cell destruction are CD4+ and CD8+ 
T cells.5-7 Indirect evidence for a role for T cells in human T1D 
is provided by detection of increased β cell-specific CD4+ and 
CD8+ T cells in peripheral blood lymphocytes of at risk and/
or diabetic individuals, and the presence of T cell infiltrates 
in the islets of pancreatic specimens from diabetic cadavers.8-11 
The breakdown of β cell-specific tolerance is complex, involv-
ing both genetic and environmental factors, which contribute 
to dysregulation of mechanisms promoting T cell tolerance.12-14 
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Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease 
resulting in the destruction of the insulin-secreting β cells. 
Currently, there is no established clinical approach to effectively 
suppress long-term the diabetogenic response. Genetic-based 
vaccination offers a general strategy to reestablish β cell-
specific tolerance within the T cell compartment. The transfer 
of genes encoding β cell autoantigens, anti-inflammatory 
cytokines and/or immunomodulatory proteins has proven to 
be effective at preventing and suppressing the diabetogenic 
response in animal models of T1D. The current review will 
discuss genetic approaches to prevent and treat T1D with an 
emphasis on plasmid DNA- and adeno-associated virus-based 
vaccines.
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The latter is marked by increased development of type 1 CD4+ 
and CD8+ effector T cells characterized by the secretion of pro-
inflammatory cytokines such as IFNγ and TNFα.15 The appar-
ent skewed differentiation of naïve β cell-specific T cells towards 
pathogenic type 1 effectors correlates with reduced numbers and/
or function of immunoregulatory T cells (Treg), and/or reduced 
sensitivity of established type 1 T effectors to Treg-mediated reg-
ulation.11,16-21 A number of subsets of Treg have been identified 
which are defined by the: (1) type of cytokine(s) secreted, (2) 
effector function(s) employed to regulate an immune response 
and (3) overall potency.22

To date most immunotherapies have focused on reestablishing 
the functional balance between pathogenic type 1 T effectors and 
Treg to prevent and/or treat T1D. In the clinic the most promis-
ing results have been achieved with non-mitogenic (NM) anti-
CD3 antibodies administered to recent onset diabetic patients. 
β cell mass is maintained in these patients; however, protection 
is relatively short-lived and is associated with transient depletion 
of T cells which may lead to recurrent viral infections.23-25 Other 
strategies of immunotherapy have been tested in experimental 
models and the clinic. Antigen-specific immunotherapies have 
proven to be effective at preventing overt diabetes in NOD mice 
and transgenic models of T1D, but clinical findings have largely 
been disappointing with only recent studies providing cause 
for optimism.26-36 This approach is appealing since administra-
tion of β cell antigens or peptides under various conditions can 
be used to selectively manipulate β cell-specific T cell reactiv-
ity, with minimal if any effect on the “normal” function of the 
immune system. Depending on the protocol, administration of 
β cell antigen may lead to: (1) T cell deletion or induction of a 
state of unresponsiveness (e.g., anergy), and/or (2) differentia-
tion and expansion of Treg. Clonal anergy or deletion induced 
by high dose soluble antigen for instance, is exquisitely specific 
for those T cells recognizing the injected antigen.37 However, 
at late stages of disease progression when pathogenic CD4+ and 
CD8+ T cells recognize multiple autoantigens and epitopes, 
anergy/deletion of a select pool of T cell clones is typically inef-
fective.37,38 Accordingly, promoting Treg differentiation and/or 
expansion has generally been the preferred outcome.38-41 Once 
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Importantly, the efficacy of a given immunotherapy to sup-
press β cell autoimmunity is dictated by the number of pathogenic 
type 1 effector T cells present, and the overall proinflammatory 
milieu that is established in the islets at the time of intervention. 
In this regard the most stringent conditions are expected at late 
preclinical and clinical stages of disease progression.

Genetic Vaccination to Manipulate β Cell-Specific  
T-Cell Reactivity

To date the use of genetic vaccines to suppress β cell autoimmu-
nity has been studied largely in NOD mice and murine transgenic 
models of T1D; only recently has this approach been assessed in 
the clinic. In general, two strategies of genetic vaccination have 
been studied in depth; namely plasmid DNA (pDNA)- and 
viral vector-based vaccines (Tables 1 and 2). Recently, a third 
genetic approach entailing the use of antisense oligonucleotides 
(AS-ODN) has also proven to be effective for manipulating β cell 
autoimmunity.

Application of pDNA vaccination to induce β cell-specific 
T cell tolerance. pDNA vaccines have been mostly studied for 
infectious diseases and cancer, with more recent efforts focusing 
on autoimmunity.53-55 Intramuscular (i.m.) injection of soluble or 
“naked” pDNA results in significant levels of protein expression 
of the encoded transgene that may persist for 6 weeks or lon-
ger.53,56 pDNA vaccines are considered to be safe, in that pDNA 
fail to integrate into the host genome, exhibit limited immuno-
genicity, and are well tolerated in the clinic.53,56 From a produc-
tion standpoint, pDNA are readily manufactured and stored.57 
However, the in vivo transfection frequency of pDNA is low, and 
different cell types are transfected which may lead to varying 
levels of transgene expression.53-56 Different strategies of delivery 
have been used to increase the efficiency of pDNA transfection. 
Transfection is markedly enhanced via “gene gun” vaccination 
for instance, which involves bombardment of the epidermis of 
the skin with pDNA-coated gold particles.58-60 pDNA complexed 
with cationic polymers or liposomes or the use of electropora-
tion have also been used to increase transfection efficiency.61,62 
Nevertheless, pDNA-induced antibody or T cell responses spe-
cific for foreign or tumor antigens have generally been weak and/
or transient in human subjects.53,54 The latter, however, may in 
fact be beneficial for preventing and treating autoimmunity, 
where exacerbating an ongoing pathogenic response must be 
avoided.

Distinct approaches of pDNA vaccination have been used to 
immunoregulate β cell autoimmunity (Table 1). For instance, 
i.m. injection of pDNA encoding CCL4 or CXCL10 to young 
NOD mice results in the induction of neutralizing antibodies 
specific for the respective chemokines.63,64 Consequently, T cell 
trafficking to the islets is blocked and the development of diabe-
tes prevented. This approach, however, is limited by the lack of 
specificity for the autoimmune response.

Induction of β cell-specific Treg differentiation and/or expan-
sion has typically entailed the use of pDNA encoding anti-
inflammatory cytokines, β cell autoantigens or the combination 
of both. Delivery of a short course of pDNA encoding IL-4 or 

established, Treg can traffick to the islets and draining pancreatic 
lymph nodes (PLN) and through secretion of cytokines regulate 
β cell autoimmunity independent of the antigen-specificity of the 
pathogenic effector T cells.38-42 Nevertheless, the efficacy of anti-
gen-based immunotherapy generally wanes at late pre-clinical 
and clinical stages of intervention partly reflecting the increased 
numbers of pathogenic type 1 T effectors, and the need for a 
sufficiently large frequency of Treg.40,42-44 Administration of cyto-
kines to promote differentiation and/or expansion of different 
subsets of Treg has also proven to be effective in preventing overt 
diabetes in NOD mice. For instance, ongoing β cell autoimmu-
nity is suppressed in NOD mice treated with recombinant IL-4 
and IL-10 and the subsequent induction of IL-4 and IL-10 secret-
ing Treg, respectively.45,46 In addition, diabetes is prevented in 
NOD mice receiving IL-2-antibody complexes which promotes 
expansion of highly potent Treg expressing the transcription fac-
tor FoxP3 (FoxP3+Treg).47,48 However, the pleiotropic effects of 
cytokines administered systemically are an important concern, 
especially if the cytokines need to be administered long-term to 
maintain protection.

Genetic vaccines offer a strategy to enhance the efficacy of 
antigens, cytokines and other immunomodulatory proteins 
used to reestablish T cell self-tolerance. Transfer of genes obvi-
ates the need to express, purify and store recombinant proteins. 
Furthermore, genetic vaccination enables greater flexibility in 
manipulating the nature of a T cell response, in addition to 
directly modifying in vivo the “tolerogenicity” of the target tis-
sue (e.g., β cells). We will review the most studied approaches of 
genetic vaccination used to prevent and/or suppress β cell auto-
immunity, in addition to highlighting the respective strengths 
and weaknesses of these strategies.

Clinial Scenarios for Immunotherapy in T1D

There are three general clinical scenarios in which immunother-
apy can be applied to suppress β cell autoimmunity and rees-
tablish tolerance within the T cell compartment.41,43,49-51 Firstly, 
immunotherapy can be used to prevent the onset of clinical dia-
betes in at risk individuals. These individuals are identified by 
detection of autoantibodies specific for various islet and β cell 
antigens in serum, in addition to altered insulin responses upon 
glucose challenge. Secondly, immunotherapy can be applied for 
the purpose of rescuing residual β cell mass in recent onset and 
long-term diabetic subjects. At the time of clinical diagnosis a suf-
ficient amount of functional β cell mass persists so that remission 
of diabetes may be induced if islet inflammation is suppressed.50 
Furthermore, indirect evidence suggests that protection of even 
minimal β cell mass in chronic diabetic patients can result in 
more efficient glycemic control.52 Finally, immunotherapy can be 
applied in the context of β cell replacement in chronic diabetic 
individuals. Recently islet transplantation has proven to be a fea-
sible strategy to provide a “cure” for chronic diabetic patients.51 
However, long-term survival of islet grafts depends on persistent 
tolerance within the pool of β cell-specific T cells. Similarly, 
efforts to promote β cell regeneration/expansion in vivo are only 
possible with suppression of the diabetogenic response.
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injections of streptozotocin (STZ) in NOD mice.71 However, sys-
temic and persistent expression of the IFNγR-Ig fusion molecule 
may again impair protective type 1 T cell-mediated immunity 
specific for pathogens.

Delivery of pDNA encoding β cell autoantigens has proven to 
be effective at selectively blocking β cell autoimmunity. pDNA 
encoding insulin B chain, proinsulin, glutamic acid decarbox-
ylase 65 (GAD65) and heat shock protein 60 (HSP60) suppress 
autoimmunity at various stages of disease progression in NOD 
mice.67-69,72-77 A number of factors, however, impact the efficacy 
of pDNA-mediated β cell specific tolerance. The context of β 
cell autoantigen expression is a key parameter determining over-
all efficacy. Induction of Treg by pDNA encoding antigens that 
are intracellularly expressed is dependent on direct transfection 
of APC and/or cross-presentation by professional APC of antigen 
derived from transfected cells, such as myocytes in the case of i.m. 
injection of pDNA.53 Consequently the number of professional 
APC such as DC which process and present the corresponding 
epitopes to T cells may be low, thereby limiting the induction 
of a sufficient pool of β cell-specific Treg. Increased doses and 
repeated injections of pDNA may enhance efficacy.75 An alterna-
tive approach has been to engineer β cell autoantigens that are 
secreted.67,78,79 The frequency of GAD65-specific Th2 cells and 
subsequent diabetes prevention are markedly increased in NOD 
mice injected i.m. with pDNA encoding a secreted GAD65-IgFc 

IL-10 to NOD mice early in the diabetogenic response, results in 
a transient increase in systemic levels of the respective cytokines 
and prevention of overt diabetes.65,66 These cytokines influence 
both the differentiation of type 1 and Treg effectors, and block 
the activation/maturation of antigen presenting cells (APC) such 
as dendritic cells (DC) and macrophages. However, when admin-
istered at later preclinical stages of the diabetogenic response, the 
efficacy of IL-4 and IL-10 encoding pDNA is reduced.67-69 In 
this instance, islet infiltration is unaffected and diabetes contin-
ues to develop in the treated NOD mice. Failure to suppress β 
cell autoimmunity under increasingly stringent conditions partly 
reflects inadequate cytokine levels established in the relevant 
target tissues, namely the islets and draining PLN. The rela-
tive immunoregulatory potency of IL-4 and IL-10 may also be 
a key factor. For example, overt diabetes is prevented in NOD 
mice at a late preclinical stage of T1D following i.m. injection 
of pDNA encoding TGFβ1.70 However, protection is dependent 
on repeated pDNA injections raising the concern that elevated 
levels of systemic TGFβ1 long-term may impair normal immune 
function. An alternative cytokine-based strategy has been to neu-
tralize a given proinflammatory cytokine by administration of 
pDNA encoding the corresponding soluble receptor. Vaccination 
with pDNA expressing a soluble fusion molecule consisting of the 
IFNγ receptor (IFNγR) and IgG-Fc domain prevents islet infil-
tration and autoimmune diabetes induced by multiple low dose 

Table 1. Approaches of pDNA vaccination for reestablishing β cell tolerance

Approach Transgene Efficacy at blocking β cell autoimmunity

Preclinical Clinical

Early Late

Chemokine Neutralization CCL4 +64

CXCL10 +63

Cytokine-induced Treg IL-4 +65

IL-10 +66

IL-4 + IL-10 +128

TGFβ1 +70

Cytokine Neutralization IFNγR-Ig +71

β cell autoantigen-induced Treg Intracellular GAD65 +83,129,130 +129

Secreted GAD65 +83

GAD65IgFc +60

Insulin B chain +73,74

Proinsulin +75

HSP60 +77

Combined pDNA vaccination Intracellular GAD65 + IL-4 +80

GAD65IgFc + IL-4 +67

GAD65IgFc + IL-10 +68 +69

GAD65IgFc + IL-4 + IL-10 +68 +69

GAD65-Proinsulin fusion + mCD80 +81

Proinsulin + mCD80 +131

Secreted GAD65 + BAX +132

GAD65 (intracellular) + NMαCD3 +125

Proinsulin + αCD40L +76
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grafts in diabetic NOD recipients.68,69 In this case co-injection 
of pDNA encoding IL-10 enhances differentiation of GAD65-
specific IL-10-secreting and FoxP3-expressing Treg, and may 
also potentiate protection by downregulating pathogenic effec-
tor T cells and islet resident APC.68,69 Co-injection of pDNA 
encoding a modified CD80 molecule that binds to CTLA-4-
only (mCD80) has also been used to enhance β cell-specific Treg 
reactivity and prevent diabetes in young NOD mice.81 The site 
and mode of vaccination also influences the nature of the T cell 
response elicited by the pDNA encoded β cell autoantigen. For 
instance, i.m. injection of pDNA results in preferential induction 
of type 1 effector T cells which can exacerbate β cell autoim-
munity in NOD mice.72 Differentiation of type 1 T effectors is 

fusion molecule compared to native GAD65 expressed intracel-
lularly.67 Secretion of a β cell autoantigen by pDNA transfected 
cells ensures widespread distribution in vivo, and in turn an 
increased frequency of APC that endocytose, process and present 
the corresponding epitopes.

Administration of pDNA encoding a β cell autoantigen alone 
has proven to be insufficient at suppressing islet inflammation at 
later stages of disease progression; in fact β cell autoimmunity 
may be exacerbated.67,72 Accordingly, one approach has been to 
co-administer pDNA encoding antigen and anti-inflammatory 
cytokines to “shape” the nature of the T cell response.67-69,80 
Intramuscular injection of pDNA encoding GAD65-IgFc and 
IL-10 suppresses β cell autoimmunity and protects syngeneic islet 

Table 2. Viral-based vectors primarily used in the treatment of Type 1 diabetes

Viral vector Approach Ex vivo islet transduction i.p./i.v./i.m. delivery
In vivo pancreas 

transduction

Transgene

Adenovirus

Antigen: N.D. proinsulin133 N.D.

Immune modulating 
cytokines:

TGFβ134,135 TGFβ135,136 N.D.

TNFα137

IL-12p40137,138

IL-4139 IL-4140

IL-10139

Pro-inflammatory modulators:

Indoleamine 2,3-dioxygenase141 N.D. N.D.

IL-1Rα142-144

vascular endothelial growth factor142,144

hepatocyte growth factor143

human Fas ligand145,146

insulin-like growth factor 1147

Co-stimulatory blockade:
CTLA-4134 N.D. N.D.

CTLA-4Ig134,137

rAAV

Antigen:
N.D. GAD95,96 N.D.

N.D. preproinsulin97 N.D.

Immune modulating 
cytokines:

IL-4148 IL-498 IL-4116

IL-10100 IL-1098-101,149,150 IL-10116

Pro-inflammatory modulators:
N.D. HO-1103 glucagon-like peptide 1117

AAT102 IκB116

Co-stimulatory blockade: N.D. N.D. N.D.

Lentivirus

Antigen: N.D. proinsulin151 N.D.

Immune modulating 
cytokines:

IL-4152 N.D. N.D.

TGFβ134

Pro-inflammatory modulators:

thioredoxin153 N.D. N.D.

IL-1Rα154

cFLIP155

Co-stimulatory blockade:
CTLA-4Ig134 N.D. N.D.

CTLA-4134

N. D., Not Determined.
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traditional single-stranded (ss) rAAV vectors become transcrip-
tionally active upon conversion to a double stranded DNA tem-
plate, which results in a slow onset of transgene expression.91 The 
use of dsAAV vectors eliminates this rate limiting step to acceler-
ate the onset and increase the level of transgene expression.92-94 
Consequently, lower doses of dsAAV versus ssAAV can be deliv-
ered to achieve sufficient levels of transgene expression.

rAAV vectors have been applied in multiple ways to block 
β cell autoimmunity in NOD mice and other models of T1D 
(Table 2). Intramuscular injection of rAAV1 or rAAV2 vec-
tors and systemic expression of β cell autoantigens (e.g., proin-
sulin, GAD65),95-97 and cytokines (e.g., IL-10),98-100 suppresses 
ongoing β cell autoimmunity at both early and late preclinical 
stages, and prevents overt diabetes in NOD mice via induc-
tion of Treg. Furthermore, i.m. delivery of a rAAV vector 
expressing IL-10 protects syngeneic islet grafts implanted into 
diabetic NOD recipients, demonstrating that the approach is 
robust even at clinical stages of T1D.101 Established β cell auto-
immunity in NOD mice is also suppressed by i.m. delivery of 
rAAV encoding anti-inflammatory molecules such as human 
α1-antitrypsin (AAT)102 a serine protease inhibitor and heme 
oxygenase-1 (HO-1)103 a stress-response enzyme that catalyzes 
the degradation of heme to free iron, carbon monoxide and bili-
verdin. Here protection is mediated primarily due to the effects 
of AAT and HO-1 on innate effector cells. Depending on the 
dose and transgene, the encoded proteins by a given rAAV can 
be detected several weeks post-injection.95-103 Whether sustained 
expression of high systemic levels of these proteins compro-
mises normal immune function, however, has not been assessed. 
Inducible promoters to regulate transgene expression can be used 
to address this potential concern. Intramuscular injection of rAAV 
encoding an AAT transgene driven by a tetracycline/doxycycline 
inducible promoter results in increased AAT expression and sup-
pression of collagen-induced arthritis when mice are fed doxycy-
cline containing chow.104 Notably, the level and length of time of 
gene expression can be effectively manipulated with an inducible 
promoter so that tolerance can be established and maintained in 
a safe manner.

A major feature of rAAV-based vaccination is the ability to 
directly modify the tolerogenicity of β cells in vivo in a cell-
specific manner. In this way, possible complications associated 
with systemic expression of an immunoregulatory molecule are 
obviated. In addition, direct expression of a given protein in the 
islets may more readily establish immunotherapeutic levels that 
otherwise are not attained via a systemic route. The latter may 
also reduce the required dose of rAAV thereby minimizing the 
possibility of inducing immunity to the recombinant. Studies 
have shown employing rAAV encoding green fluorescent protein 
(GFP) that the efficiency of in vivo transduction of pancreatic 
tissue is influenced by the serotype of the capsid proteins used for 
packaging, and the route of rAAV delivery. For instance, rAAV8 
vector is highly efficient at transducing murine β cells and aci-
nar cells of the exocrine pancreas when administered via i.v. or 
intraperitoneal (i.p.) routes, whereas rAAV6 vector is the pre-
ferred choice for pancreatic intraductal infusion.105 Importantly, 
rAAV transduction has no effect on β cell function.105-108 It is 

partly attributed to CpG motifs found in the vector backbone 
that bind Toll-like receptor 9 and promote a proinflammatory 
response.53,56,57 On the other hand, delivery of pDNA to the 
epidermis via gene gun results in preferential induction of IL-4-
secreting Th2 cells independent of CpG motifs.58-60 Currently it 
is unclear why Th2 cell differentiation is selectively promoted but 
may be due to the tolerogenic properties of epidermal Langerhans 
cells.82 Similarly, the tolerogenic nature of mucosal tissues can 
be exploited to manipulate T cell reactivity by delivering pDNA 
via intranasal or oral routes.76,83 In this way induction/expan-
sion of Treg versus pathogenic type 1 T effectors can be further 
enhanced.

Promising results have been obtained in a recent phase I/II ran-
domized, dose escalation trial in which diabetic patients receive 
weekly i.m. injections of pDNA encoding full-length human 
proinsulin.84 Notably, β cell function as determined by insu-
lin C-peptide levels is maintained over a 12 month period in 
patients vaccinated with the pDNA encoding proinsulin, lead-
ing to improved glycemic control compared to subjects receiving 
the placebo control. The proinsulin encoding pDNA vaccine is 
well tolerated and efficacy correlates with reduced anti-insulin 
antibody titers.84

Viral vector-based vaccination: the use of recombinant 
adeno-associated virus vectors to induce T cell tolerance. The 
majority of studies using viral vector-based vaccines have focused 
on immunity to infectious pathogens and tumor antigens, 
although this approach has been employed for prevention and 
treatment of T1D experimentally (Table 2).85 The key advan-
tage of this approach relative to pDNA vaccination is that viral 
vector-based vaccines typically transduce cells with greater effi-
ciency in vivo. This can result in more robust expression levels 
of the encoded transgene, and a broader range of tissues (e.g., 
islets) that can be targeted in vivo. On the other hand, vector 
toxicity to transduced tissue and vector-specific immunity are 
key concerns. For instance, the efficacy of replication-defective 
adenovirus (Ad) vectors is reduced by pre-existing immunity to 
capsid proteins used to package the recombinants, which in turn 
affects levels and persistence of transgene expression and limits 
repeated injection of the recombinant.86 In this regard, recombi-
nant adeno-associated virus (rAAV) vectors have garnered a great 
deal of interest as an efficient and safe gene transfer platform.

rAAV vectors are highly amenable for gene delivery for a 
number of reasons. rAAV vectors transduce both dividing and 
nondividing cells, and exhibit broad tissue tropism with mini-
mal toxicity that leads to long-term transgene expression in 
vivo without significant immunogenicity.87,88 Furthermore, the 
risk of genomic insertion and insertional mutagenesis is mini-
mal since rAAV persists as nonintegrating circular monomers 
or concatemers in the nucleus.89 Clinical studies using rAAV-
mediated gene transfer to complement genetic disorders have 
generated promising results.90 Moreover, improved methods to 
engineer and produce packaged rAAV coupled with the avail-
ability of multiple serotypes to manipulate the immunogenicity 
of the recombinants enhance clinical application of rAAV-based 
gene transfer.87,88 The development of double-stranded (ds) 
rAAV vectors has further improved the approach. Upon delivery, 
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alternative strategy, however, is to block expression of relevant 
genes by targeting RNA. A number of different approaches 
including ribozymes, DNAzymes, aptamers and AS-ODN 
have been used to mediate “antisense therapy”.119,120 Of these 
approaches, the use of AS-ODN is arguably the most direct ther-
apeutic strategy and multiple clinical trials testing AS-ODN in 
for example hematology, oncology and neuromuscular diseases 
are ongoing.120 AS-ODN are single-stranded DNA molecules 
designed to specifically hybridize to the complementary RNA. 
Upon binding, AS-ODN block the function of mRNA by alter-
ing splicing events, inhibiting protein translation by influenc-
ing ribosome assembly, and/or eliciting endogenous RNase H 
enzymes.120

AS-ODN have been successfully used to modify the stimu-
latory capacity of DC either ex vivo or in vivo and in this way 
suppress β cell autoimmunity in NOD mice. DC uptake of 
AS-ODN specific for CD40, CD80 and CD86 blocks expression 
of these co-stimulatory molecules and establishes a robust tolero-
genic phenotype.121 Diabetes is prevented in NOD mice follow-
ing a single injection of bone marrow-derived DC treated with 
AS-ODN, and protection correlates with an increase in Treg.121 
Currently, a phase I clinical trial is underway to test the safety 
of ex vivo expanded, autologous DC treated with AS-ODN 
and injected into diabetic patients.122 The potential of antisense 
therapy to treat T1D has been further demonstrated in a study 
examining the efficacy of microspheres containing CD40, CD80 
and CD86 AS-ODN injected into recent onset diabetic NOD 
mice.122 Here the microspheres were delivered at a site anatomi-
cally proximal to the PLN in an attempt to enhance targeting 
of the relevant pool of DC. The AS-ODN induced an increased 
frequency of FoxP3+Treg and diabetes was in fact reversed in 
some NOD mice.122 Although the efficiency of in vivo uptake 
of AS-ODN by DC and selective targeting of tissue-specific DC 
are key issues that still need to be resolved, the above findings 
provide evidence that this strategy can be effective even under the 
most stringent of treatment conditions.

Concluding Remarks

Preclinical studies provide evidence indicating that genetic vac-
cination in general and specifically pDNA- and AAV vector-
based vaccines and AS-ODN are effective at reestablishing 
β cell-specific T cell tolerance. Each of these strategies has key 
strengths. pDNA vaccination offers a relatively facile and safe 
strategy to express proteins and modulate β cell autoimmunity 
systemically. In addition the nature of the T cell response can 
be readily manipulated by co-delivery of pDNA encoding anti-
gen, cytokines and/or anti-inflammatory modulators. The recent 
phase I/II trial studying administration of proinsulin encoding 
pDNA to diabetic patients84 and encouraging findings from a 
phase II trial in which multiple sclerosis patients were treated 
with myelin basic protein expressing pDNA,123 provide evidence 
suggesting that pDNA vaccination may indeed be effective to 
manipulate T cell-mediated autoimmunity in the clinic. rAAV 
vector-based vaccination on the other hand offers an approach to 
directly modify and enhance the tolerogenicity of β cells in vivo 

noteworthy that studies of viral capsid protein structure and 
the corresponding receptors have led to the engineering of tis-
sue-specific capsids. Random peptide ligand libraries have been 
used to generate AAV capsid proteins specific for tissues previ-
ously resistant to rAAV infection.110-112 Furthermore, pseudo-
typed rAAV have been established in which relevant amino acid 
sequences from different capsid proteins are swapped to create a 
tissue-specific chimeric recombinant.113-115 These strategies may 
lead to the future development of capsid proteins that promote 
efficient, “β cell-only” transduction by rAAV vectors.

Currently since rAAV serotypes that efficiently transduce 
β cells also transduce other tissues, it is necessary to engineer 
rAAV vectors with an appropriate promoter to target transgene 
expression in a tissue-specific manner. Here, the use of an insu-
lin II promoter (IP) has proven to be highly effective for tightly-
regulated and stable β cell-specific expression of rAAV encoded 
transgenes.105,116 Evidence that T1D can be manipulated by tar-
geting β cells in vivo is provided by a study in which dsAAV8 
recombinants encoding IL-4 and IL-10 transgenes driven by a 
mouse IP (mIP) were administered i.p. to young NOD mice.116 
Diabetes is prevented in NOD mice receiving dsAAV8-mIP-IL4, 
which correlates with reduced islet infiltration and an increase 
in FoxP3+Treg in the periphery. Interestingly, no effect on β cell 
autoimmunity is detected in dsAAV8-mIP-IL10-treated NOD 
mice. These observations suggest that local versus systemic 
expression of a cytokine can have markedly different effects on 
β cell autoimmunity. For instance, in contrast to β cell-specific 
expression, rAAV-driven systemic expression of IL-10 but not 
IL-4 protects NOD mice from diabetes.98 Importantly, the above 
study provides proof-of-principle that rAAV can be used to mod-
ulate the tolerogenicity of β cells in vivo. Whether this strategy 
is sufficiently robust under more stringent conditions (e.g., late 
preclinical or clinical stages of T1D) still needs to be determined. 
In addition, the efficacy of other anti-inflammatory cytokines 
and/or immunomodulatory molecules need to be tested. It is 
noteworthy that i.p. injection of dsAAV8 carrying a mIP-driven 
transgene encoding glucagon-like peptide-1 blocks autoimmune 
diabetes induced by STZ in BALB/c mice.117

Finally, rAAV vector-based vaccination may also be applied 
for genetically modifying islet grafts ex vivo for the purpose of 
inducing transplantation tolerance. Feasibility for this general 
approach has been provided by numerous studies using Ad vec-
tors (Table 2). Genes encoding cytokines, anti-inflammatory and 
anti-apoptotic proteins and molecules to block T cell co-stimu-
lation (e.g., CTLA-4Ig) have been successfully used to increase 
islet graft survival.118 Although enhanced, islet graft survival is 
nevertheless transient due in part to low transduction efficiencies 
and the immunogenicity of Ad vectors. Accordingly, dsAAV vec-
tors are well suited for modifying the tolerogenicity of islet grafts 
due to limited immunogenicity and rapid transgene expression. 
dsAAV packaged in serotypes 2, 6 and 8 efficiently transduce 
human islets without impairing β cell function.109

Application of antisense therapy to induce T cell tolerance. 
Transfer of genes encoding autoantigens and immunomodula-
tory proteins has been the predominate approach to genetically 
manipulate autoimmunity in general and T1D specifically. An 
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LCMV infection. Notably, the combination immunotherapy 
reverses diabetes in a greater frequency of recent onset mice rela-
tive to either approach alone. This synergy correlates with an 
increased GAD65-specific Treg response induced by the pDNA-
GAD65 and NM anti-CD3 antibody combined treatment. 
The NM anti-CD3 antibody establishes conditions permissive 
for GAD65-specific Treg differentiation/expansion by in part 
depleting pathogenic type 1 T effectors and reducing the over-
all proinflammatory milieu in the islets and PLN.126,127 These 
findings demonstrate the potential potency of a combinatorial 
immunotherapy, and establish rationale for combining genetic 
vaccines with approaches based on administration of other anti-
bodies (e.g., anti-CD20) and/or immunomodulatory proteins 
(e.g., vitamin D).

In conclusion, genetic vaccination can be used to manipu-
late the diabetogenic response either systemically, and/or by 
directly modifying the tolerogenicity of β cells. The inherent 
flexibility of the approach provides immense potential for clini-
cal application either as a stand alone or combinatorial immu-
notherapy. Continued preclinical and clinical studies, however, 
are needed to meet this potential. How treatment parameters 
(e.g., dose, route of administration) and antigen-specificity of 
pDNA vaccination influence β cell-specific T cell reactivity at 
various stages of disease progression for instance, need to be 
assessed in patients. In addition further preclinical develop-
ment of dsAAV vectors to improve selective targeting of β cells 
in vivo, and identifying the most effective immunoregulatory 
proteins that suppress inflammation in the islets is required. 
Finally, improved in vivo targeting of and uptake by specific cell 
types (e.g., DC) is needed to enhance the clinical application of 
AS-ODN microspheres.
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and ex vivo. dsAAV vectors can be used to express immunoregu-
latory proteins specifically in β cells in vivo by choosing: (1) the 
appropriate route of delivery, (2) capsid proteins that preferen-
tially transduce islets and (3) promoters which selectively drive 
transgene expression in β cells. Anti-sense therapy via AS-ODN 
provides a strategy to alter the phenotype and effector function of 
APC and possibly T cells in the periphery (e.g., PLN). Whether 
a given strategy of genetic vaccination alone is sufficient to estab-
lish long-term protection in patients, especially at late preclini-
cal and clinical stages of T1D is a question that still needs to 
be addressed. However, genetic vaccination may also prove to be 
effective in the context of a combinatorial immunotherapy. In 
this regard, two potential scenarios can be envisioned.

In the first scenario, different genetic vaccine strategies are 
combined, similar to heterologous prime-boost vaccination pro-
tocols that exploit the properties of distinct vaccines to induce 
immunity to pathogens.124 One possible approach for exam-
ple is to induce β cell-specific Treg via autoantigen-encoding 
pDNA and quench the inflammatory milieu of the islets with 
dsAAV encoding an anti-inflammatory molecule(s) (e.g., IL-4, 
AAT, HO-1). This combination may reduce the stringency 
needed to suppress β cell autoimmunity at later preclinical 
or clinical stages of T1D in terms of the number and/or type 
of pDNA-induced β cell-specific Treg, and/or the efficiency 
of islet transduction and the level of transgene expression by 
the rAAV vector. Similarly, a more robust β cell-specific Treg 
response may be elicited by inducing tolerogenic DC in vivo 
via encapsulated AS-ODN targeting co-stimulatory molecule 
expression coupled with pDNA- or rAAV vector-encoded β cell 
autoantigen.

In the second scenario, genetic vaccination can be paired 
with other “nongenetic-based” strategies of immunotherapy. A 
recent study assessed the efficacy of i.m. injected pDNA encod-
ing GAD65 combined with i.v. injected NM anti-CD3 antibody 
in a transgenic model of T1D in which the lymphocytic cho-
riomeningitis virus (LCMV) glycoprotein is a neo-autoantigen 
expressed by β cells.125 Diabetes is induced in this model by 
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